1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
|
import warnings
from collections import Counter, defaultdict, deque, abc
from collections.abc import Sequence
from functools import cached_property, partial, reduce, wraps
from heapq import heapify, heapreplace, heappop
from itertools import (
chain,
compress,
count,
cycle,
dropwhile,
groupby,
islice,
repeat,
starmap,
takewhile,
tee,
zip_longest,
product,
)
from math import exp, factorial, floor, log
from queue import Empty, Queue
from random import random, randrange, uniform
from operator import itemgetter, mul, sub, gt, lt, ge, le
from sys import hexversion, maxsize
from time import monotonic
from .recipes import (
_marker,
_zip_equal,
UnequalIterablesError,
consume,
flatten,
pairwise,
powerset,
take,
unique_everseen,
all_equal,
batched,
)
__all__ = [
'AbortThread',
'SequenceView',
'UnequalIterablesError',
'adjacent',
'all_unique',
'always_iterable',
'always_reversible',
'bucket',
'callback_iter',
'chunked',
'chunked_even',
'circular_shifts',
'collapse',
'combination_index',
'combination_with_replacement_index',
'consecutive_groups',
'constrained_batches',
'consumer',
'count_cycle',
'countable',
'difference',
'distinct_combinations',
'distinct_permutations',
'distribute',
'divide',
'duplicates_everseen',
'duplicates_justseen',
'exactly_n',
'filter_except',
'first',
'gray_product',
'groupby_transform',
'ichunked',
'iequals',
'ilen',
'interleave',
'interleave_evenly',
'interleave_longest',
'intersperse',
'is_sorted',
'islice_extended',
'iterate',
'last',
'locate',
'longest_common_prefix',
'lstrip',
'make_decorator',
'map_except',
'map_if',
'map_reduce',
'mark_ends',
'minmax',
'nth_or_last',
'nth_permutation',
'nth_product',
'nth_combination_with_replacement',
'numeric_range',
'one',
'only',
'outer_product',
'padded',
'partial_product',
'partitions',
'peekable',
'permutation_index',
'product_index',
'raise_',
'repeat_each',
'repeat_last',
'replace',
'rlocate',
'rstrip',
'run_length',
'sample',
'seekable',
'set_partitions',
'side_effect',
'sliced',
'sort_together',
'split_after',
'split_at',
'split_before',
'split_into',
'split_when',
'spy',
'stagger',
'strip',
'strictly_n',
'substrings',
'substrings_indexes',
'takewhile_inclusive',
'time_limited',
'unique_in_window',
'unique_to_each',
'unzip',
'value_chain',
'windowed',
'windowed_complete',
'with_iter',
'zip_broadcast',
'zip_equal',
'zip_offset',
]
def chunked(iterable, n, strict=False):
"""Break *iterable* into lists of length *n*:
>>> list(chunked([1, 2, 3, 4, 5, 6], 3))
[[1, 2, 3], [4, 5, 6]]
By the default, the last yielded list will have fewer than *n* elements
if the length of *iterable* is not divisible by *n*:
>>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
[[1, 2, 3], [4, 5, 6], [7, 8]]
To use a fill-in value instead, see the :func:`grouper` recipe.
If the length of *iterable* is not divisible by *n* and *strict* is
``True``, then ``ValueError`` will be raised before the last
list is yielded.
"""
iterator = iter(partial(take, n, iter(iterable)), [])
if strict:
if n is None:
raise ValueError('n must not be None when using strict mode.')
def ret():
for chunk in iterator:
if len(chunk) != n:
raise ValueError('iterable is not divisible by n.')
yield chunk
return iter(ret())
else:
return iterator
def first(iterable, default=_marker):
"""Return the first item of *iterable*, or *default* if *iterable* is
empty.
>>> first([0, 1, 2, 3])
0
>>> first([], 'some default')
'some default'
If *default* is not provided and there are no items in the iterable,
raise ``ValueError``.
:func:`first` is useful when you have a generator of expensive-to-retrieve
values and want any arbitrary one. It is marginally shorter than
``next(iter(iterable), default)``.
"""
try:
return next(iter(iterable))
except StopIteration as e:
if default is _marker:
raise ValueError(
'first() was called on an empty iterable, and no '
'default value was provided.'
) from e
return default
def last(iterable, default=_marker):
"""Return the last item of *iterable*, or *default* if *iterable* is
empty.
>>> last([0, 1, 2, 3])
3
>>> last([], 'some default')
'some default'
If *default* is not provided and there are no items in the iterable,
raise ``ValueError``.
"""
try:
if isinstance(iterable, Sequence):
return iterable[-1]
# Work around https://bugs.python.org/issue38525
elif hasattr(iterable, '__reversed__') and (hexversion != 0x030800F0):
return next(reversed(iterable))
else:
return deque(iterable, maxlen=1)[-1]
except (IndexError, TypeError, StopIteration):
if default is _marker:
raise ValueError(
'last() was called on an empty iterable, and no default was '
'provided.'
)
return default
def nth_or_last(iterable, n, default=_marker):
"""Return the nth or the last item of *iterable*,
or *default* if *iterable* is empty.
>>> nth_or_last([0, 1, 2, 3], 2)
2
>>> nth_or_last([0, 1], 2)
1
>>> nth_or_last([], 0, 'some default')
'some default'
If *default* is not provided and there are no items in the iterable,
raise ``ValueError``.
