aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/pandas/py2/pandas/core/series.py
blob: 3ed4e2e12ed7320410ec785b5517c34919d72bdf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
"""
Data structure for 1-dimensional cross-sectional and time series data
"""
from __future__ import division

from textwrap import dedent
import warnings

import numpy as np

from pandas._libs import iNaT, index as libindex, lib, tslibs
import pandas.compat as compat
from pandas.compat import PY36, OrderedDict, StringIO, u, zip
from pandas.compat.numpy import function as nv
from pandas.util._decorators import Appender, Substitution, deprecate
from pandas.util._validators import validate_bool_kwarg

from pandas.core.dtypes.common import (
    _is_unorderable_exception, ensure_platform_int, is_bool,
    is_categorical_dtype, is_datetime64_dtype, is_datetimelike, is_dict_like,
    is_extension_array_dtype, is_extension_type, is_hashable, is_integer,
    is_iterator, is_list_like, is_scalar, is_string_like, is_timedelta64_dtype)
from pandas.core.dtypes.generic import (
    ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCSeries,
    ABCSparseArray, ABCSparseSeries)
from pandas.core.dtypes.missing import (
    isna, na_value_for_dtype, notna, remove_na_arraylike)

from pandas.core import algorithms, base, generic, nanops, ops
from pandas.core.accessor import CachedAccessor
from pandas.core.arrays import ExtensionArray, SparseArray
from pandas.core.arrays.categorical import Categorical, CategoricalAccessor
from pandas.core.arrays.sparse import SparseAccessor
import pandas.core.common as com
from pandas.core.config import get_option
from pandas.core.index import (
    Float64Index, Index, InvalidIndexError, MultiIndex, ensure_index)
from pandas.core.indexes.accessors import CombinedDatetimelikeProperties
import pandas.core.indexes.base as ibase
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.period import PeriodIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.core.indexing import check_bool_indexer, maybe_convert_indices
from pandas.core.internals import SingleBlockManager
from pandas.core.internals.construction import sanitize_array
from pandas.core.strings import StringMethods
from pandas.core.tools.datetimes import to_datetime

import pandas.io.formats.format as fmt
from pandas.io.formats.terminal import get_terminal_size
import pandas.plotting._core as gfx

# pylint: disable=E1101,E1103
# pylint: disable=W0703,W0622,W0613,W0201


__all__ = ['Series']

_shared_doc_kwargs = dict(
    axes='index', klass='Series', axes_single_arg="{0 or 'index'}",
    axis="""axis : {0 or 'index'}
        Parameter needed for compatibility with DataFrame.""",
    inplace="""inplace : boolean, default False
        If True, performs operation inplace and returns None.""",
    unique='np.ndarray', duplicated='Series',
    optional_by='', optional_mapper='', optional_labels='', optional_axis='',
    versionadded_to_excel='\n    .. versionadded:: 0.20.0\n')


# see gh-16971
def remove_na(arr):
    """
    Remove null values from array like structure.

    .. deprecated:: 0.21.0
        Use s[s.notnull()] instead.
    """

    warnings.warn("remove_na is deprecated and is a private "
                  "function. Do not use.", FutureWarning, stacklevel=2)
    return remove_na_arraylike(arr)


def _coerce_method(converter):
    """
    Install the scalar coercion methods.
    """

    def wrapper(self):
        if len(self) == 1:
            return converter(self.iloc[0])
        raise TypeError("cannot convert the series to "
                        "{0}".format(str(converter)))

    wrapper.__name__ = "__{name}__".format(name=converter.__name__)
    return wrapper

# ----------------------------------------------------------------------
# Series class


class Series(base.IndexOpsMixin, generic.NDFrame):
    """
    One-dimensional ndarray with axis labels (including time series).

    Labels need not be unique but must be a hashable type. The object
    supports both integer- and label-based indexing and provides a host of
    methods for performing operations involving the index. Statistical
    methods from ndarray have been overridden to automatically exclude
    missing data (currently represented as NaN).

    Operations between Series (+, -, /, *, **) align values based on their
    associated index values-- they need not be the same length. The result
    index will be the sorted union of the two indexes.

    Parameters
    ----------
    data : array-like, Iterable, dict, or scalar value
        Contains data stored in Series.

        .. versionchanged :: 0.23.0
           If data is a dict, argument order is maintained for Python 3.6
           and later.

    index : array-like or Index (1d)
        Values must be hashable and have the same length as `data`.
        Non-unique index values are allowed. Will default to
        RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index
        sequence are used, the index will override the keys found in the
        dict.
    dtype : str, numpy.dtype, or ExtensionDtype, optional
        dtype for the output Series. If not specified, this will be
        inferred from `data`.
        See the :ref:`user guide <basics.dtypes>` for more usages.
    copy : bool, default False
        Copy input data.
    """
    _metadata = ['name']
    _accessors = {'dt', 'cat', 'str', 'sparse'}
    # tolist is not actually deprecated, just suppressed in the __dir__
    _deprecations = generic.NDFrame._deprecations | frozenset(
        ['asobject', 'reshape', 'get_value', 'set_value',
         'from_csv', 'valid', 'tolist'])

    # Override cache_readonly bc Series is mutable
    hasnans = property(base.IndexOpsMixin.hasnans.func,
                       doc=base.IndexOpsMixin.hasnans.__doc__)

    # ----------------------------------------------------------------------
    # Constructors

    def __init__(self, data=None, index=None, dtype=None, name=None,
                 copy=False, fastpath=False):

        # we are called internally, so short-circuit
        if fastpath:

            # data is an ndarray, index is defined
            if not isinstance(data, SingleBlockManager):
                data = SingleBlockManager(data, index, fastpath=True)
            if copy:
                data = data.copy()
            if index is None:
                index = data.index

        else:

            if index is not None:
                index = ensure_index(index)

            if data is None:
                data = {}
            if dtype is not None:
                dtype = self._validate_dtype(dtype)

            if isinstance(data, MultiIndex):
                raise NotImplementedError("initializing a Series from a "
                                          "MultiIndex is not supported")
            elif isinstance(data, Index):
                if name is None:
                    name = data.name

                if dtype is not None:
                    # astype copies
                    data = data.astype(dtype)
                else:
                    # need to copy to avoid aliasing issues
                    data = data._values.copy()
                    if (isinstance(data, ABCDatetimeIndex) and
                            data.tz is not None):
                        # GH#24096 need copy to be deep for datetime64tz case
                        # TODO: See if we can avoid these copies
                        data = data._values.copy(deep=True)
                copy = False

            elif isinstance(data, np.ndarray):
                pass
            elif isinstance(data, (ABCSeries, ABCSparseSeries)):
                if name is None:
                    name = data.name
                if index is None:
                    index = data.index
                else:
                    data = data.reindex(index, copy=copy)
                data = data._data
            elif isinstance(data, dict):
                data, index = self._init_dict(data, index, dtype)
                dtype = None
                copy = False
            elif isinstance(data, SingleBlockManager):
                if index is None:
                    index = data.index
                elif not data.index.equals(index) or copy:
                    # GH#19275 SingleBlockManager input should only be called
                    # internally
                    raise AssertionError('Cannot pass both SingleBlockManager '
                                         '`data` argument and a different '
                                         '`index` argument.  `copy` must '
                                         'be False.')

            elif is_extension_array_dtype(data):
                pass
            elif isinstance(data, (set, frozenset)):
                raise TypeError("{0!r} type is unordered"
                                "".format(data.__class__.__name__))
            # If data is Iterable but not list-like, consume into list.
            elif (isinstance(data, compat.Iterable)
                  and not isinstance(data, compat.Sized)):
                data = list(data)
            else:

                # handle sparse passed here (and force conversion)
                if isinstance(data, ABCSparseArray):
                    data = data.to_dense()

            if index is None:
                if not is_list_like(data):
                    data = [data]
                index = ibase.default_index(len(data))
            elif is_list_like(data):

                # a scalar numpy array is list-like but doesn't
                # have a proper length
                try:
                    if len(index) != len(data):
                        raise ValueError(
                            'Length of passed values is {val}, '
                            'index implies {ind}'
                            .format(val=len(data), ind=len(index)))
                except TypeError:
                    pass

            # create/copy the manager
            if isinstance(data, SingleBlockManager):
                if dtype is not None:
                    data = data.astype(dtype=dtype, errors='ignore',
                                       copy=copy)
                elif copy:
                    data = data.copy()
            else:
                data = sanitize_array(data, index, dtype, copy,
                                      raise_cast_failure=True)

                data = SingleBlockManager(data, index, fastpath=True)

        generic.NDFrame.__init__(self, data, fastpath=True)

        self.name = name
        self._set_axis(0, index, fastpath=True)

    def _init_dict(self, data, index=None, dtype=None):
        """
        Derive the "_data" and "index" attributes of a new Series from a
        dictionary input.

        Parameters
        ----------
        data : dict or dict-like
            Data used to populate the new Series
        index : Index or index-like, default None
            index for the new Series: if None, use dict keys
        dtype : dtype, default None
            dtype for the new Series: if None, infer from data

        Returns
        -------
        _data : BlockManager for the new Series
        index : index for the new Series
        """
        # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')]
        # raises KeyError), so we iterate the entire dict, and align
        if data:
            keys, values = zip(*compat.iteritems(data))
            values = list(values)
        elif index is not None:
            # fastpath for Series(data=None). Just use broadcasting a scalar
            # instead of reindexing.
            values = na_value_for_dtype(dtype)
            keys = index
        else:
            keys, values = [], []

        # Input is now list-like, so rely on "standard" construction:
        s = Series(values, index=keys, dtype=dtype)

        # Now we just make sure the order is respected, if any
        if data and index is not None:
            s = s.reindex(index, copy=False)
        elif not PY36 and not isinstance(data, OrderedDict) and data:
            # Need the `and data` to avoid sorting Series(None, index=[...])
            # since that isn't really dict-like
            try:
                s = s.sort_index()
            except TypeError:
                pass
        return s._data, s.index

    @classmethod
    def from_array(cls, arr, index=None, name=None, dtype=None, copy=False,
                   fastpath=False):
        """
        Construct Series from array.

        .. deprecated :: 0.23.0
            Use pd.Series(..) constructor instead.
        """
        warnings.warn("'from_array' is deprecated and will be removed in a "
                      "future version. Please use the pd.Series(..) "
                      "constructor instead.", FutureWarning, stacklevel=2)
        if isinstance(arr, ABCSparseArray):
            from pandas.core.sparse.series import SparseSeries
            cls = SparseSeries
        return cls(arr, index=index, name=name, dtype=dtype,
                   copy=copy, fastpath=fastpath)

    # ----------------------------------------------------------------------

    @property
    def _constructor(self):
        return Series

    @property
    def _constructor_expanddim(self):
        from pandas.core.frame import DataFrame
        return DataFrame

    # types
    @property
    def _can_hold_na(self):
        return self._data._can_hold_na

    _index = None

    def _set_axis(self, axis, labels, fastpath=False):
        """
        Override generic, we want to set the _typ here.
        """

        if not fastpath:
            labels = ensure_index(labels)

        is_all_dates = labels.is_all_dates
        if is_all_dates:
            if not isinstance(labels,
                              (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
                try:
                    labels = DatetimeIndex(labels)
                    # need to set here because we changed the index
                    if fastpath:
                        self._data.set_axis(axis, labels)
                except (tslibs.OutOfBoundsDatetime, ValueError):
                    # labels may exceeds datetime bounds,
                    # or not be a DatetimeIndex
                    pass

        self._set_subtyp(is_all_dates)

        object.__setattr__(self, '_index', labels)
        if not fastpath:
            self._data.set_axis(axis, labels)

    def _set_subtyp(self, is_all_dates):
        if is_all_dates:
            object.__setattr__(self, '_subtyp', 'time_series')
        else:
            object.__setattr__(self, '_subtyp', 'series')

    def _update_inplace(self, result, **kwargs):
        # we want to call the generic version and not the IndexOpsMixin
        return generic.NDFrame._update_inplace(self, result, **kwargs)

    @property
    def name(self):
        """
        Return name of the Series.
        """
        return self._name

    @name.setter
    def name(self, value):
        if value is not None and not is_hashable(value):
            raise TypeError('Series.name must be a hashable type')
        object.__setattr__(self, '_name', value)

    # ndarray compatibility
    @property
    def dtype(self):
        """
        Return the dtype object of the underlying data.
        """
        return self._data.dtype

    @property
    def dtypes(self):
        """
        Return the dtype object of the underlying data.
        """
        return self._data.dtype

    @property
    def ftype(self):
        """
        Return if the data is sparse|dense.
        """
        return self._data.ftype

    @property
    def ftypes(self):
        """
        Return if the data is sparse|dense.
        """
        return self._data.ftype

    @property
    def values(self):
        """
        Return Series as ndarray or ndarray-like depending on the dtype.

        .. warning::

           We recommend using :attr:`Series.array` or
           :meth:`Series.to_numpy`, depending on whether you need
           a reference to the underlying data or a NumPy array.

        Returns
        -------
        arr : numpy.ndarray or ndarray-like

        See Also
        --------
        Series.array : Reference to the underlying data.
        Series.to_numpy : A NumPy array representing the underlying data.

        Examples
        --------
        >>> pd.Series([1, 2, 3]).values
        array([1, 2, 3])

        >>> pd.Series(list('aabc')).values
        array(['a', 'a', 'b', 'c'], dtype=object)

        >>> pd.Series(list('aabc')).astype('category').values
        [a, a, b, c]
        Categories (3, object): [a, b, c]

        Timezone aware datetime data is converted to UTC:

        >>> pd.Series(pd.date_range('20130101', periods=3,
        ...                         tz='US/Eastern')).values
        array(['2013-01-01T05:00:00.000000000',
               '2013-01-02T05:00:00.000000000',
               '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
        """
        return self._data.external_values()

    @property
    def _values(self):
        """
        Return the internal repr of this data.
        """
        return self._data.internal_values()

    def _formatting_values(self):
        """
        Return the values that can be formatted (used by SeriesFormatter
        and DataFrameFormatter).
        """
        return self._data.formatting_values()

    def get_values(self):
        """
        Same as values (but handles sparseness conversions); is a view.
        """
        return self._data.get_values()

    @property
    def asobject(self):
        """
        Return object Series which contains boxed values.

