aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/pandas/py3/pandas/_libs/interval.pyx
blob: 14b7baf7f5a08ec0eb1f94121320cb95a32fc67a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import numbers
from operator import (
    le,
    lt,
)

from cpython.datetime cimport (
    PyDelta_Check,
    import_datetime,
)

import_datetime()

cimport cython
from cpython.object cimport PyObject_RichCompare
from cython cimport Py_ssize_t

import numpy as np

cimport numpy as cnp
from numpy cimport (
    NPY_QUICKSORT,
    PyArray_ArgSort,
    PyArray_Take,
    float64_t,
    int64_t,
    ndarray,
    uint64_t,
)

cnp.import_array()


from pandas._libs cimport util
from pandas._libs.hashtable cimport Int64Vector
from pandas._libs.tslibs.timedeltas cimport _Timedelta
from pandas._libs.tslibs.timestamps cimport _Timestamp
from pandas._libs.tslibs.timezones cimport tz_compare
from pandas._libs.tslibs.util cimport (
    is_float_object,
    is_integer_object,
    is_timedelta64_object,
)

VALID_CLOSED = frozenset(["left", "right", "both", "neither"])


cdef class IntervalMixin:

    @property
    def closed_left(self):
        """
        Check if the interval is closed on the left side.

        For the meaning of `closed` and `open` see :class:`~pandas.Interval`.

        Returns
        -------
        bool
            True if the Interval is closed on the left-side.

        See Also
        --------
        Interval.closed_right : Check if the interval is closed on the right side.
        Interval.open_left : Boolean inverse of closed_left.

        Examples
        --------
        >>> iv = pd.Interval(0, 5, closed='left')
        >>> iv.closed_left
        True

        >>> iv = pd.Interval(0, 5, closed='right')
        >>> iv.closed_left
        False
        """
        return self.closed in ("left", "both")

    @property
    def closed_right(self):
        """
        Check if the interval is closed on the right side.

        For the meaning of `closed` and `open` see :class:`~pandas.Interval`.

        Returns
        -------
        bool
            True if the Interval is closed on the left-side.

        See Also
        --------
        Interval.closed_left : Check if the interval is closed on the left side.
        Interval.open_right : Boolean inverse of closed_right.

        Examples
        --------
        >>> iv = pd.Interval(0, 5, closed='both')
        >>> iv.closed_right
        True

        >>> iv = pd.Interval(0, 5, closed='left')
        >>> iv.closed_right
        False
        """
        return self.closed in ("right", "both")

    @property
    def open_left(self):
        """
        Check if the interval is open on the left side.

        For the meaning of `closed` and `open` see :class:`~pandas.Interval`.

        Returns
        -------
        bool
            True if the Interval is not closed on the left-side.

        See Also
        --------
        Interval.open_right : Check if the interval is open on the right side.
        Interval.closed_left : Boolean inverse of open_left.

        Examples
        --------
        >>> iv = pd.Interval(0, 5, closed='neither')
        >>> iv.open_left
        True

        >>> iv = pd.Interval(0, 5, closed='both')
        >>> iv.open_left
        False
        """
        return not self.closed_left

    @property
    def open_right(self):
        """
        Check if the interval is open on the right side.

        For the meaning of `closed` and `open` see :class:`~pandas.Interval`.

        Returns
        -------
        bool
            True if the Interval is not closed on the left-side.

        See Also
        --------
        Interval.open_left : Check if the interval is open on the left side.
        Interval.closed_right : Boolean inverse of open_right.

        Examples
        --------
        >>> iv = pd.Interval(0, 5, closed='left')
        >>> iv.open_right
        True

        >>> iv = pd.Interval(0, 5)
        >>> iv.open_right
        False
        """
        return not self.closed_right

    @property
    def mid(self):
        """
        Return the midpoint of the Interval.

        Examples
        --------
        >>> iv = pd.Interval(0, 5)
        >>> iv.mid
        2.5
        """
        try:
            return 0.5 * (self.left + self.right)
        except TypeError:
            # datetime safe version
            return self.left + 0.5 * self.length

    @property
    def length(self):
        """
        Return the length of the Interval.

        See Also
        --------
        Interval.is_empty : Indicates if an interval contains no points.
        """
        return self.right - self.left

    @property
    def is_empty(self):
        """
        Indicates if an interval is empty, meaning it contains no points.