        .. deprecated :: 0.23.0

           Use ``astype(object)`` instead.

        *this is an internal non-public method*
        """
        warnings.warn("'asobject' is deprecated. Use 'astype(object)'"
                      " instead", FutureWarning, stacklevel=2)
        return self.astype(object).values

    # ops
    def ravel(self, order='C'):
        """
        Return the flattened underlying data as an ndarray.

        See Also
        --------
        numpy.ndarray.ravel
        """
        return self._values.ravel(order=order)

    def compress(self, condition, *args, **kwargs):
        """
        Return selected slices of an array along given axis as a Series.

        .. deprecated:: 0.24.0

        See Also
        --------
        numpy.ndarray.compress
        """
        msg = ("Series.compress(condition) is deprecated. "
               "Use 'Series[condition]' or "
               "'np.asarray(series).compress(condition)' instead.")
        warnings.warn(msg, FutureWarning, stacklevel=2)
        nv.validate_compress(args, kwargs)
        return self[condition]

    def nonzero(self):
        """
        Return the *integer* indices of the elements that are non-zero.

        .. deprecated:: 0.24.0
           Please use .to_numpy().nonzero() as a replacement.

        This method is equivalent to calling `numpy.nonzero` on the
        series data. For compatibility with NumPy, the return value is
        the same (a tuple with an array of indices for each dimension),
        but it will always be a one-item tuple because series only have
        one dimension.

        See Also
        --------
        numpy.nonzero

        Examples
        --------
        >>> s = pd.Series([0, 3, 0, 4])
        >>> s.nonzero()
        (array([1, 3]),)
        >>> s.iloc[s.nonzero()[0]]
        1    3
        3    4
        dtype: int64

        >>> s = pd.Series([0, 3, 0, 4], index=['a', 'b', 'c', 'd'])
        # same return although index of s is different
        >>> s.nonzero()
        (array([1, 3]),)
        >>> s.iloc[s.nonzero()[0]]
        b    3
        d    4
        dtype: int64
        """
        msg = ("Series.nonzero() is deprecated "
               "and will be removed in a future version."
               "Use Series.to_numpy().nonzero() instead")
        warnings.warn(msg, FutureWarning, stacklevel=2)
        return self._values.nonzero()

    def put(self, *args, **kwargs):
        """
        Applies the `put` method to its `values` attribute if it has one.

        See Also
        --------
        numpy.ndarray.put
        """
        self._values.put(*args, **kwargs)

    def __len__(self):
        """
        Return the length of the Series.
        """
        return len(self._data)

    def view(self, dtype=None):
        """
        Create a new view of the Series.

        This function will return a new Series with a view of the same
        underlying values in memory, optionally reinterpreted with a new data
        type. The new data type must preserve the same size in bytes as to not
        cause index misalignment.

        Parameters
        ----------
        dtype : data type
            Data type object or one of their string representations.

        Returns
        -------
        Series
            A new Series object as a view of the same data in memory.

        See Also
        --------
        numpy.ndarray.view : Equivalent numpy function to create a new view of
            the same data in memory.

        Notes
        -----
        Series are instantiated with ``dtype=float64`` by default. While
        ``numpy.ndarray.view()`` will return a view with the same data type as
        the original array, ``Series.view()`` (without specified dtype)
        will try using ``float64`` and may fail if the original data type size
        in bytes is not the same.

        Examples
        --------
        >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8')
        >>> s
        0   -2
        1   -1
        2    0
        3    1
        4    2
        dtype: int8

        The 8 bit signed integer representation of `-1` is `0b11111111`, but
        the same bytes represent 255 if read as an 8 bit unsigned integer:

        >>> us = s.view('uint8')
        >>> us
        0    254
        1    255
        2      0
        3      1
        4      2
        dtype: uint8

        The views share the same underlying values:

        >>> us[0] = 128
        >>> s
        0   -128
        1     -1
        2      0
        3      1
        4      2
        dtype: int8
        """
        return self._constructor(self._values.view(dtype),
                                 index=self.index).__finalize__(self)

    # ----------------------------------------------------------------------
    # NDArray Compat

    def __array__(self, dtype=None):
        """
        Return the values as a NumPy array.

        Users should not call this directly. Rather, it is invoked by
        :func:`numpy.array` and :func:`numpy.asarray`.

        Parameters
        ----------
        dtype : str or numpy.dtype, optional
            The dtype to use for the resulting NumPy array. By default,
            the dtype is inferred from the data.

        Returns
        -------
        numpy.ndarray
            The values in the series converted to a :class:`numpy.ndarary`
            with the specified `dtype`.

        See Also
        --------
        pandas.array : Create a new array from data.
        Series.array : Zero-copy view to the array backing the Series.
        Series.to_numpy : Series method for similar behavior.

        Examples
        --------
        >>> ser = pd.Series([1, 2, 3])
        >>> np.asarray(ser)
        array([1, 2, 3])

        For timezone-aware data, the timezones may be retained with
        ``dtype='object'``

        >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
        >>> np.asarray(tzser, dtype="object")
        array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'),
               Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')],
              dtype=object)

        Or the values may be localized to UTC and the tzinfo discared with
        ``dtype='datetime64[ns]'``

        >>> np.asarray(tzser, dtype="datetime64[ns]")  # doctest: +ELLIPSIS
        array(['1999-12-31T23:00:00.000000000', ...],
              dtype='datetime64[ns]')
        """
        if (dtype is None and isinstance(self.array, ABCDatetimeArray)
                and getattr(self.dtype, 'tz', None)):
            msg = (
                "Converting timezone-aware DatetimeArray to timezone-naive "
                "ndarray with 'datetime64[ns]' dtype. In the future, this "
                "will return an ndarray with 'object' dtype where each "
                "element is a 'pandas.Timestamp' with the correct 'tz'.\n\t"
                "To accept the future behavior, pass 'dtype=object'.\n\t"
                "To keep the old behavior, pass 'dtype=\"datetime64[ns]\"'."
            )
            warnings.warn(msg, FutureWarning, stacklevel=3)
            dtype = 'M8[ns]'
        return np.asarray(self.array, dtype)

    def __array_wrap__(self, result, context=None):
        """
        Gets called after a ufunc.
        """
        return self._constructor(result, index=self.index,
                                 copy=False).__finalize__(self)

    def __array_prepare__(self, result, context=None):
        """
        Gets called prior to a ufunc.
        """

        # nice error message for non-ufunc types
        if (context is not None and
                (not isinstance(self._values, (np.ndarray, ExtensionArray))
                 or isinstance(self._values, Categorical))):
            obj = context[1][0]
            raise TypeError("{obj} with dtype {dtype} cannot perform "
                            "the numpy op {op}".format(
                                obj=type(obj).__name__,
                                dtype=getattr(obj, 'dtype', None),
                                op=context[0].__name__))
        return result

    # ----------------------------------------------------------------------
    # Unary Methods

    @property
    def real(self):
        """
        Return the real value of vector.
        """
        return self.values.real

    @real.setter
    def real(self, v):
        self.values.real = v

    @property
    def imag(self):
        """
        Return imag value of vector.
        """
        return self.values.imag

    @imag.setter
    def imag(self, v):
        self.values.imag = v

    # coercion
    __float__ = _coerce_method(float)
    __long__ = _coerce_method(int)
    __int__ = _coerce_method(int)

    # ----------------------------------------------------------------------

    def _unpickle_series_compat(self, state):
        if isinstance(state, dict):
            self._data = state['_data']
            self.name = state['name']
            self.index = self._data.index

        elif isinstance(state, tuple):

            # < 0.12 series pickle

            nd_state, own_state = state

            # recreate the ndarray
            data = np.empty(nd_state[1], dtype=nd_state[2])
            np.ndarray.__setstate__(data, nd_state)

            # backwards compat
            index, name = own_state[0], None
            if len(own_state) > 1:
                name = own_state[1]

            # recreate
            self._data = SingleBlockManager(data, index, fastpath=True)
            self._index = index
            self.name = name

        else:
            raise Exception("cannot unpickle legacy formats -> [%s]" % state)

    # indexers
    @property
    def axes(self):
        """
        Return a list of the row axis labels.
        """
        return [self.index]

    def _ixs(self, i, axis=0):
        """
        Return the i-th value or values in the Series by location.

        Parameters
        ----------
        i : int, slice, or sequence of integers

        Returns
        -------
        value : scalar (int) or Series (slice, sequence)
        """
        try:

            # dispatch to the values if we need
            values = self._values
            if isinstance(values, np.ndarray):
                return libindex.get_value_at(values, i)
            else:
                return values[i]
        except IndexError:
            raise
        except Exception:
            if isinstance(i, slice):
                indexer = self.index._convert_slice_indexer(i, kind='iloc')
                return self._get_values(indexer)
            else:
                label = self.index[i]
                if isinstance(label, Index):
                    return self.take(i, axis=axis, convert=True)
                else:
                    return libindex.get_value_at(self, i)

    @property
    def _is_mixed_type(self):
        return False

    def _slice(self, slobj, axis=0, kind=None):
        slobj = self.index._convert_slice_indexer(slobj,
                                                  kind=kind or 'getitem')
        return self._get_values(slobj)

    def __getitem__(self, key):
        key = com.apply_if_callable(key, self)
        try:
            result = self.index.get_value(self, key)

            if not is_scalar(result):
                if is_list_like(result) and not isinstance(result, Series):

                    # we need to box if loc of the key isn't scalar here
                    # otherwise have inline ndarray/lists
                    try:
                        if not is_scalar(self.index.get_loc(key)):
                            result = self._constructor(
                                result, index=[key] * len(result),
                                dtype=self.dtype).__finalize__(self)
                    except KeyError:
                        pass
            return result
        except InvalidIndexError:
            pass
        except (KeyError, ValueError):
            if isinstance(key, tuple) and isinstance(self.index, MultiIndex):
                # kludge
                pass
            elif key is Ellipsis:
                return self
            elif com.is_bool_indexer(key):
                pass
            else:

                # we can try to coerce the indexer (or this will raise)
                new_key = self.index._convert_scalar_indexer(key,
                                                             kind='getitem')
                if type(new_key) != type(key):
                    return self.__getitem__(new_key)
                raise

        except Exception:
            raise

        if is_iterator(key):
            key = list(key)

        if com.is_bool_indexer(key):
            key = check_bool_indexer(self.index, key)

        return self._get_with(key)

    def _get_with(self, key):
        # other: fancy integer or otherwise
        if isinstance(key, slice):
            indexer = self.index._convert_slice_indexer(key, kind='getitem')
            return self._get_values(indexer)
        elif isinstance(key, ABCDataFrame):
            raise TypeError('Indexing a Series with DataFrame is not '
                            'supported, use the appropriate DataFrame column')
        elif isinstance(key, tuple):
            try:
                return self._get_values_tuple(key)
            except Exception:
                if len(key) == 1:
                    key = key[0]
                    if isinstance(key, slice):
                        return self._get_values(key)
                raise

        # pragma: no cover
        if not isinstance(key, (list, np.ndarray, Series, Index)):
            key = list(key)

        if isinstance(key, Index):
            key_type = key.inferred_type
        else:
            key_type = lib.infer_dtype(key, skipna=False)

        if key_type == 'integer':
            if self.index.is_integer() or self.index.is_floating():
                return self.loc[key]
            else:
                return self._get_values(key)
        elif key_type == 'boolean':
            return self._get_values(key)

        try:
            # handle the dup indexing case (GH 4246)
            if isinstance(key, (list, tuple)):
                return self.loc[key]

            return self.reindex(key)
        except Exception:
            # [slice(0, 5, None)] will break if you convert to ndarray,
            # e.g. as requested by np.median
            # hack
            if isinstance(key[0], slice):
                return self._get_values(key)
            raise

    def _get_values_tuple(self, key):
        # mpl hackaround
        if com._any_none(*key):
            return self._get_values(key)

        if not isinstance(self.index, MultiIndex):
            raise ValueError('Can only tuple-index with a MultiIndex')

        # If key is contained, would have returned by now
        indexer, new_index = self.index.get_loc_level(key)
        return self._constructor(self._values[indexer],
                                 index=new_index).__finalize__(self)

    def _get_values(self, indexer):
        try:
            return self._constructor(self._data.get_slice(indexer),
                                     fastpath=True).__finalize__(self)
        except Exception:
            return self._values[indexer]

    def __setitem__(self, key, value):
        key = com.apply_if_callable(key, self)

        def setitem(key, value):
            try:
                self._set_with_engine(key, value)
                return
            except com.SettingWithCopyError:
                raise
            except (KeyError, ValueError):
                values = self._values
                if (is_integer(key) and
                        not self.index.inferred_type == 'integer'):

                    values[key] = value
                    return
                elif key is Ellipsis:
                    self[:] = value
                    return
                elif com.is_bool_indexer(key):
                    pass
                elif is_timedelta64_dtype(self.dtype):
                    # reassign a null value to iNaT
                    if isna(value):
                        value = iNaT

                        try:
                            self.index._engine.set_value(self._values, key,
                                                         value)
                            return
                        except TypeError:
                            pass

                self.loc[key] = value
                return

            except TypeError as e:
                if (isinstance(key, tuple) and
                        not isinstance(self.index, MultiIndex)):
                    raise ValueError("Can only tuple-index with a MultiIndex")

                # python 3 type errors should be raised
                if _is_unorderable_exception(e):
                    raise IndexError(key)

            if com.is_bool_indexer(key):
                key = check_bool_indexer(self.index, key)
                try:
                    self._where(~key, value, inplace=True)
                    return
                except InvalidIndexError:
                    pass

            self._set_with(key, value)

        # do the setitem
        cacher_needs_updating = self._check_is_chained_assignment_possible()
        setitem(key, value)
        if cacher_needs_updating:
            self._maybe_update_cacher()

    def _set_with_engine(self, key, value):
        values = self._values
        try:
            self.index._engine.set_value(values, key, value)
            return
        except KeyError:
            values[self.index.get_loc(key)] = value
            return

    def _set_with(self, key, value):
        # other: fancy integer or otherwise
        if isinstance(key, slice):
            indexer = self.index._convert_slice_indexer(key, kind='getitem')
            return self._set_values(indexer, value)
        else:
            if isinstance(key, tuple):
                try:
                    self._set_values(key, value)
                except Exception:
                    pass

            if is_scalar(key):
                key = [key]
            elif not isinstance(key, (list, Series, np.ndarray)):
                try:
                    key = list(key)
                except Exception:
                    key = [key]

            if isinstance(key, Index):
                key_type = key.inferred_type
            else:
                key_type = lib.infer_dtype(key, skipna=False)

            if key_type == 'integer':
                if self.index.inferred_type == 'integer':
                    self._set_labels(key, value)
                else:
                    return self._set_values(key, value)
            elif key_type == 'boolean':
                self._set_values(key.astype(np.bool_), value)
            else:
                self._set_labels(key, value)

    def _set_labels(self, key, value):
        if isinstance(key, Index):
            key = key.values
        else:
            key = com.asarray_tuplesafe(key)
        indexer = self.index.get_indexer(key)
        mask = indexer == -1
        if mask.any():
            raise ValueError('%s not contained in the index' % str(key[mask]))
        self._set_values(indexer, value)

    def _set_values(self, key, value):
        if isinstance(key, Series):
            key = key._values
        self._data = self._data.setitem(indexer=key, value=value)
        self._maybe_update_cacher()

    def repeat(self, repeats, axis=None):
        """
        Repeat elements of a Series.

        Returns a new Series where each element of the current Series
        is repeated consecutively a given number of times.

        Parameters
        ----------
        repeats : int or array of ints
            The number of repetitions for each element. This should be a
            non-negative integer. Repeating 0 times will return an empty
            Series.
        axis : None
            Must be ``None``. Has no effect but is accepted for compatibility
            with numpy.

        Returns
        -------
        repeated_series : Series
            Newly created Series with repeated elements.

        See Also
        --------
        Index.repeat : Equivalent function for Index.
        numpy.repeat : Similar method for :class:`numpy.ndarray`.

        Examples
        --------
        >>> s = pd.Series(['a', 'b', 'c'])
        >>> s
        0    a
        1    b
        2    c
        dtype: object
        >>> s.repeat(2)
        0    a
        0    a
        1    b
        1    b
        2    c
        2    c
        dtype: object
        >>> s.repeat([1, 2, 3])
        0    a
        1    b
        1    b
        2    c
        2    c
        2    c
        dtype: object
        """
        nv.validate_repeat(tuple(), dict(axis=axis))
        new_index = self.index.repeat(repeats)
        new_values = self._values.repeat(repeats)
        return self._constructor(new_values,
                                 index=new_index).__finalize__(self)

    def get_value(self, label, takeable=False):
        """
        Quickly retrieve single value at passed index label.

        .. deprecated:: 0.21.0
            Please use .at[] or .iat[] accessors.

        Parameters
        ----------
        label : object
        takeable : interpret the index as indexers, default False

        Returns
        -------
        value : scalar value
        """
        warnings.warn("get_value is deprecated and will be removed "
                      "in a future release. Please use "
                      ".at[] or .iat[] accessors instead", FutureWarning,
                      stacklevel=2)
        return self._get_value(label, takeable=takeable)

    def _get_value(self, label, takeable=False):
        if takeable is True:
            return com.maybe_box_datetimelike(self._values[label])
        return self.index.get_value(self._values, label)
    _get_value.__doc__ = get_value.__doc__

    def set_value(self, label, value, takeable=False):
        """
        Quickly set single value at passed label.

        .. deprecated:: 0.21.0
            Please use .at[] or .iat[] accessors.

        If label is not contained, a new object is created with the label
        placed at the end of the result index.

        Parameters
        ----------
        label : object
            Partial indexing with MultiIndex not allowed
        value : object
            Scalar value
        takeable : interpret the index as indexers, default False

        Returns
        -------
        series : Series
            If label is contained, will be reference to calling Series,
            otherwise a new object
        """
        warnings.warn("set_value is deprecated and will be removed "
                      "in a future release. Please use "
                      ".at[] or .iat[] accessors instead", FutureWarning,
                      stacklevel=2)
        return self._set_value(label, value, takeable=takeable)

    def _set_value(self, label, value, takeable=False):
        try:
            if takeable:
                self._values[label] = value
            else:
                self.index._engine.set_value(self._values, label, value)
        except KeyError:

            # set using a non-recursive method
            self.loc[label] = value

        return self
    _set_value.__doc__ = set_value.__doc__

    def reset_index(self, level=None, drop=False, name=None, inplace=False):
        """
        Generate a new DataFrame or Series with the index reset.

        This is useful when the index needs to be treated as a column, or
        when the index is meaningless and needs to be reset to the default
        before another operation.

        Parameters
        ----------
        level : int, str, tuple, or list, default optional
            For a Series with a MultiIndex, only remove the specified levels
            from the index. Removes all levels by default.
        drop : bool, default False
            Just reset the index, without inserting it as a column in
            the new DataFrame.
        name : object, optional
            The name to use for the column containing the original Series
            values. Uses ``self.name`` by default. This argument is ignored
            when `drop` is True.
        inplace : bool, default False
            Modify the Series in place (do not create a new object).

        Returns
        -------
        Series or DataFrame
            When `drop` is False (the default), a DataFrame is returned.
            The newly created columns will come first in the DataFrame,
            followed by the original Series values.
            When `drop` is True, a `Series` is returned.
            In either case, if ``inplace=True``, no value is returned.

        See Also
        --------
        DataFrame.reset_index: Analogous function for DataFrame.

        Examples
        --------
        >>> s = pd.Series([1, 2, 3, 4], name='foo',
        ...               index=pd.Index(['a', 'b', 'c', 'd'], name='idx'))

        Generate a DataFrame with default index.

        >>> s.reset_index()
          idx  foo
        0   a    1
        1   b    2
        2   c    3
        3   d    4

        To specify the name of the new column use `name`.

        >>> s.reset_index(name='values')
          idx  values
        0   a       1
        1   b       2
        2   c       3
        3   d       4

        To generate a new Series with the default set `drop` to True.

        >>> s.reset_index(drop=True)
        0    1
        1    2
        2    3
        3    4
        Name: foo, dtype: int64

        To update the Series in place, without generating a new one
        set `inplace` to True. Note that it also requires ``drop=True``.

        >>> s.reset_index(inplace=True, drop=True)
        >>> s
        0    1
        1    2
        2    3
        3    4
        Name: foo, dtype: int64

        The `level` parameter is interesting for Series with a multi-level
        index.

        >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']),
        ...           np.array(['one', 'two', 'one', 'two'])]
        >>> s2 = pd.Series(
        ...     range(4), name='foo',
        ...     index=pd.MultiIndex.from_arrays(arrays,
        ...                                     names=['a', 'b']))

        To remove a specific level from the Index, use `level`.

        >>> s2.reset_index(level='a')
               a  foo
        b
        one  bar    0
        two  bar    1
        one  baz    2
        two  baz    3

        If `level` is not set, all levels are removed from the Index.

        >>> s2.reset_index()
             a    b  foo
        0  bar  one    0
        1  bar  two    1
        2  baz  one    2
        3  baz  two    3
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        if drop:
            new_index = ibase.default_index(len(self))
            if level is not None:
                if not isinstance(level, (tuple, list)):
                    level = [level]
                level = [self.index._get_level_number(lev) for lev in level]
                if len(level) < self.index.nlevels:
                    new_index = self.index.droplevel(level)

            if inplace:
                self.index = new_index
                # set name if it was passed, otherwise, keep the previous name
                self.name = name or self.name
            else:
                return self._constructor(self._values.copy(),
                                         index=new_index).__finalize__(self)
        elif inplace:
            raise TypeError('Cannot reset_index inplace on a Series '
                            'to create a DataFrame')
        else:
            df = self.to_frame(name)
            return df.reset_index(level=level, drop=drop)

    # ----------------------------------------------------------------------
    # Rendering Methods

    def __unicode__(self):
        """
        Return a string representation for a particular DataFrame.

        Invoked by unicode(df) in py2 only. Yields a Unicode String in both
        py2/py3.
        """
        buf = StringIO(u(""))
        width, height = get_terminal_size()
        max_rows = (height if get_option("display.max_rows") == 0 else
                    get_option("display.max_rows"))
        show_dimensions = get_option("display.show_dimensions")

        self.to_string(buf=buf, name=self.name, dtype=self.dtype,
                       max_rows=max_rows, length=show_dimensions)
        result = buf.getvalue()

        return result

    def to_string(self, buf=None, na_rep='NaN', float_format=None, header=True,
                  index=True, length=False, dtype=False, name=False,
                  max_rows=None):
        """
        Render a string representation of the Series.

        Parameters
        ----------
        buf : StringIO-like, optional
            buffer to write to
        na_rep : string, optional
            string representation of NAN to use, default 'NaN'
        float_format : one-parameter function, optional
            formatter function to apply to columns' elements if they are floats
            default None
        header : boolean, default True
            Add the Series header (index name)
        index : bool, optional
            Add index (row) labels, default True
        length : boolean, default False
            Add the Series length
        dtype : boolean, default False
            Add the Series dtype
        name : boolean, default False
            Add the Series name if not None
        max_rows : int, optional
            Maximum number of rows to show before truncating. If None, show
            all.

        Returns
        -------
        formatted : string (if not buffer passed)
        """

        formatter = fmt.SeriesFormatter(self, name=name, length=length,
                                        header=header, index=index,
                                        dtype=dtype, na_rep=na_rep,
                                        float_format=float_format,
                                        max_rows=max_rows)
        result = formatter.to_string()

        # catch contract violations
        if not isinstance(result, compat.text_type):
            raise AssertionError("result must be of type unicode, type"
                                 " of result is {0!r}"
                                 "".format(result.__class__.__name__))

        if buf is None:
            return result
        else:
            try:
                buf.write(result)
            except AttributeError:
                with open(buf, 'w') as f:
                    f.write(result)

    # ----------------------------------------------------------------------

    def iteritems(self):
        """
        Lazily iterate over (index, value) tuples.
        """
        return zip(iter(self.index), iter(self))

    items = iteritems

    # ----------------------------------------------------------------------
    # Misc public methods

    def keys(self):
        """
        Alias for index.
        """
        return self.index

    def to_dict(self, into=dict):
        """
        Convert Series to {label -> value} dict or dict-like object.

        Parameters
        ----------
        into : class, default dict
            The collections.Mapping subclass to use as the return
            object. Can be the actual class or an empty
            instance of the mapping type you want.  If you want a
            collections.defaultdict, you must pass it initialized.

            .. versionadded:: 0.21.0

        Returns
        -------
        value_dict : collections.Mapping

        Examples
        --------
        >>> s = pd.Series([1, 2, 3, 4])
        >>> s.to_dict()
        {0: 1, 1: 2, 2: 3, 3: 4}
        >>> from collections import OrderedDict, defaultdict
        >>> s.to_dict(OrderedDict)
        OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)])
        >>> dd = defaultdict(list)
        >>> s.to_dict(dd)
        defaultdict(<type 'list'>, {0: 1, 1: 2, 2: 3, 3: 4})
        """
        # GH16122
        into_c = com.standardize_mapping(into)
        return into_c(compat.iteritems(self))

    def to_frame(self, name=None):
        """
        Convert Series to DataFrame.

        Parameters
        ----------
        name : object, default None
            The passed name should substitute for the series name (if it has
            one).

        Returns
        -------
        data_frame : DataFrame
        """
        if name is None:
            df = self._constructor_expanddim(self)
        else:
            df = self._constructor_expanddim({name: self})

        return df

    def to_sparse(self, kind='block', fill_value=None):
        """
        Convert Series to SparseSeries.

        Parameters
        ----------
        kind : {'block', 'integer'}
        fill_value : float, defaults to NaN (missing)

        Returns
        -------
        sp : SparseSeries
        """
        # TODO: deprecate
        from pandas.core.sparse.series import SparseSeries

        values = SparseArray(self, kind=kind, fill_value=fill_value)
        return SparseSeries(
            values, index=self.index, name=self.name
        ).__finalize__(self)

    def _set_name(self, name, inplace=False):
        """
        Set the Series name.

        Parameters
        ----------
        name : str
        inplace : bool
            whether to modify `self` directly or return a copy
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        ser = self if inplace else self.copy()
        ser.name = name
        return ser

    # ----------------------------------------------------------------------
    # Statistics, overridden ndarray methods

    # TODO: integrate bottleneck

    def count(self, level=None):
        """
        Return number of non-NA/null observations in the Series.

        Parameters
        ----------
        level : int or level name, default None
            If the axis is a MultiIndex (hierarchical), count along a
            particular level, collapsing into a smaller Series

        Returns
        -------
        nobs : int or Series (if level specified)
        """
        if level is None:
            return notna(com.values_from_object(self)).sum()

        if isinstance(level, compat.string_types):
            level = self.index._get_level_number(level)

        lev = self.index.levels[level]
        level_codes = np.array(self.index.codes[level], subok=False, copy=True)

        mask = level_codes == -1
        if mask.any():
            level_codes[mask] = cnt = len(lev)
            lev = lev.insert(cnt, lev._na_value)

        obs = level_codes[notna(self.values)]
        out = np.bincount(obs, minlength=len(lev) or None)
        return self._constructor(out, index=lev,
                                 dtype='int64').__finalize__(self)

    def mode(self, dropna=True):
        """
        Return the mode(s) of the dataset.

        Always returns Series even if only one value is returned.

        Parameters
        ----------
        dropna : boolean, default True
            Don't consider counts of NaN/NaT.

            .. versionadded:: 0.24.0

        Returns
        -------
        modes : Series (sorted)
        """
        # TODO: Add option for bins like value_counts()
        return algorithms.mode(self, dropna=dropna)

    def unique(self):
        """
        Return unique values of Series object.

        Uniques are returned in order of appearance. Hash table-based unique,
        therefore does NOT sort.

        Returns
        -------
        ndarray or ExtensionArray
            The unique values returned as a NumPy array. In case of an
            extension-array backed Series, a new
            :class:`~api.extensions.ExtensionArray` of that type with just
            the unique values is returned. This includes

            * Categorical
            * Period
            * Datetime with Timezone
            * Interval
            * Sparse
            * IntegerNA

        See Also
        --------
        unique : Top-level unique method for any 1-d array-like object.
        Index.unique : Return Index with unique values from an Index object.