        Returns
        -------
        bool or ndarray
            A boolean indicating if a scalar :class:`Interval` is empty, or a
            boolean ``ndarray`` positionally indicating if an ``Interval`` in
            an :class:`~arrays.IntervalArray` or :class:`IntervalIndex` is
            empty.

        See Also
        --------
        Interval.length : Return the length of the Interval.

        Examples
        --------
        An :class:`Interval` that contains points is not empty:

        >>> pd.Interval(0, 1, closed='right').is_empty
        False

        An ``Interval`` that does not contain any points is empty:

        >>> pd.Interval(0, 0, closed='right').is_empty
        True
        >>> pd.Interval(0, 0, closed='left').is_empty
        True
        >>> pd.Interval(0, 0, closed='neither').is_empty
        True

        An ``Interval`` that contains a single point is not empty:

        >>> pd.Interval(0, 0, closed='both').is_empty
        False

        An :class:`~arrays.IntervalArray` or :class:`IntervalIndex` returns a
        boolean ``ndarray`` positionally indicating if an ``Interval`` is
        empty:

        >>> ivs = [pd.Interval(0, 0, closed='neither'),
        ...        pd.Interval(1, 2, closed='neither')]
        >>> pd.arrays.IntervalArray(ivs).is_empty
        array([ True, False])

        Missing values are not considered empty:

        >>> ivs = [pd.Interval(0, 0, closed='neither'), np.nan]
        >>> pd.IntervalIndex(ivs).is_empty
        array([ True, False])
        """
        return (self.right == self.left) & (self.closed != "both")

    def _check_closed_matches(self, other, name="other"):
        """
        Check if the closed attribute of `other` matches.

        Note that 'left' and 'right' are considered different from 'both'.

        Parameters
        ----------
        other : Interval, IntervalIndex, IntervalArray
        name : str
            Name to use for 'other' in the error message.

        Raises
        ------
        ValueError
            When `other` is not closed exactly the same as self.
        """
        if self.closed != other.closed:
            raise ValueError(f"'{name}.closed' is {repr(other.closed)}, "
                             f"expected {repr(self.closed)}.")


cdef bint _interval_like(other):
    return (hasattr(other, "left")
            and hasattr(other, "right")
            and hasattr(other, "closed"))


cdef class Interval(IntervalMixin):
    """
    Immutable object implementing an Interval, a bounded slice-like interval.

    Parameters
    ----------
    left : orderable scalar
        Left bound for the interval.
    right : orderable scalar
        Right bound for the interval.
    closed : {'right', 'left', 'both', 'neither'}, default 'right'
        Whether the interval is closed on the left-side, right-side, both or
        neither. See the Notes for more detailed explanation.

    See Also
    --------
    IntervalIndex : An Index of Interval objects that are all closed on the
        same side.
    cut : Convert continuous data into discrete bins (Categorical
        of Interval objects).
    qcut : Convert continuous data into bins (Categorical of Interval objects)
        based on quantiles.
    Period : Represents a period of time.

    Notes
    -----
    The parameters `left` and `right` must be from the same type, you must be
    able to compare them and they must satisfy ``left <= right``.

    A closed interval (in mathematics denoted by square brackets) contains
    its endpoints, i.e. the closed interval ``[0, 5]`` is characterized by the
    conditions ``0 <= x <= 5``. This is what ``closed='both'`` stands for.
    An open interval (in mathematics denoted by parentheses) does not contain
    its endpoints, i.e. the open interval ``(0, 5)`` is characterized by the
    conditions ``0 < x < 5``. This is what ``closed='neither'`` stands for.
    Intervals can also be half-open or half-closed, i.e. ``[0, 5)`` is
    described by ``0 <= x < 5`` (``closed='left'``) and ``(0, 5]`` is
    described by ``0 < x <= 5`` (``closed='right'``).

    Examples
    --------
    It is possible to build Intervals of different types, like numeric ones:

    >>> iv = pd.Interval(left=0, right=5)
    >>> iv
    Interval(0, 5, closed='right')

    You can check if an element belongs to it, or if it contains another interval:

    >>> 2.5 in iv
    True
    >>> pd.Interval(left=2, right=5, closed='both') in iv
    True

    You can test the bounds (``closed='right'``, so ``0 < x <= 5``):

    >>> 0 in iv
    False
    >>> 5 in iv
    True
    >>> 0.0001 in iv
    True

    Calculate its length

    >>> iv.length
    5

    You can operate with `+` and `*` over an Interval and the operation
    is applied to each of its bounds, so the result depends on the type
    of the bound elements