        Examples
        --------
        >>> pd.Series([2, 1, 3, 3], name='A').unique()
        array([2, 1, 3])

        >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique()
        array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

        >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern')
        ...            for _ in range(3)]).unique()
        <DatetimeArray>
        ['2016-01-01 00:00:00-05:00']
        Length: 1, dtype: datetime64[ns, US/Eastern]

        An unordered Categorical will return categories in the order of
        appearance.

        >>> pd.Series(pd.Categorical(list('baabc'))).unique()
        [b, a, c]
        Categories (3, object): [b, a, c]

        An ordered Categorical preserves the category ordering.

        >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'),
        ...                          ordered=True)).unique()
        [b, a, c]
        Categories (3, object): [a < b < c]
        """
        result = super(Series, self).unique()
        return result

    def drop_duplicates(self, keep='first', inplace=False):
        """
        Return Series with duplicate values removed.

        Parameters
        ----------
        keep : {'first', 'last', ``False``}, default 'first'
            - 'first' : Drop duplicates except for the first occurrence.
            - 'last' : Drop duplicates except for the last occurrence.
            - ``False`` : Drop all duplicates.
        inplace : boolean, default ``False``
            If ``True``, performs operation inplace and returns None.

        Returns
        -------
        deduplicated : Series

        See Also
        --------
        Index.drop_duplicates : Equivalent method on Index.
        DataFrame.drop_duplicates : Equivalent method on DataFrame.
        Series.duplicated : Related method on Series, indicating duplicate
            Series values.

        Examples
        --------
        Generate an Series with duplicated entries.

        >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'],
        ...               name='animal')
        >>> s
        0      lama
        1       cow
        2      lama
        3    beetle
        4      lama
        5     hippo
        Name: animal, dtype: object

        With the 'keep' parameter, the selection behaviour of duplicated values
        can be changed. The value 'first' keeps the first occurrence for each
        set of duplicated entries. The default value of keep is 'first'.

        >>> s.drop_duplicates()
        0      lama
        1       cow
        3    beetle
        5     hippo
        Name: animal, dtype: object

        The value 'last' for parameter 'keep' keeps the last occurrence for
        each set of duplicated entries.

        >>> s.drop_duplicates(keep='last')
        1       cow
        3    beetle
        4      lama
        5     hippo
        Name: animal, dtype: object

        The value ``False`` for parameter 'keep' discards all sets of
        duplicated entries. Setting the value of 'inplace' to ``True`` performs
        the operation inplace and returns ``None``.

        >>> s.drop_duplicates(keep=False, inplace=True)
        >>> s
        1       cow
        3    beetle
        5     hippo
        Name: animal, dtype: object
        """
        return super(Series, self).drop_duplicates(keep=keep, inplace=inplace)

    def duplicated(self, keep='first'):
        """
        Indicate duplicate Series values.

        Duplicated values are indicated as ``True`` values in the resulting
        Series. Either all duplicates, all except the first or all except the
        last occurrence of duplicates can be indicated.

        Parameters
        ----------
        keep : {'first', 'last', False}, default 'first'
            - 'first' : Mark duplicates as ``True`` except for the first
              occurrence.
            - 'last' : Mark duplicates as ``True`` except for the last
              occurrence.
            - ``False`` : Mark all duplicates as ``True``.

        Returns
        -------
        pandas.core.series.Series

        See Also
        --------
        Index.duplicated : Equivalent method on pandas.Index.
        DataFrame.duplicated : Equivalent method on pandas.DataFrame.
        Series.drop_duplicates : Remove duplicate values from Series.

        Examples
        --------
        By default, for each set of duplicated values, the first occurrence is
        set on False and all others on True:

        >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama'])
        >>> animals.duplicated()
        0    False
        1    False
        2     True
        3    False
        4     True
        dtype: bool

        which is equivalent to

        >>> animals.duplicated(keep='first')
        0    False
        1    False
        2     True
        3    False
        4     True
        dtype: bool

        By using 'last', the last occurrence of each set of duplicated values
        is set on False and all others on True:

        >>> animals.duplicated(keep='last')
        0     True
        1    False
        2     True
        3    False
        4    False
        dtype: bool

        By setting keep on ``False``, all duplicates are True:

        >>> animals.duplicated(keep=False)
        0     True
        1    False
        2     True
        3    False
        4     True
        dtype: bool
        """
        return super(Series, self).duplicated(keep=keep)

    def idxmin(self, axis=0, skipna=True, *args, **kwargs):
        """
        Return the row label of the minimum value.

        If multiple values equal the minimum, the first row label with that
        value is returned.

        Parameters
        ----------
        skipna : boolean, default True
            Exclude NA/null values. If the entire Series is NA, the result
            will be NA.
        axis : int, default 0
            For compatibility with DataFrame.idxmin. Redundant for application
            on Series.
        *args, **kwargs
            Additional keywords have no effect but might be accepted
            for compatibility with NumPy.

        Returns
        -------
        idxmin : Index of minimum of values.

        Raises
        ------
        ValueError
            If the Series is empty.

        See Also
        --------
        numpy.argmin : Return indices of the minimum values
            along the given axis.
        DataFrame.idxmin : Return index of first occurrence of minimum
            over requested axis.
        Series.idxmax : Return index *label* of the first occurrence
            of maximum of values.

        Notes
        -----
        This method is the Series version of ``ndarray.argmin``. This method
        returns the label of the minimum, while ``ndarray.argmin`` returns
        the position. To get the position, use ``series.values.argmin()``.

        Examples
        --------
        >>> s = pd.Series(data=[1, None, 4, 1],
        ...               index=['A' ,'B' ,'C' ,'D'])
        >>> s
        A    1.0
        B    NaN
        C    4.0
        D    1.0
        dtype: float64

        >>> s.idxmin()
        'A'

        If `skipna` is False and there is an NA value in the data,
        the function returns ``nan``.

        >>> s.idxmin(skipna=False)
        nan
        """
        skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs)
        i = nanops.nanargmin(com.values_from_object(self), skipna=skipna)
        if i == -1:
            return np.nan
        return self.index[i]

    def idxmax(self, axis=0, skipna=True, *args, **kwargs):
        """
        Return the row label of the maximum value.

        If multiple values equal the maximum, the first row label with that
        value is returned.

        Parameters
        ----------
        skipna : boolean, default True
            Exclude NA/null values. If the entire Series is NA, the result
            will be NA.
        axis : int, default 0
            For compatibility with DataFrame.idxmax. Redundant for application
            on Series.
        *args, **kwargs
            Additional keywords have no effect but might be accepted
            for compatibility with NumPy.

        Returns
        -------
        idxmax : Index of maximum of values.

        Raises
        ------
        ValueError
            If the Series is empty.

        See Also
        --------
        numpy.argmax : Return indices of the maximum values
            along the given axis.
        DataFrame.idxmax : Return index of first occurrence of maximum
            over requested axis.
        Series.idxmin : Return index *label* of the first occurrence
            of minimum of values.

        Notes
        -----
        This method is the Series version of ``ndarray.argmax``. This method
        returns the label of the maximum, while ``ndarray.argmax`` returns
        the position. To get the position, use ``series.values.argmax()``.

        Examples
        --------
        >>> s = pd.Series(data=[1, None, 4, 3, 4],
        ...               index=['A', 'B', 'C', 'D', 'E'])
        >>> s
        A    1.0
        B    NaN
        C    4.0
        D    3.0
        E    4.0
        dtype: float64

        >>> s.idxmax()
        'C'

        If `skipna` is False and there is an NA value in the data,
        the function returns ``nan``.

        >>> s.idxmax(skipna=False)
        nan
        """
        skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs)
        i = nanops.nanargmax(com.values_from_object(self), skipna=skipna)
        if i == -1:
            return np.nan
        return self.index[i]

    # ndarray compat
    argmin = deprecate(
        'argmin', idxmin, '0.21.0',
        msg=dedent("""
        The current behaviour of 'Series.argmin' is deprecated, use 'idxmin'
        instead.
        The behavior of 'argmin' will be corrected to return the positional
        minimum in the future. For now, use 'series.values.argmin' or
        'np.argmin(np.array(values))' to get the position of the minimum
        row.""")
    )
    argmax = deprecate(
        'argmax', idxmax, '0.21.0',
        msg=dedent("""
        The current behaviour of 'Series.argmax' is deprecated, use 'idxmax'
        instead.
        The behavior of 'argmax' will be corrected to return the positional
        maximum in the future. For now, use 'series.values.argmax' or
        'np.argmax(np.array(values))' to get the position of the maximum
        row.""")
    )

    def round(self, decimals=0, *args, **kwargs):
        """
        Round each value in a Series to the given number of decimals.

        Parameters
        ----------
        decimals : int
            Number of decimal places to round to (default: 0).
            If decimals is negative, it specifies the number of
            positions to the left of the decimal point.

        Returns
        -------
        Series object

        See Also
        --------
        numpy.around
        DataFrame.round
        """
        nv.validate_round(args, kwargs)
        result = com.values_from_object(self).round(decimals)
        result = self._constructor(result, index=self.index).__finalize__(self)

        return result

    def quantile(self, q=0.5, interpolation='linear'):
        """
        Return value at the given quantile.

        Parameters
        ----------
        q : float or array-like, default 0.5 (50% quantile)
            0 <= q <= 1, the quantile(s) to compute
        interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
            .. versionadded:: 0.18.0

            This optional parameter specifies the interpolation method to use,
            when the desired quantile lies between two data points `i` and `j`:

                * linear: `i + (j - i) * fraction`, where `fraction` is the
                  fractional part of the index surrounded by `i` and `j`.
                * lower: `i`.
                * higher: `j`.
                * nearest: `i` or `j` whichever is nearest.
                * midpoint: (`i` + `j`) / 2.

        Returns
        -------
        quantile : float or Series
            if ``q`` is an array, a Series will be returned where the
            index is ``q`` and the values are the quantiles.

        See Also
        --------
        core.window.Rolling.quantile
        numpy.percentile

        Examples
        --------
        >>> s = pd.Series([1, 2, 3, 4])
        >>> s.quantile(.5)
        2.5
        >>> s.quantile([.25, .5, .75])
        0.25    1.75
        0.50    2.50
        0.75    3.25
        dtype: float64
        """

        self._check_percentile(q)

        # We dispatch to DataFrame so that core.internals only has to worry
        #  about 2D cases.
        df = self.to_frame()

        result = df.quantile(q=q, interpolation=interpolation,
                             numeric_only=False)
        if result.ndim == 2:
            result = result.iloc[:, 0]

        if is_list_like(q):
            result.name = self.name
            return self._constructor(result,
                                     index=Float64Index(q),
                                     name=self.name)
        else:
            # scalar
            return result.iloc[0]

    def corr(self, other, method='pearson', min_periods=None):
        """
        Compute correlation with `other` Series, excluding missing values.

        Parameters
        ----------
        other : Series
        method : {'pearson', 'kendall', 'spearman'} or callable
            * pearson : standard correlation coefficient
            * kendall : Kendall Tau correlation coefficient
            * spearman : Spearman rank correlation
            * callable: callable with input two 1d ndarray
                and returning a float
                .. versionadded:: 0.24.0

        min_periods : int, optional
            Minimum number of observations needed to have a valid result

        Returns
        -------
        correlation : float

        Examples
        --------
        >>> histogram_intersection = lambda a, b: np.minimum(a, b
        ... ).sum().round(decimals=1)
        >>> s1 = pd.Series([.2, .0, .6, .2])
        >>> s2 = pd.Series([.3, .6, .0, .1])
        >>> s1.corr(s2, method=histogram_intersection)
        0.3
        """
        this, other = self.align(other, join='inner', copy=False)
        if len(this) == 0:
            return np.nan

        if method in ['pearson', 'spearman', 'kendall'] or callable(method):
            return nanops.nancorr(this.values, other.values, method=method,
                                  min_periods=min_periods)

        raise ValueError("method must be either 'pearson', "
                         "'spearman', or 'kendall', '{method}' "
                         "was supplied".format(method=method))

    def cov(self, other, min_periods=None):
        """
        Compute covariance with Series, excluding missing values.

        Parameters
        ----------
        other : Series
        min_periods : int, optional
            Minimum number of observations needed to have a valid result

        Returns
        -------
        covariance : float

        Normalized by N-1 (unbiased estimator).
        """
        this, other = self.align(other, join='inner', copy=False)
        if len(this) == 0:
            return np.nan
        return nanops.nancov(this.values, other.values,
                             min_periods=min_periods)

    def diff(self, periods=1):
        """
        First discrete difference of element.

        Calculates the difference of a Series element compared with another
        element in the Series (default is element in previous row).

        Parameters
        ----------
        periods : int, default 1
            Periods to shift for calculating difference, accepts negative
            values.

        Returns
        -------
        diffed : Series

        See Also
        --------
        Series.pct_change: Percent change over given number of periods.
        Series.shift: Shift index by desired number of periods with an
            optional time freq.
        DataFrame.diff: First discrete difference of object.

        Examples
        --------
        Difference with previous row

        >>> s = pd.Series([1, 1, 2, 3, 5, 8])
        >>> s.diff()
        0    NaN
        1    0.0
        2    1.0
        3    1.0
        4    2.0
        5    3.0
        dtype: float64

        Difference with 3rd previous row

        >>> s.diff(periods=3)
        0    NaN
        1    NaN
        2    NaN
        3    2.0
        4    4.0
        5    6.0
        dtype: float64

        Difference with following row

        >>> s.diff(periods=-1)
        0    0.0
        1   -1.0
        2   -1.0
        3   -2.0
        4   -3.0
        5    NaN
        dtype: float64
        """
        result = algorithms.diff(com.values_from_object(self), periods)
        return self._constructor(result, index=self.index).__finalize__(self)

    def autocorr(self, lag=1):
        """
        Compute the lag-N autocorrelation.

        This method computes the Pearson correlation between
        the Series and its shifted self.

        Parameters
        ----------
        lag : int, default 1
            Number of lags to apply before performing autocorrelation.

        Returns
        -------
        float
            The Pearson correlation between self and self.shift(lag).

        See Also
        --------
        Series.corr : Compute the correlation between two Series.
        Series.shift : Shift index by desired number of periods.
        DataFrame.corr : Compute pairwise correlation of columns.
        DataFrame.corrwith : Compute pairwise correlation between rows or
            columns of two DataFrame objects.

        Notes
        -----
        If the Pearson correlation is not well defined return 'NaN'.

        Examples
        --------
        >>> s = pd.Series([0.25, 0.5, 0.2, -0.05])
        >>> s.autocorr()  # doctest: +ELLIPSIS
        0.10355...
        >>> s.autocorr(lag=2)  # doctest: +ELLIPSIS
        -0.99999...

        If the Pearson correlation is not well defined, then 'NaN' is returned.

        >>> s = pd.Series([1, 0, 0, 0])
        >>> s.autocorr()
        nan
        """
        return self.corr(self.shift(lag))

    def dot(self, other):
        """
        Compute the dot product between the Series and the columns of other.

        This method computes the dot product between the Series and another
        one, or the Series and each columns of a DataFrame, or the Series and
        each columns of an array.

        It can also be called using `self @ other` in Python >= 3.5.

        Parameters
        ----------
        other : Series, DataFrame or array-like
            The other object to compute the dot product with its columns.

        Returns
        -------
        scalar, Series or numpy.ndarray
            Return the dot product of the Series and other if other is a
            Series, the Series of the dot product of Series and each rows of
            other if other is a DataFrame or a numpy.ndarray between the Series
            and each columns of the numpy array.

        See Also
        --------
        DataFrame.dot: Compute the matrix product with the DataFrame.
        Series.mul: Multiplication of series and other, element-wise.

        Notes
        -----
        The Series and other has to share the same index if other is a Series
        or a DataFrame.

        Examples
        --------
        >>> s = pd.Series([0, 1, 2, 3])
        >>> other = pd.Series([-1, 2, -3, 4])
        >>> s.dot(other)
        8
        >>> s @ other
        8
        >>> df = pd.DataFrame([[0 ,1], [-2, 3], [4, -5], [6, 7]])
        >>> s.dot(df)
        0    24
        1    14
        dtype: int64
        >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]])
        >>> s.dot(arr)
        array([24, 14])
        """
        from pandas.core.frame import DataFrame
        if isinstance(other, (Series, DataFrame)):
            common = self.index.union(other.index)
            if (len(common) > len(self.index) or
                    len(common) > len(other.index)):
                raise ValueError('matrices are not aligned')

            left = self.reindex(index=common, copy=False)
            right = other.reindex(index=common, copy=False)
            lvals = left.values
            rvals = right.values
        else:
            lvals = self.values
            rvals = np.asarray(other)
            if lvals.shape[0] != rvals.shape[0]:
                raise Exception('Dot product shape mismatch, %s vs %s' %
                                (lvals.shape, rvals.shape))

        if isinstance(other, DataFrame):
            return self._constructor(np.dot(lvals, rvals),
                                     index=other.columns).__finalize__(self)
        elif isinstance(other, Series):
            return np.dot(lvals, rvals)
        elif isinstance(rvals, np.ndarray):
            return np.dot(lvals, rvals)
        else:  # pragma: no cover
            raise TypeError('unsupported type: %s' % type(other))

    def __matmul__(self, other):
        """
        Matrix multiplication using binary `@` operator in Python>=3.5.
        """
        return self.dot(other)

    def __rmatmul__(self, other):
        """
        Matrix multiplication using binary `@` operator in Python>=3.5.
        """
        return self.dot(np.transpose(other))

    @Substitution(klass='Series')
    @Appender(base._shared_docs['searchsorted'])
    def searchsorted(self, value, side='left', sorter=None):
        if sorter is not None:
            sorter = ensure_platform_int(sorter)
        result = self._values.searchsorted(Series(value)._values,
                                           side=side, sorter=sorter)

        return result[0] if is_scalar(value) else result

    # -------------------------------------------------------------------
    # Combination

    def append(self, to_append, ignore_index=False, verify_integrity=False):
        """
        Concatenate two or more Series.

        Parameters
        ----------
        to_append : Series or list/tuple of Series
        ignore_index : boolean, default False
            If True, do not use the index labels.

            .. versionadded:: 0.19.0

        verify_integrity : boolean, default False
            If True, raise Exception on creating index with duplicates

        Returns
        -------
        appended : Series

        See Also
        --------
        concat : General function to concatenate DataFrame, Series
            or Panel objects.

        Notes
        -----
        Iteratively appending to a Series can be more computationally intensive
        than a single concatenate. A better solution is to append values to a
        list and then concatenate the list with the original Series all at
        once.

        Examples
        --------
        >>> s1 = pd.Series([1, 2, 3])
        >>> s2 = pd.Series([4, 5, 6])
        >>> s3 = pd.Series([4, 5, 6], index=[3,4,5])
        >>> s1.append(s2)
        0    1
        1    2
        2    3
        0    4
        1    5
        2    6
        dtype: int64

        >>> s1.append(s3)
        0    1
        1    2
        2    3
        3    4
        4    5
        5    6
        dtype: int64

        With `ignore_index` set to True:

        >>> s1.append(s2, ignore_index=True)
        0    1
        1    2
        2    3
        3    4
        4    5
        5    6
        dtype: int64

        With `verify_integrity` set to True:

        >>> s1.append(s2, verify_integrity=True)
        Traceback (most recent call last):
        ...
        ValueError: Indexes have overlapping values: [0, 1, 2]
        """
        from pandas.core.reshape.concat import concat

        if isinstance(to_append, (list, tuple)):
            to_concat = [self] + to_append
        else:
            to_concat = [self, to_append]
        return concat(to_concat, ignore_index=ignore_index,
                      verify_integrity=verify_integrity)

    def _binop(self, other, func, level=None, fill_value=None):
        """
        Perform generic binary operation with optional fill value.

        Parameters
        ----------
        other : Series
        func : binary operator
        fill_value : float or object
            Value to substitute for NA/null values. If both Series are NA in a
            location, the result will be NA regardless of the passed fill value
        level : int or level name, default None
            Broadcast across a level, matching Index values on the
            passed MultiIndex level

        Returns
        -------
        combined : Series
        """
        if not isinstance(other, Series):
            raise AssertionError('Other operand must be Series')

        new_index = self.index
        this = self

        if not self.index.equals(other.index):
            this, other = self.align(other, level=level, join='outer',
                                     copy=False)
            new_index = this.index

        this_vals, other_vals = ops.fill_binop(this.values, other.values,
                                               fill_value)

        with np.errstate(all='ignore'):
            result = func(this_vals, other_vals)
        name = ops.get_op_result_name(self, other)
        result = self._constructor(result, index=new_index, name=name)
        result = result.__finalize__(self)
        if name is None:
            # When name is None, __finalize__ overwrites current name
            result.name = None
        return result

    def combine(self, other, func, fill_value=None):
        """
        Combine the Series with a Series or scalar according to `func`.

        Combine the Series and `other` using `func` to perform elementwise
        selection for combined Series.
        `fill_value` is assumed when value is missing at some index
        from one of the two objects being combined.

        Parameters
        ----------
        other : Series or scalar
            The value(s) to be combined with the `Series`.
        func : function
            Function that takes two scalars as inputs and returns an element.
        fill_value : scalar, optional
            The value to assume when an index is missing from
            one Series or the other. The default specifies to use the
            appropriate NaN value for the underlying dtype of the Series.

        Returns
        -------
        Series
            The result of combining the Series with the other object.

        See Also
        --------
        Series.combine_first : Combine Series values, choosing the calling
            Series' values first.

        Examples
        --------
        Consider 2 Datasets ``s1`` and ``s2`` containing
        highest clocked speeds of different birds.

        >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0})
        >>> s1
        falcon    330.0
        eagle     160.0
        dtype: float64
        >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0})
        >>> s2
        falcon    345.0
        eagle     200.0
        duck       30.0
        dtype: float64

        Now, to combine the two datasets and view the highest speeds
        of the birds across the two datasets

        >>> s1.combine(s2, max)
        duck        NaN
        eagle     200.0
        falcon    345.0
        dtype: float64

        In the previous example, the resulting value for duck is missing,
        because the maximum of a NaN and a float is a NaN.
        So, in the example, we set ``fill_value=0``,
        so the maximum value returned will be the value from some dataset.

        >>> s1.combine(s2, max, fill_value=0)
        duck       30.0
        eagle     200.0
        falcon    345.0
        dtype: float64
        """
        if fill_value is None:
            fill_value = na_value_for_dtype(self.dtype, compat=False)

        if isinstance(other, Series):
            # If other is a Series, result is based on union of Series,
            # so do this element by element
            new_index = self.index.union(other.index)
            new_name = ops.get_op_result_name(self, other)
            new_values = []
            for idx in new_index:
                lv = self.get(idx, fill_value)
                rv = other.get(idx, fill_value)
                with np.errstate(all='ignore'):
                    new_values.append(func(lv, rv))
        else:
            # Assume that other is a scalar, so apply the function for
            # each element in the Series
            new_index = self.index
            with np.errstate(all='ignore'):
                new_values = [func(lv, other) for lv in self._values]
            new_name = self.name

        if is_categorical_dtype(self.values):
            pass
        elif is_extension_array_dtype(self.values):
            # The function can return something of any type, so check
            # if the type is compatible with the calling EA.
            try:
                new_values = self._values._from_sequence(new_values)
            except Exception:
                # https://github.com/pandas-dev/pandas/issues/22850
                # pandas has no control over what 3rd-party ExtensionArrays
                # do in _values_from_sequence. We still want ops to work
                # though, so we catch any regular Exception.
                pass

        return self._constructor(new_values, index=new_index, name=new_name)

    def combine_first(self, other):
        """
        Combine Series values, choosing the calling Series's values first.

        Parameters
        ----------
        other : Series
            The value(s) to be combined with the `Series`.

        Returns
        -------
        Series
            The result of combining the Series with the other object.

        See Also
        --------
        Series.combine : Perform elementwise operation on two Series
            using a given function.

        Notes
        -----
        Result index will be the union of the two indexes.

        Examples
        --------
        >>> s1 = pd.Series([1, np.nan])
        >>> s2 = pd.Series([3, 4])
        >>> s1.combine_first(s2)
        0    1.0
        1    4.0
        dtype: float64
        """
        new_index = self.index.union(other.index)
        this = self.reindex(new_index, copy=False)
        other = other.reindex(new_index, copy=False)
        if is_datetimelike(this) and not is_datetimelike(other):
            other = to_datetime(other)

        return this.where(notna(this), other)

    def update(self, other):
        """
        Modify Series in place using non-NA values from passed
        Series. Aligns on index.

        Parameters
        ----------
        other : Series

        Examples
        --------
        >>> s = pd.Series([1, 2, 3])
        >>> s.update(pd.Series([4, 5, 6]))
        >>> s
        0    4
        1    5
        2    6
        dtype: int64

        >>> s = pd.Series(['a', 'b', 'c'])
        >>> s.update(pd.Series(['d', 'e'], index=[0, 2]))
        >>> s
        0    d
        1    b
        2    e
        dtype: object

        >>> s = pd.Series([1, 2, 3])
        >>> s.update(pd.Series([4, 5, 6, 7, 8]))
        >>> s
        0    4
        1    5
        2    6
        dtype: int64

        If ``other`` contains NaNs the corresponding values are not updated
        in the original Series.

        >>> s = pd.Series([1, 2, 3])
        >>> s.update(pd.Series([4, np.nan, 6]))
        >>> s
        0    4
        1    2
        2    6
        dtype: int64
        """
        other = other.reindex_like(self)
        mask = notna(other)

        self._data = self._data.putmask(mask=mask, new=other, inplace=True)
        self._maybe_update_cacher()

    # ----------------------------------------------------------------------
    # Reindexing, sorting

    def sort_values(self, axis=0, ascending=True, inplace=False,
                    kind='quicksort', na_position='last'):
        """
        Sort by the values.

        Sort a Series in ascending or descending order by some
        criterion.

        Parameters
        ----------
        axis : {0 or 'index'}, default 0
            Axis to direct sorting. The value 'index' is accepted for
            compatibility with DataFrame.sort_values.
        ascending : bool, default True
            If True, sort values in ascending order, otherwise descending.
        inplace : bool, default False
            If True, perform operation in-place.
        kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort'
            Choice of sorting algorithm. See also :func:`numpy.sort` for more
            information. 'mergesort' is the only stable  algorithm.
        na_position : {'first' or 'last'}, default 'last'
            Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at
            the end.

        Returns
        -------
        Series
            Series ordered by values.

        See Also
        --------
        Series.sort_index : Sort by the Series indices.
        DataFrame.sort_values : Sort DataFrame by the values along either axis.
        DataFrame.sort_index : Sort DataFrame by indices.

        Examples
        --------
        >>> s = pd.Series([np.nan, 1, 3, 10, 5])
        >>> s
        0     NaN
        1     1.0
        2     3.0
        3     10.0
        4     5.0
        dtype: float64

        Sort values ascending order (default behaviour)

        >>> s.sort_values(ascending=True)
        1     1.0
        2     3.0
        4     5.0
        3    10.0
        0     NaN
        dtype: float64

        Sort values descending order

        >>> s.sort_values(ascending=False)
        3    10.0
        4     5.0
        2     3.0
        1     1.0
        0     NaN
        dtype: float64

        Sort values inplace

        >>> s.sort_values(ascending=False, inplace=True)
        >>> s
        3    10.0
        4     5.0
        2     3.0
        1     1.0
        0     NaN
        dtype: float64

        Sort values putting NAs first

        >>> s.sort_values(na_position='first')
        0     NaN
        1     1.0
        2     3.0
        4     5.0
        3    10.0
        dtype: float64

        Sort a series of strings

        >>> s = pd.Series(['z', 'b', 'd', 'a', 'c'])
        >>> s
        0    z
        1    b
        2    d
        3    a
        4    c
        dtype: object

        >>> s.sort_values()
        3    a
        1    b
        4    c
        2    d
        0    z
        dtype: object
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        # Validate the axis parameter
        self._get_axis_number(axis)

        # GH 5856/5853
        if inplace and self._is_cached:
            raise ValueError("This Series is a view of some other array, to "
                             "sort in-place you must create a copy")

        def _try_kind_sort(arr):
            # easier to ask forgiveness than permission
            try:
                # if kind==mergesort, it can fail for object dtype
                return arr.argsort(kind=kind)
            except TypeError:
                # stable sort not available for object dtype
                # uses the argsort default quicksort
                return arr.argsort(kind='quicksort')

        arr = self._values
        sortedIdx = np.empty(len(self), dtype=np.int32)

        bad = isna(arr)

        good = ~bad
        idx = ibase.default_index(len(self))

        argsorted = _try_kind_sort(arr[good])

        if is_list_like(ascending):
            if len(ascending) != 1:
                raise ValueError('Length of ascending (%d) must be 1 '
                                 'for Series' % (len(ascending)))
            ascending = ascending[0]

        if not is_bool(ascending):
            raise ValueError('ascending must be boolean')

        if not ascending:
            argsorted = argsorted[::-1]

        if na_position == 'last':
            n = good.sum()
            sortedIdx[:n] = idx[good][argsorted]
            sortedIdx[n:] = idx[bad]
        elif na_position == 'first':
            n = bad.sum()
            sortedIdx[n:] = idx[good][argsorted]
            sortedIdx[:n] = idx[bad]
        else:
            raise ValueError('invalid na_position: {!r}'.format(na_position))

        result = self._constructor(arr[sortedIdx], index=self.index[sortedIdx])

        if inplace:
            self._update_inplace(result)
        else:
            return result.__finalize__(self)

    def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
                   kind='quicksort', na_position='last', sort_remaining=True):
        """
        Sort Series by index labels.