    >>> shifted_iv = iv + 3
    >>> shifted_iv
    Interval(3, 8, closed='right')
    >>> extended_iv = iv * 10.0
    >>> extended_iv
    Interval(0.0, 50.0, closed='right')

    To create a time interval you can use Timestamps as the bounds

    >>> year_2017 = pd.Interval(pd.Timestamp('2017-01-01 00:00:00'),
    ...                         pd.Timestamp('2018-01-01 00:00:00'),
    ...                         closed='left')
    >>> pd.Timestamp('2017-01-01 00:00') in year_2017
    True
    >>> year_2017.length
    Timedelta('365 days 00:00:00')
    """
    _typ = "interval"
    __array_priority__ = 1000

    cdef readonly object left
    """
    Left bound for the interval.
    """

    cdef readonly object right
    """
    Right bound for the interval.
    """

    cdef readonly str closed
    """
    String describing the inclusive side the intervals.

    Either ``left``, ``right``, ``both`` or ``neither``.
    """

    def __init__(self, left, right, str closed="right"):
        # note: it is faster to just do these checks than to use a special
        # constructor (__cinit__/__new__) to avoid them

        self._validate_endpoint(left)
        self._validate_endpoint(right)

        if closed not in VALID_CLOSED:
            raise ValueError(f"invalid option for 'closed': {closed}")
        if not left <= right:
            raise ValueError("left side of interval must be <= right side")
        if (isinstance(left, _Timestamp) and
                not tz_compare(left.tzinfo, right.tzinfo)):
            # GH 18538
            raise ValueError("left and right must have the same time zone, got "
                             f"{repr(left.tzinfo)}' and {repr(right.tzinfo)}")
        self.left = left
        self.right = right
        self.closed = closed

    def _validate_endpoint(self, endpoint):
        # GH 23013
        if not (is_integer_object(endpoint) or is_float_object(endpoint) or
                isinstance(endpoint, (_Timestamp, _Timedelta))):
            raise ValueError("Only numeric, Timestamp and Timedelta endpoints "
                             "are allowed when constructing an Interval.")

    def __hash__(self):
        return hash((self.left, self.right, self.closed))

    def __contains__(self, key) -> bool:
        if _interval_like(key):
            key_closed_left = key.closed in ("left", "both")
            key_closed_right = key.closed in ("right", "both")
            if self.open_left and key_closed_left:
                left_contained = self.left < key.left
            else:
                left_contained = self.left <= key.left
            if self.open_right and key_closed_right:
                right_contained = key.right < self.right
            else:
                right_contained = key.right <= self.right
            return left_contained and right_contained
        return ((self.left < key if self.open_left else self.left <= key) and
                (key < self.right if self.open_right else key <= self.right))

    def __richcmp__(self, other, op: int):
        if isinstance(other, Interval):
            self_tuple = (self.left, self.right, self.closed)
            other_tuple = (other.left, other.right, other.closed)
            return PyObject_RichCompare(self_tuple, other_tuple, op)
        elif util.is_array(other):
            return np.array(
                [PyObject_RichCompare(self, x, op) for x in other],
                dtype=bool,
            )

        return NotImplemented

    def __reduce__(self):
        args = (self.left, self.right, self.closed)
        return (type(self), args)

    def _repr_base(self):
        left = self.left
        right = self.right

        # TODO: need more general formatting methodology here
        if isinstance(left, _Timestamp) and isinstance(right, _Timestamp):
            left = left._short_repr
            right = right._short_repr

        return left, right

    def __repr__(self) -> str:

        left, right = self._repr_base()
        name = type(self).__name__
        repr_str = f"{name}({repr(left)}, {repr(right)}, closed={repr(self.closed)})"
        return repr_str

    def __str__(self) -> str:

        left, right = self._repr_base()
        start_symbol = "[" if self.closed_left else "("
        end_symbol = "]" if self.closed_right else ")"
        return f"{start_symbol}{left}, {right}{end_symbol}"

    def __add__(self, y):
        if (
            isinstance(y, numbers.Number)
            or PyDelta_Check(y)
            or is_timedelta64_object(y)
        ):
            return Interval(self.left + y, self.right + y, closed=self.closed)
        elif (
            # __radd__ pattern
            # TODO(cython3): remove this
            isinstance(y, Interval)
            and (
                isinstance(self, numbers.Number)
                or PyDelta_Check(self)
                or is_timedelta64_object(self)
            )
        ):
            return Interval(y.left + self, y.right + self, closed=y.closed)
        return NotImplemented