        Returns a new Series sorted by label if `inplace` argument is
        ``False``, otherwise updates the original series and returns None.

        Parameters
        ----------
        axis : int, default 0
            Axis to direct sorting. This can only be 0 for Series.
        level : int, optional
            If not None, sort on values in specified index level(s).
        ascending : bool, default true
            Sort ascending vs. descending.
        inplace : bool, default False
            If True, perform operation in-place.
        kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
            Choice of sorting algorithm. See also :func:`numpy.sort` for more
            information.  'mergesort' is the only stable algorithm. For
            DataFrames, this option is only applied when sorting on a single
            column or label.
        na_position : {'first', 'last'}, default 'last'
            If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end.
            Not implemented for MultiIndex.
        sort_remaining : bool, default True
            If true and sorting by level and index is multilevel, sort by other
            levels too (in order) after sorting by specified level.

        Returns
        -------
        pandas.Series
            The original Series sorted by the labels

        See Also
        --------
        DataFrame.sort_index: Sort DataFrame by the index.
        DataFrame.sort_values: Sort DataFrame by the value.
        Series.sort_values : Sort Series by the value.

        Examples
        --------
        >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4])
        >>> s.sort_index()
        1    c
        2    b
        3    a
        4    d
        dtype: object

        Sort Descending

        >>> s.sort_index(ascending=False)
        4    d
        3    a
        2    b
        1    c
        dtype: object

        Sort Inplace

        >>> s.sort_index(inplace=True)
        >>> s
        1    c
        2    b
        3    a
        4    d
        dtype: object

        By default NaNs are put at the end, but use `na_position` to place
        them at the beginning

        >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan])
        >>> s.sort_index(na_position='first')
        NaN     d
         1.0    c
         2.0    b
         3.0    a
        dtype: object

        Specify index level to sort

        >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo',
        ...                     'baz', 'baz', 'bar', 'bar']),
        ...           np.array(['two', 'one', 'two', 'one',
        ...                     'two', 'one', 'two', 'one'])]
        >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays)
        >>> s.sort_index(level=1)
        bar  one    8
        baz  one    6
        foo  one    4
        qux  one    2
        bar  two    7
        baz  two    5
        foo  two    3
        qux  two    1
        dtype: int64

        Does not sort by remaining levels when sorting by levels

        >>> s.sort_index(level=1, sort_remaining=False)
        qux  one    2
        foo  one    4
        baz  one    6
        bar  one    8
        qux  two    1
        foo  two    3
        baz  two    5
        bar  two    7
        dtype: int64
        """
        # TODO: this can be combined with DataFrame.sort_index impl as
        # almost identical
        inplace = validate_bool_kwarg(inplace, 'inplace')
        # Validate the axis parameter
        self._get_axis_number(axis)
        index = self.index

        if level is not None:
            new_index, indexer = index.sortlevel(level, ascending=ascending,
                                                 sort_remaining=sort_remaining)
        elif isinstance(index, MultiIndex):
            from pandas.core.sorting import lexsort_indexer
            labels = index._sort_levels_monotonic()
            indexer = lexsort_indexer(labels._get_codes_for_sorting(),
                                      orders=ascending,
                                      na_position=na_position)
        else:
            from pandas.core.sorting import nargsort

            # Check monotonic-ness before sort an index
            # GH11080
            if ((ascending and index.is_monotonic_increasing) or
                    (not ascending and index.is_monotonic_decreasing)):
                if inplace:
                    return
                else:
                    return self.copy()

            indexer = nargsort(index, kind=kind, ascending=ascending,
                               na_position=na_position)

        indexer = ensure_platform_int(indexer)
        new_index = index.take(indexer)
        new_index = new_index._sort_levels_monotonic()

        new_values = self._values.take(indexer)
        result = self._constructor(new_values, index=new_index)

        if inplace:
            self._update_inplace(result)
        else:
            return result.__finalize__(self)

    def argsort(self, axis=0, kind='quicksort', order=None):
        """
        Overrides ndarray.argsort. Argsorts the value, omitting NA/null values,
        and places the result in the same locations as the non-NA values.

        Parameters
        ----------
        axis : int
            Has no effect but is accepted for compatibility with numpy.
        kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
            Choice of sorting algorithm. See np.sort for more
            information. 'mergesort' is the only stable algorithm
        order : None
            Has no effect but is accepted for compatibility with numpy.

        Returns
        -------
        argsorted : Series, with -1 indicated where nan values are present

        See Also
        --------
        numpy.ndarray.argsort
        """
        values = self._values
        mask = isna(values)

        if mask.any():
            result = Series(-1, index=self.index, name=self.name,
                            dtype='int64')
            notmask = ~mask
            result[notmask] = np.argsort(values[notmask], kind=kind)
            return self._constructor(result,
                                     index=self.index).__finalize__(self)
        else:
            return self._constructor(
                np.argsort(values, kind=kind), index=self.index,
                dtype='int64').__finalize__(self)

    def nlargest(self, n=5, keep='first'):
        """
        Return the largest `n` elements.

        Parameters
        ----------
        n : int, default 5
            Return this many descending sorted values.
        keep : {'first', 'last', 'all'}, default 'first'
            When there are duplicate values that cannot all fit in a
            Series of `n` elements:

            - ``first`` : take the first occurrences based on the index order
            - ``last`` : take the last occurrences based on the index order
            - ``all`` : keep all occurrences. This can result in a Series of
                size larger than `n`.

        Returns
        -------
        Series
            The `n` largest values in the Series, sorted in decreasing order.

        See Also
        --------
        Series.nsmallest: Get the `n` smallest elements.
        Series.sort_values: Sort Series by values.
        Series.head: Return the first `n` rows.

        Notes
        -----
        Faster than ``.sort_values(ascending=False).head(n)`` for small `n`
        relative to the size of the ``Series`` object.

        Examples
        --------
        >>> countries_population = {"Italy": 59000000, "France": 65000000,
        ...                         "Malta": 434000, "Maldives": 434000,
        ...                         "Brunei": 434000, "Iceland": 337000,
        ...                         "Nauru": 11300, "Tuvalu": 11300,
        ...                         "Anguilla": 11300, "Monserat": 5200}
        >>> s = pd.Series(countries_population)
        >>> s
        Italy       59000000
        France      65000000
        Malta         434000
        Maldives      434000
        Brunei        434000
        Iceland       337000
        Nauru          11300
        Tuvalu         11300
        Anguilla       11300
        Monserat        5200
        dtype: int64

        The `n` largest elements where ``n=5`` by default.

        >>> s.nlargest()
        France      65000000
        Italy       59000000
        Malta         434000
        Maldives      434000
        Brunei        434000
        dtype: int64

        The `n` largest elements where ``n=3``. Default `keep` value is 'first'
        so Malta will be kept.

        >>> s.nlargest(3)
        France    65000000
        Italy     59000000
        Malta       434000
        dtype: int64

        The `n` largest elements where ``n=3`` and keeping the last duplicates.
        Brunei will be kept since it is the last with value 434000 based on
        the index order.

        >>> s.nlargest(3, keep='last')
        France      65000000
        Italy       59000000
        Brunei        434000
        dtype: int64

        The `n` largest elements where ``n=3`` with all duplicates kept. Note
        that the returned Series has five elements due to the three duplicates.

        >>> s.nlargest(3, keep='all')
        France      65000000
        Italy       59000000
        Malta         434000
        Maldives      434000
        Brunei        434000
        dtype: int64
        """
        return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest()

    def nsmallest(self, n=5, keep='first'):
        """
        Return the smallest `n` elements.

        Parameters
        ----------
        n : int, default 5
            Return this many ascending sorted values.
        keep : {'first', 'last', 'all'}, default 'first'
            When there are duplicate values that cannot all fit in a
            Series of `n` elements:

            - ``first`` : take the first occurrences based on the index order
            - ``last`` : take the last occurrences based on the index order
            - ``all`` : keep all occurrences. This can result in a Series of
                size larger than `n`.

        Returns
        -------
        Series
            The `n` smallest values in the Series, sorted in increasing order.

        See Also
        --------
        Series.nlargest: Get the `n` largest elements.
        Series.sort_values: Sort Series by values.
        Series.head: Return the first `n` rows.

        Notes
        -----
        Faster than ``.sort_values().head(n)`` for small `n` relative to
        the size of the ``Series`` object.

        Examples
        --------
        >>> countries_population = {"Italy": 59000000, "France": 65000000,
        ...                         "Brunei": 434000, "Malta": 434000,
        ...                         "Maldives": 434000, "Iceland": 337000,
        ...                         "Nauru": 11300, "Tuvalu": 11300,
        ...                         "Anguilla": 11300, "Monserat": 5200}
        >>> s = pd.Series(countries_population)
        >>> s
        Italy       59000000
        France      65000000
        Brunei        434000
        Malta         434000
        Maldives      434000
        Iceland       337000
        Nauru          11300
        Tuvalu         11300
        Anguilla       11300
        Monserat        5200
        dtype: int64

        The `n` largest elements where ``n=5`` by default.

        >>> s.nsmallest()
        Monserat      5200
        Nauru        11300
        Tuvalu       11300
        Anguilla     11300
        Iceland     337000
        dtype: int64

        The `n` smallest elements where ``n=3``. Default `keep` value is
        'first' so Nauru and Tuvalu will be kept.

        >>> s.nsmallest(3)
        Monserat     5200
        Nauru       11300
        Tuvalu      11300
        dtype: int64

        The `n` smallest elements where ``n=3`` and keeping the last
        duplicates. Anguilla and Tuvalu will be kept since they are the last
        with value 11300 based on the index order.

        >>> s.nsmallest(3, keep='last')
        Monserat     5200
        Anguilla    11300
        Tuvalu      11300
        dtype: int64

        The `n` smallest elements where ``n=3`` with all duplicates kept. Note
        that the returned Series has four elements due to the three duplicates.

        >>> s.nsmallest(3, keep='all')
        Monserat     5200
        Nauru       11300
        Tuvalu      11300
        Anguilla    11300
        dtype: int64
        """
        return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest()

    def swaplevel(self, i=-2, j=-1, copy=True):
        """
        Swap levels i and j in a MultiIndex.

        Parameters
        ----------
        i, j : int, string (can be mixed)
            Level of index to be swapped. Can pass level name as string.

        Returns
        -------
        swapped : Series

        .. versionchanged:: 0.18.1

           The indexes ``i`` and ``j`` are now optional, and default to
           the two innermost levels of the index.
        """
        new_index = self.index.swaplevel(i, j)
        return self._constructor(self._values, index=new_index,
                                 copy=copy).__finalize__(self)

    def reorder_levels(self, order):
        """
        Rearrange index levels using input order.

        May not drop or duplicate levels.

        Parameters
        ----------
        order : list of int representing new level order
               (reference level by number or key)

        Returns
        -------
        type of caller (new object)
        """
        if not isinstance(self.index, MultiIndex):  # pragma: no cover
            raise Exception('Can only reorder levels on a hierarchical axis.')

        result = self.copy()
        result.index = result.index.reorder_levels(order)
        return result

    def unstack(self, level=-1, fill_value=None):
        """
        Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame.
        The level involved will automatically get sorted.

        Parameters
        ----------
        level : int, string, or list of these, default last level
            Level(s) to unstack, can pass level name
        fill_value : replace NaN with this value if the unstack produces
            missing values

            .. versionadded:: 0.18.0

        Returns
        -------
        unstacked : DataFrame

        Examples
        --------
        >>> s = pd.Series([1, 2, 3, 4],
        ...     index=pd.MultiIndex.from_product([['one', 'two'], ['a', 'b']]))
        >>> s
        one  a    1
             b    2
        two  a    3
             b    4
        dtype: int64

        >>> s.unstack(level=-1)
             a  b
        one  1  2
        two  3  4

        >>> s.unstack(level=0)
           one  two
        a    1    3
        b    2    4
        """
        from pandas.core.reshape.reshape import unstack
        return unstack(self, level, fill_value)

    # ----------------------------------------------------------------------
    # function application

    def map(self, arg, na_action=None):
        """
        Map values of Series according to input correspondence.

        Used for substituting each value in a Series with another value,
        that may be derived from a function, a ``dict`` or
        a :class:`Series`.

        Parameters
        ----------
        arg : function, dict, or Series
            Mapping correspondence.
        na_action : {None, 'ignore'}, default None
            If 'ignore', propagate NaN values, without passing them to the
            mapping correspondence.

        Returns
        -------
        Series
            Same index as caller.

        See Also
        --------
        Series.apply : For applying more complex functions on a Series.
        DataFrame.apply : Apply a function row-/column-wise.
        DataFrame.applymap : Apply a function elementwise on a whole DataFrame.

        Notes
        -----
        When ``arg`` is a dictionary, values in Series that are not in the
        dictionary (as keys) are converted to ``NaN``. However, if the
        dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e.
        provides a method for default values), then this default is used
        rather than ``NaN``.

        Examples
        --------
        >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit'])
        >>> s
        0      cat
        1      dog
        2      NaN
        3   rabbit
        dtype: object

        ``map`` accepts a ``dict`` or a ``Series``. Values that are not found
        in the ``dict`` are converted to ``NaN``, unless the dict has a default
        value (e.g. ``defaultdict``):

        >>> s.map({'cat': 'kitten', 'dog': 'puppy'})
        0   kitten
        1    puppy
        2      NaN
        3      NaN
        dtype: object

        It also accepts a function:

        >>> s.map('I am a {}'.format)
        0       I am a cat
        1       I am a dog
        2       I am a nan
        3    I am a rabbit
        dtype: object

        To avoid applying the function to missing values (and keep them as
        ``NaN``) ``na_action='ignore'`` can be used:

        >>> s.map('I am a {}'.format, na_action='ignore')
        0     I am a cat
        1     I am a dog
        2            NaN
        3  I am a rabbit
        dtype: object
        """
        new_values = super(Series, self)._map_values(
            arg, na_action=na_action)
        return self._constructor(new_values,
                                 index=self.index).__finalize__(self)

    def _gotitem(self, key, ndim, subset=None):
        """
        Sub-classes to define. Return a sliced object.

        Parameters
        ----------
        key : string / list of selections
        ndim : 1,2
            requested ndim of result
        subset : object, default None
            subset to act on
        """
        return self

    _agg_see_also_doc = dedent("""
    See Also
    --------
    Series.apply : Invoke function on a Series.
    Series.transform : Transform function producing a Series with like indexes.
    """)

    _agg_examples_doc = dedent("""
    Examples
    --------
    >>> s = pd.Series([1, 2, 3, 4])
    >>> s
    0    1
    1    2
    2    3
    3    4
    dtype: int64

    >>> s.agg('min')
    1

    >>> s.agg(['min', 'max'])
    min   1
    max   4
    dtype: int64
    """)

    @Substitution(see_also=_agg_see_also_doc,
                  examples=_agg_examples_doc,
                  versionadded='.. versionadded:: 0.20.0',
                  **_shared_doc_kwargs)
    @Appender(generic._shared_docs['aggregate'])
    def aggregate(self, func, axis=0, *args, **kwargs):
        # Validate the axis parameter
        self._get_axis_number(axis)
        result, how = self._aggregate(func, *args, **kwargs)
        if result is None:

            # we can be called from an inner function which
            # passes this meta-data
            kwargs.pop('_axis', None)
            kwargs.pop('_level', None)

            # try a regular apply, this evaluates lambdas
            # row-by-row; however if the lambda is expected a Series
            # expression, e.g.: lambda x: x-x.quantile(0.25)
            # this will fail, so we can try a vectorized evaluation

            # we cannot FIRST try the vectorized evaluation, because
            # then .agg and .apply would have different semantics if the
            # operation is actually defined on the Series, e.g. str
            try:
                result = self.apply(func, *args, **kwargs)
            except (ValueError, AttributeError, TypeError):
                result = func(self, *args, **kwargs)

        return result

    agg = aggregate

    @Appender(generic._shared_docs['transform'] % _shared_doc_kwargs)
    def transform(self, func, axis=0, *args, **kwargs):
        # Validate the axis parameter
        self._get_axis_number(axis)
        return super(Series, self).transform(func, *args, **kwargs)

    def apply(self, func, convert_dtype=True, args=(), **kwds):
        """
        Invoke function on values of Series.

        Can be ufunc (a NumPy function that applies to the entire Series)
        or a Python function that only works on single values.

        Parameters
        ----------
        func : function
            Python function or NumPy ufunc to apply.
        convert_dtype : bool, default True
            Try to find better dtype for elementwise function results. If
            False, leave as dtype=object.
        args : tuple
            Positional arguments passed to func after the series value.
        **kwds
            Additional keyword arguments passed to func.

        Returns
        -------
        Series or DataFrame
            If func returns a Series object the result will be a DataFrame.

        See Also
        --------
        Series.map: For element-wise operations.
        Series.agg: Only perform aggregating type operations.
        Series.transform: Only perform transforming type operations.

        Examples
        --------
        Create a series with typical summer temperatures for each city.

        >>> s = pd.Series([20, 21, 12],
        ...               index=['London', 'New York', 'Helsinki'])
        >>> s
        London      20
        New York    21
        Helsinki    12
        dtype: int64

        Square the values by defining a function and passing it as an
        argument to ``apply()``.

        >>> def square(x):
        ...     return x ** 2
        >>> s.apply(square)
        London      400
        New York    441
        Helsinki    144
        dtype: int64

        Square the values by passing an anonymous function as an
        argument to ``apply()``.

        >>> s.apply(lambda x: x ** 2)
        London      400
        New York    441
        Helsinki    144
        dtype: int64

        Define a custom function that needs additional positional
        arguments and pass these additional arguments using the
        ``args`` keyword.

        >>> def subtract_custom_value(x, custom_value):
        ...     return x - custom_value

        >>> s.apply(subtract_custom_value, args=(5,))
        London      15
        New York    16
        Helsinki     7
        dtype: int64

        Define a custom function that takes keyword arguments
        and pass these arguments to ``apply``.

        >>> def add_custom_values(x, **kwargs):
        ...     for month in kwargs:
        ...         x += kwargs[month]
        ...     return x

        >>> s.apply(add_custom_values, june=30, july=20, august=25)
        London      95
        New York    96
        Helsinki    87
        dtype: int64

        Use a function from the Numpy library.

        >>> s.apply(np.log)
        London      2.995732
        New York    3.044522
        Helsinki    2.484907
        dtype: float64
        """
        if len(self) == 0:
            return self._constructor(dtype=self.dtype,
                                     index=self.index).__finalize__(self)

        # dispatch to agg
        if isinstance(func, (list, dict)):
            return self.aggregate(func, *args, **kwds)

        # if we are a string, try to dispatch
        if isinstance(func, compat.string_types):
            return self._try_aggregate_string_function(func, *args, **kwds)

        # handle ufuncs and lambdas
        if kwds or args and not isinstance(func, np.ufunc):
            def f(x):
                return func(x, *args, **kwds)
        else:
            f = func

        with np.errstate(all='ignore'):
            if isinstance(f, np.ufunc):
                return f(self)

            # row-wise access
            if is_extension_type(self.dtype):
                mapped = self._values.map(f)
            else:
                values = self.astype(object).values
                mapped = lib.map_infer(values, f, convert=convert_dtype)

        if len(mapped) and isinstance(mapped[0], Series):
            from pandas.core.frame import DataFrame
            return DataFrame(mapped.tolist(), index=self.index)
        else:
            return self._constructor(mapped,
                                     index=self.index).__finalize__(self)

    def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
                filter_type=None, **kwds):
        """
        Perform a reduction operation.

        If we have an ndarray as a value, then simply perform the operation,
        otherwise delegate to the object.
        """
        delegate = self._values

        if axis is not None:
            self._get_axis_number(axis)

        if isinstance(delegate, Categorical):
            # TODO deprecate numeric_only argument for Categorical and use
            # skipna as well, see GH25303
            return delegate._reduce(name, numeric_only=numeric_only, **kwds)
        elif isinstance(delegate, ExtensionArray):
            # dispatch to ExtensionArray interface
            return delegate._reduce(name, skipna=skipna, **kwds)
        elif is_datetime64_dtype(delegate):
            # use DatetimeIndex implementation to handle skipna correctly
            delegate = DatetimeIndex(delegate)

        # dispatch to numpy arrays
        elif isinstance(delegate, np.ndarray):
            if numeric_only:
                raise NotImplementedError('Series.{0} does not implement '
                                          'numeric_only.'.format(name))
            with np.errstate(all='ignore'):
                return op(delegate, skipna=skipna, **kwds)

        # TODO(EA) dispatch to Index
        # remove once all internals extension types are
        # moved to ExtensionArrays
        return delegate._reduce(op=op, name=name, axis=axis, skipna=skipna,
                                numeric_only=numeric_only,
                                filter_type=filter_type, **kwds)

    def _reindex_indexer(self, new_index, indexer, copy):
        if indexer is None:
            if copy:
                return self.copy()
            return self

        new_values = algorithms.take_1d(self._values, indexer,
                                        allow_fill=True, fill_value=None)
        return self._constructor(new_values, index=new_index)

    def _needs_reindex_multi(self, axes, method, level):
        """
        Check if we do need a multi reindex; this is for compat with
        higher dims.
        """
        return False

    @Appender(generic._shared_docs['align'] % _shared_doc_kwargs)
    def align(self, other, join='outer', axis=None, level=None, copy=True,
              fill_value=None, method=None, limit=None, fill_axis=0,
              broadcast_axis=None):
        return super(Series, self).align(other, join=join, axis=axis,
                                         level=level, copy=copy,
                                         fill_value=fill_value, method=method,
                                         limit=limit, fill_axis=fill_axis,
                                         broadcast_axis=broadcast_axis)

    def rename(self, index=None, **kwargs):
        """
        Alter Series index labels or name.

        Function / dict values must be unique (1-to-1). Labels not contained in
        a dict / Series will be left as-is. Extra labels listed don't throw an
        error.

        Alternatively, change ``Series.name`` with a scalar value.

        See the :ref:`user guide <basics.rename>` for more.

        Parameters
        ----------
        index : scalar, hashable sequence, dict-like or function, optional
            dict-like or functions are transformations to apply to
            the index.
            Scalar or hashable sequence-like will alter the ``Series.name``
            attribute.
        copy : bool, default True
            Also copy underlying data
        inplace : bool, default False
            Whether to return a new Series. If True then value of copy is
            ignored.
        level : int or level name, default None
            In case of a MultiIndex, only rename labels in the specified
            level.

        Returns
        -------
        renamed : Series (new object)

        See Also
        --------
        Series.rename_axis

        Examples
        --------
        >>> s = pd.Series([1, 2, 3])
        >>> s
        0    1
        1    2
        2    3
        dtype: int64
        >>> s.rename("my_name") # scalar, changes Series.name
        0    1
        1    2
        2    3
        Name: my_name, dtype: int64
        >>> s.rename(lambda x: x ** 2)  # function, changes labels
        0    1
        1    2
        4    3
        dtype: int64
        >>> s.rename({1: 3, 2: 5})  # mapping, changes labels
        0    1
        3    2
        5    3
        dtype: int64
        """
        kwargs['inplace'] = validate_bool_kwarg(kwargs.get('inplace', False),
                                                'inplace')

        non_mapping = is_scalar(index) or (is_list_like(index) and
                                           not is_dict_like(index))
        if non_mapping:
            return self._set_name(index, inplace=kwargs.get('inplace'))
        return super(Series, self).rename(index=index, **kwargs)

    @Substitution(**_shared_doc_kwargs)
    @Appender(generic.NDFrame.reindex.__doc__)
    def reindex(self, index=None, **kwargs):
        return super(Series, self).reindex(index=index, **kwargs)

    def drop(self, labels=None, axis=0, index=None, columns=None,
             level=None, inplace=False, errors='raise'):
        """
        Return Series with specified index labels removed.

        Remove elements of a Series based on specifying the index labels.
        When using a multi-index, labels on different levels can be removed
        by specifying the level.

        Parameters
        ----------
        labels : single label or list-like
            Index labels to drop.
        axis : 0, default 0
            Redundant for application on Series.
        index, columns : None
            Redundant for application on Series, but index can be used instead
            of labels.

            .. versionadded:: 0.21.0
        level : int or level name, optional
            For MultiIndex, level for which the labels will be removed.
        inplace : bool, default False
            If True, do operation inplace and return None.
        errors : {'ignore', 'raise'}, default 'raise'
            If 'ignore', suppress error and only existing labels are dropped.

        Returns
        -------
        dropped : pandas.Series

        Raises
        ------
        KeyError
            If none of the labels are found in the index.

        See Also
        --------
        Series.reindex : Return only specified index labels of Series.
        Series.dropna : Return series without null values.
        Series.drop_duplicates : Return Series with duplicate values removed.
        DataFrame.drop : Drop specified labels from rows or columns.

        Examples
        --------
        >>> s = pd.Series(data=np.arange(3), index=['A','B','C'])
        >>> s
        A  0
        B  1
        C  2
        dtype: int64

        Drop labels B en C

        >>> s.drop(labels=['B','C'])
        A  0
        dtype: int64

        Drop 2nd level label in MultiIndex Series

        >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
        ...                              ['speed', 'weight', 'length']],
        ...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
        ...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
        >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
        ...               index=midx)
        >>> s
        lama    speed      45.0
                weight    200.0
                length      1.2
        cow     speed      30.0
                weight    250.0
                length      1.5
        falcon  speed     320.0
                weight      1.0
                length      0.3
        dtype: float64

        >>> s.drop(labels='weight', level=1)
        lama    speed      45.0
                length      1.2
        cow     speed      30.0
                length      1.5
        falcon  speed     320.0
                length      0.3
        dtype: float64
        """
        return super(Series, self).drop(labels=labels, axis=axis, index=index,
                                        columns=columns, level=level,
                                        inplace=inplace, errors=errors)

    @Substitution(**_shared_doc_kwargs)
    @Appender(generic.NDFrame.fillna.__doc__)
    def fillna(self, value=None, method=None, axis=None, inplace=False,
               limit=None, downcast=None, **kwargs):
        return super(Series, self).fillna(value=value, method=method,
                                          axis=axis, inplace=inplace,
                                          limit=limit, downcast=downcast,
                                          **kwargs)

    @Appender(generic._shared_docs['replace'] % _shared_doc_kwargs)
    def replace(self, to_replace=None, value=None, inplace=False, limit=None,
                regex=False, method='pad'):
        return super(Series, self).replace(to_replace=to_replace, value=value,
                                           inplace=inplace, limit=limit,
                                           regex=regex, method=method)

    @Appender(generic._shared_docs['shift'] % _shared_doc_kwargs)
    def shift(self, periods=1, freq=None, axis=0, fill_value=None):
        return super(Series, self).shift(periods=periods, freq=freq, axis=axis,
                                         fill_value=fill_value)

    def reindex_axis(self, labels, axis=0, **kwargs):
        """
        Conform Series to new index with optional filling logic.