    def __radd__(self, other):
        if (
                isinstance(other, numbers.Number)
                or PyDelta_Check(other)
                or is_timedelta64_object(other)
        ):
            return Interval(self.left + other, self.right + other, closed=self.closed)
        return NotImplemented

    def __sub__(self, y):
        if (
            isinstance(y, numbers.Number)
            or PyDelta_Check(y)
            or is_timedelta64_object(y)
        ):
            return Interval(self.left - y, self.right - y, closed=self.closed)
        return NotImplemented

    def __mul__(self, y):
        if isinstance(y, numbers.Number):
            return Interval(self.left * y, self.right * y, closed=self.closed)
        elif isinstance(y, Interval) and isinstance(self, numbers.Number):
            # __radd__ semantics
            # TODO(cython3): remove this
            return Interval(y.left * self, y.right * self, closed=y.closed)
        return NotImplemented

    def __rmul__(self, other):
        if isinstance(other, numbers.Number):
            return Interval(self.left * other, self.right * other, closed=self.closed)
        return NotImplemented

    def __truediv__(self, y):
        if isinstance(y, numbers.Number):
            return Interval(self.left / y, self.right / y, closed=self.closed)
        return NotImplemented

    def __floordiv__(self, y):
        if isinstance(y, numbers.Number):
            return Interval(
                self.left // y, self.right // y, closed=self.closed)
        return NotImplemented

    def overlaps(self, other):
        """
        Check whether two Interval objects overlap.

        Two intervals overlap if they share a common point, including closed
        endpoints. Intervals that only have an open endpoint in common do not
        overlap.

        Parameters
        ----------
        other : Interval
            Interval to check against for an overlap.

        Returns
        -------
        bool
            True if the two intervals overlap.

        See Also
        --------
        IntervalArray.overlaps : The corresponding method for IntervalArray.
        IntervalIndex.overlaps : The corresponding method for IntervalIndex.

        Examples
        --------
        >>> i1 = pd.Interval(0, 2)
        >>> i2 = pd.Interval(1, 3)
        >>> i1.overlaps(i2)
        True
        >>> i3 = pd.Interval(4, 5)
        >>> i1.overlaps(i3)
        False

        Intervals that share closed endpoints overlap:

        >>> i4 = pd.Interval(0, 1, closed='both')
        >>> i5 = pd.Interval(1, 2, closed='both')
        >>> i4.overlaps(i5)
        True

        Intervals that only have an open endpoint in common do not overlap:

        >>> i6 = pd.Interval(1, 2, closed='neither')
        >>> i4.overlaps(i6)
        False
        """
        if not isinstance(other, Interval):
            raise TypeError("`other` must be an Interval, "
                            f"got {type(other).__name__}")

        # equality is okay if both endpoints are closed (overlap at a point)
        op1 = le if (self.closed_left and other.closed_right) else lt
        op2 = le if (other.closed_left and self.closed_right) else lt

        # overlaps is equivalent negation of two interval being disjoint:
        # disjoint = (A.left > B.right) or (B.left > A.right)
        # (simplifying the negation allows this to be done in less operations)
        return op1(self.left, other.right) and op2(other.left, self.right)


@cython.wraparound(False)
@cython.boundscheck(False)
def intervals_to_interval_bounds(ndarray intervals, bint validate_closed=True):
    """
    Parameters
    ----------
    intervals : ndarray
        Object array of Intervals / nulls.

    validate_closed: bool, default True
        Boolean indicating if all intervals must be closed on the same side.
        Mismatching closed will raise if True, else return None for closed.

    Returns
    -------
    tuple of
        left : ndarray
        right : ndarray
        closed: str
    """
    cdef:
        object closed = None, interval
        Py_ssize_t i, n = len(intervals)
        ndarray left, right
        bint seen_closed = False

    left = np.empty(n, dtype=intervals.dtype)
    right = np.empty(n, dtype=intervals.dtype)

    for i in range(n):
        interval = intervals[i]
        if interval is None or util.is_nan(interval):
            left[i] = np.nan
            right[i] = np.nan
            continue

        if not isinstance(interval, Interval):
            raise TypeError(f"type {type(interval)} with value "
                            f"{interval} is not an interval")

        left[i] = interval.left
        right[i] = interval.right
        if not seen_closed:
            seen_closed = True
            closed = interval.closed
        elif closed != interval.closed:
            closed = None
            if validate_closed:
                raise ValueError("intervals must all be closed on the same side")

    return left, right, closed


include "intervaltree.pxi"