        .. deprecated:: 0.21.0
            Use ``Series.reindex`` instead.
        """
        # for compatibility with higher dims
        if axis != 0:
            raise ValueError("cannot reindex series on non-zero axis!")
        msg = ("'.reindex_axis' is deprecated and will be removed in a future "
               "version. Use '.reindex' instead.")
        warnings.warn(msg, FutureWarning, stacklevel=2)

        return self.reindex(index=labels, **kwargs)

    def memory_usage(self, index=True, deep=False):
        """
        Return the memory usage of the Series.

        The memory usage can optionally include the contribution of
        the index and of elements of `object` dtype.

        Parameters
        ----------
        index : bool, default True
            Specifies whether to include the memory usage of the Series index.
        deep : bool, default False
            If True, introspect the data deeply by interrogating
            `object` dtypes for system-level memory consumption, and include
            it in the returned value.

        Returns
        -------
        int
            Bytes of memory consumed.

        See Also
        --------
        numpy.ndarray.nbytes : Total bytes consumed by the elements of the
            array.
        DataFrame.memory_usage : Bytes consumed by a DataFrame.

        Examples
        --------
        >>> s = pd.Series(range(3))
        >>> s.memory_usage()
        104

        Not including the index gives the size of the rest of the data, which
        is necessarily smaller:

        >>> s.memory_usage(index=False)
        24

        The memory footprint of `object` values is ignored by default:

        >>> s = pd.Series(["a", "b"])
        >>> s.values
        array(['a', 'b'], dtype=object)
        >>> s.memory_usage()
        96
        >>> s.memory_usage(deep=True)
        212
        """
        v = super(Series, self).memory_usage(deep=deep)
        if index:
            v += self.index.memory_usage(deep=deep)
        return v

    @Appender(generic.NDFrame._take.__doc__)
    def _take(self, indices, axis=0, is_copy=False):

        indices = ensure_platform_int(indices)
        new_index = self.index.take(indices)

        if is_categorical_dtype(self):
            # https://github.com/pandas-dev/pandas/issues/20664
            # TODO: remove when the default Categorical.take behavior changes
            indices = maybe_convert_indices(indices, len(self._get_axis(axis)))
            kwargs = {'allow_fill': False}
        else:
            kwargs = {}
        new_values = self._values.take(indices, **kwargs)

        result = (self._constructor(new_values, index=new_index,
                                    fastpath=True).__finalize__(self))

        # Maybe set copy if we didn't actually change the index.
        if is_copy:
            if not result._get_axis(axis).equals(self._get_axis(axis)):
                result._set_is_copy(self)

        return result

    def isin(self, values):
        """
        Check whether `values` are contained in Series.

        Return a boolean Series showing whether each element in the Series
        matches an element in the passed sequence of `values` exactly.

        Parameters
        ----------
        values : set or list-like
            The sequence of values to test. Passing in a single string will
            raise a ``TypeError``. Instead, turn a single string into a
            list of one element.

            .. versionadded:: 0.18.1

              Support for values as a set.

        Returns
        -------
        isin : Series (bool dtype)

        Raises
        ------
        TypeError
          * If `values` is a string

        See Also
        --------
        DataFrame.isin : Equivalent method on DataFrame.

        Examples
        --------
        >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama',
        ...                'hippo'], name='animal')
        >>> s.isin(['cow', 'lama'])
        0     True
        1     True
        2     True
        3    False
        4     True
        5    False
        Name: animal, dtype: bool

        Passing a single string as ``s.isin('lama')`` will raise an error. Use
        a list of one element instead:

        >>> s.isin(['lama'])
        0     True
        1    False
        2     True
        3    False
        4     True
        5    False
        Name: animal, dtype: bool
        """
        result = algorithms.isin(self, values)
        return self._constructor(result, index=self.index).__finalize__(self)

    def between(self, left, right, inclusive=True):
        """
        Return boolean Series equivalent to left <= series <= right.

        This function returns a boolean vector containing `True` wherever the
        corresponding Series element is between the boundary values `left` and
        `right`. NA values are treated as `False`.

        Parameters
        ----------
        left : scalar
            Left boundary.
        right : scalar
            Right boundary.
        inclusive : bool, default True
            Include boundaries.

        Returns
        -------
        Series
            Each element will be a boolean.

        See Also
        --------
        Series.gt : Greater than of series and other.
        Series.lt : Less than of series and other.

        Notes
        -----
        This function is equivalent to ``(left <= ser) & (ser <= right)``

        Examples
        --------
        >>> s = pd.Series([2, 0, 4, 8, np.nan])

        Boundary values are included by default:

        >>> s.between(1, 4)
        0     True
        1    False
        2     True
        3    False
        4    False
        dtype: bool

        With `inclusive` set to ``False`` boundary values are excluded:

        >>> s.between(1, 4, inclusive=False)
        0     True
        1    False
        2    False
        3    False
        4    False
        dtype: bool

        `left` and `right` can be any scalar value:

        >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve'])
        >>> s.between('Anna', 'Daniel')
        0    False
        1     True
        2     True
        3    False
        dtype: bool
        """
        if inclusive:
            lmask = self >= left
            rmask = self <= right
        else:
            lmask = self > left
            rmask = self < right

        return lmask & rmask

    @classmethod
    def from_csv(cls, path, sep=',', parse_dates=True, header=None,
                 index_col=0, encoding=None, infer_datetime_format=False):
        """
        Read CSV file.

        .. deprecated:: 0.21.0
            Use :func:`pandas.read_csv` instead.

        It is preferable to use the more powerful :func:`pandas.read_csv`
        for most general purposes, but ``from_csv`` makes for an easy
        roundtrip to and from a file (the exact counterpart of
        ``to_csv``), especially with a time Series.

        This method only differs from :func:`pandas.read_csv` in some defaults:

        - `index_col` is ``0`` instead of ``None`` (take first column as index
          by default)
        - `header` is ``None`` instead of ``0`` (the first row is not used as
          the column names)
        - `parse_dates` is ``True`` instead of ``False`` (try parsing the index
          as datetime by default)

        With :func:`pandas.read_csv`, the option ``squeeze=True`` can be used
        to return a Series like ``from_csv``.

        Parameters
        ----------
        path : string file path or file handle / StringIO
        sep : string, default ','
            Field delimiter
        parse_dates : boolean, default True
            Parse dates. Different default from read_table
        header : int, default None
            Row to use as header (skip prior rows)
        index_col : int or sequence, default 0
            Column to use for index. If a sequence is given, a MultiIndex
            is used. Different default from read_table
        encoding : string, optional
            a string representing the encoding to use if the contents are
            non-ascii, for python versions prior to 3
        infer_datetime_format : boolean, default False
            If True and `parse_dates` is True for a column, try to infer the
            datetime format based on the first datetime string. If the format
            can be inferred, there often will be a large parsing speed-up.

        Returns
        -------
        y : Series

        See Also
        --------
        read_csv
        """

        # We're calling `DataFrame.from_csv` in the implementation,
        # which will propagate a warning regarding `from_csv` deprecation.
        from pandas.core.frame import DataFrame
        df = DataFrame.from_csv(path, header=header, index_col=index_col,
                                sep=sep, parse_dates=parse_dates,
                                encoding=encoding,
                                infer_datetime_format=infer_datetime_format)
        result = df.iloc[:, 0]
        if header is None:
            result.index.name = result.name = None

        return result

    @Appender(generic.NDFrame.to_csv.__doc__)
    def to_csv(self, *args, **kwargs):

        names = ["path_or_buf", "sep", "na_rep", "float_format", "columns",
                 "header", "index", "index_label", "mode", "encoding",
                 "compression", "quoting", "quotechar", "line_terminator",
                 "chunksize", "tupleize_cols", "date_format", "doublequote",
                 "escapechar", "decimal"]

        old_names = ["path_or_buf", "index", "sep", "na_rep", "float_format",
                     "header", "index_label", "mode", "encoding",
                     "compression", "date_format", "decimal"]

        if "path" in kwargs:
            warnings.warn("The signature of `Series.to_csv` was aligned "
                          "to that of `DataFrame.to_csv`, and argument "
                          "'path' will be renamed to 'path_or_buf'.",
                          FutureWarning, stacklevel=2)
            kwargs["path_or_buf"] = kwargs.pop("path")

        if len(args) > 1:
            # Either "index" (old signature) or "sep" (new signature) is being
            # passed as second argument (while the first is the same)
            maybe_sep = args[1]

            if not (is_string_like(maybe_sep) and len(maybe_sep) == 1):
                # old signature
                warnings.warn("The signature of `Series.to_csv` was aligned "
                              "to that of `DataFrame.to_csv`. Note that the "
                              "order of arguments changed, and the new one "
                              "has 'sep' in first place, for which \"{}\" is "
                              "not a valid value. The old order will cease to "
                              "be supported in a future version. Please refer "
                              "to the documentation for `DataFrame.to_csv` "
                              "when updating your function "
                              "calls.".format(maybe_sep),
                              FutureWarning, stacklevel=2)
                names = old_names

        pos_args = dict(zip(names[:len(args)], args))

        for key in pos_args:
            if key in kwargs:
                raise ValueError("Argument given by name ('{}') and position "
                                 "({})".format(key, names.index(key)))
            kwargs[key] = pos_args[key]

        if kwargs.get("header", None) is None:
            warnings.warn("The signature of `Series.to_csv` was aligned "
                          "to that of `DataFrame.to_csv`, and argument "
                          "'header' will change its default value from False "
                          "to True: please pass an explicit value to suppress "
                          "this warning.", FutureWarning,
                          stacklevel=2)
            kwargs["header"] = False  # Backwards compatibility.
        return self.to_frame().to_csv(**kwargs)

    @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs)
    def isna(self):
        return super(Series, self).isna()

    @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs)
    def isnull(self):
        return super(Series, self).isnull()

    @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs)
    def notna(self):
        return super(Series, self).notna()

    @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs)
    def notnull(self):
        return super(Series, self).notnull()

    def dropna(self, axis=0, inplace=False, **kwargs):
        """
        Return a new Series with missing values removed.

        See the :ref:`User Guide <missing_data>` for more on which values are
        considered missing, and how to work with missing data.

        Parameters
        ----------
        axis : {0 or 'index'}, default 0
            There is only one axis to drop values from.
        inplace : bool, default False
            If True, do operation inplace and return None.
        **kwargs
            Not in use.

        Returns
        -------
        Series
            Series with NA entries dropped from it.

        See Also
        --------
        Series.isna: Indicate missing values.
        Series.notna : Indicate existing (non-missing) values.
        Series.fillna : Replace missing values.
        DataFrame.dropna : Drop rows or columns which contain NA values.
        Index.dropna : Drop missing indices.

        Examples
        --------
        >>> ser = pd.Series([1., 2., np.nan])
        >>> ser
        0    1.0
        1    2.0
        2    NaN
        dtype: float64

        Drop NA values from a Series.

        >>> ser.dropna()
        0    1.0
        1    2.0
        dtype: float64

        Keep the Series with valid entries in the same variable.

        >>> ser.dropna(inplace=True)
        >>> ser
        0    1.0
        1    2.0
        dtype: float64

        Empty strings are not considered NA values. ``None`` is considered an
        NA value.

        >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay'])
        >>> ser
        0       NaN
        1         2
        2       NaT
        3
        4      None
        5    I stay
        dtype: object
        >>> ser.dropna()
        1         2
        3
        5    I stay
        dtype: object
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        kwargs.pop('how', None)
        if kwargs:
            raise TypeError('dropna() got an unexpected keyword '
                            'argument "{0}"'.format(list(kwargs.keys())[0]))
        # Validate the axis parameter
        self._get_axis_number(axis or 0)

        if self._can_hold_na:
            result = remove_na_arraylike(self)
            if inplace:
                self._update_inplace(result)
            else:
                return result
        else:
            if inplace:
                # do nothing
                pass
            else:
                return self.copy()

    def valid(self, inplace=False, **kwargs):
        """
        Return Series without null values.

        .. deprecated:: 0.23.0
            Use :meth:`Series.dropna` instead.
        """
        warnings.warn("Method .valid will be removed in a future version. "
                      "Use .dropna instead.", FutureWarning, stacklevel=2)
        return self.dropna(inplace=inplace, **kwargs)

    # ----------------------------------------------------------------------
    # Time series-oriented methods

    def to_timestamp(self, freq=None, how='start', copy=True):
        """
        Cast to datetimeindex of timestamps, at *beginning* of period.

        Parameters
        ----------
        freq : string, default frequency of PeriodIndex
            Desired frequency
        how : {'s', 'e', 'start', 'end'}
            Convention for converting period to timestamp; start of period
            vs. end

        Returns
        -------
        ts : Series with DatetimeIndex
        """
        new_values = self._values
        if copy:
            new_values = new_values.copy()

        new_index = self.index.to_timestamp(freq=freq, how=how)
        return self._constructor(new_values,
                                 index=new_index).__finalize__(self)

    def to_period(self, freq=None, copy=True):
        """
        Convert Series from DatetimeIndex to PeriodIndex with desired
        frequency (inferred from index if not passed).

        Parameters
        ----------
        freq : string, default

        Returns
        -------
        ts : Series with PeriodIndex
        """
        new_values = self._values
        if copy:
            new_values = new_values.copy()

        new_index = self.index.to_period(freq=freq)
        return self._constructor(new_values,
                                 index=new_index).__finalize__(self)

    # ----------------------------------------------------------------------
    # Accessor Methods
    # ----------------------------------------------------------------------
    str = CachedAccessor("str", StringMethods)
    dt = CachedAccessor("dt", CombinedDatetimelikeProperties)
    cat = CachedAccessor("cat", CategoricalAccessor)
    plot = CachedAccessor("plot", gfx.SeriesPlotMethods)
    sparse = CachedAccessor("sparse", SparseAccessor)

    # ----------------------------------------------------------------------
    # Add plotting methods to Series
    hist = gfx.hist_series


Series._setup_axes(['index'], info_axis=0, stat_axis=0, aliases={'rows': 0},
                   docs={'index': 'The index (axis labels) of the Series.'})
Series._add_numeric_operations()
Series._add_series_only_operations()
Series._add_series_or_dataframe_operations()

# Add arithmetic!
ops.add_flex_arithmetic_methods(Series)
ops.add_special_arithmetic_methods(Series)