"""
return last(islice(iterable, n + 1), default=default)
class peekable:
"""Wrap an iterator to allow lookahead and prepending elements.
Call :meth:`peek` on the result to get the value that will be returned
by :func:`next`. This won't advance the iterator:
>>> p = peekable(['a', 'b'])
>>> p.peek()
'a'
>>> next(p)
'a'
Pass :meth:`peek` a default value to return that instead of raising
``StopIteration`` when the iterator is exhausted.
>>> p = peekable([])
>>> p.peek('hi')
'hi'
peekables also offer a :meth:`prepend` method, which "inserts" items
at the head of the iterable:
>>> p = peekable([1, 2, 3])
>>> p.prepend(10, 11, 12)
>>> next(p)
10
>>> p.peek()
11
>>> list(p)
[11, 12, 1, 2, 3]
peekables can be indexed. Index 0 is the item that will be returned by
:func:`next`, index 1 is the item after that, and so on:
The values up to the given index will be cached.
>>> p = peekable(['a', 'b', 'c', 'd'])
>>> p[0]
'a'
>>> p[1]
'b'
>>> next(p)
'a'
Negative indexes are supported, but be aware that they will cache the
remaining items in the source iterator, which may require significant
storage.
To check whether a peekable is exhausted, check its truth value:
>>> p = peekable(['a', 'b'])
>>> if p: # peekable has items
... list(p)
['a', 'b']
>>> if not p: # peekable is exhausted
... list(p)
[]
"""
def __init__(self, iterable):
self._it = iter(iterable)
self._cache = deque()
def __iter__(self):
return self
def __bool__(self):
try:
self.peek()
except StopIteration:
return False
return True
def peek(self, default=_marker):
"""Return the item that will be next returned from ``next()``.
Return ``default`` if there are no items left. If ``default`` is not
provided, raise ``StopIteration``.
"""
if not self._cache:
try:
self._cache.append(next(self._it))
except StopIteration:
if default is _marker:
raise
return default
return self._cache[0]
def prepend(self, *items):
"""Stack up items to be the next ones returned from ``next()`` or
``self.peek()``. The items will be returned in
first in, first out order::
>>> p = peekable([1, 2, 3])
>>> p.prepend(10, 11, 12)
>>> next(p)
10
>>> list(p)
[11, 12, 1, 2, 3]
It is possible, by prepending items, to "resurrect" a peekable that
previously raised ``StopIteration``.
>>> p = peekable([])
>>> next(p)
Traceback (most recent call last):
...
StopIteration
>>> p.prepend(1)
>>> next(p)
1
>>> next(p)
Traceback (most recent call last):
...
StopIteration
"""
self._cache.extendleft(reversed(items))
def __next__(self):
if self._cache:
return self._cache.popleft()
return next(self._it)
def _get_slice(self, index):
# Normalize the slice's arguments
step = 1 if (index.step is None) else index.step
if step > 0:
start = 0 if (index.start is None) else index.start
stop = maxsize if (index.stop is None) else index.stop
elif step < 0:
start = -1 if (index.start is None) else index.start
stop = (-maxsize - 1) if (index.stop is None) else index.stop
else:
raise ValueError('slice step cannot be zero')
# If either the start or stop index is negative, we'll need to cache
# the rest of the iterable in order to slice from the right side.
if (start < 0) or (stop < 0):
self._cache.extend(self._it)
# Otherwise we'll need to find the rightmost index and cache to that
# point.
else:
n = min(max(start, stop) + 1, maxsize)
cache_len = len(self._cache)
if n >= cache_len:
self._cache.extend(islice(self._it, n - cache_len))
return list(self._cache)[index]
def __getitem__(self, index):
if isinstance(index, slice):
return self._get_slice(index)
cache_len = len(self._cache)
if index < 0:
self._cache.extend(self._it)
elif index >= cache_len:
self._cache.extend(islice(self._it, index + 1 - cache_len))
return self._cache[index]
def consumer(func):
"""Decorator that automatically advances a PEP-342-style "reverse iterator"
to its first yield point so you don't have to call ``next()`` on it
manually.
>>> @consumer
... def tally():
... i = 0
... while True:
... print('Thing number %s is %s.' % (i, (yield)))
... i += 1
...
>>> t = tally()
>>> t.send('red')
Thing number 0 is red.
>>> t.send('fish')
Thing number 1 is fish.
Without the decorator, you would have to call ``next(t)`` before
``t.send()`` could be used.
"""
@wraps(func)
def wrapper(*args, **kwargs):
gen = func(*args, **kwargs)
next(gen)
return gen
return wrapper
def ilen(iterable):
"""Return the number of items in *iterable*.
>>> ilen(x for x in range(1000000) if x % 3 == 0)
333334
This consumes the iterable, so handle with care.
"""
# This approach was selected because benchmarks showed it's likely the
# fastest of the known implementations at the time of writing.
# See GitHub tracker: #236, #230.
counter = count()
deque(zip(iterable, counter), maxlen=0)
return next(counter)
def iterate(func, start):
"""Return ``start``, ``func(start)``, ``func(func(start))``, ...
>>> from itertools import islice
>>> list(islice(iterate(lambda x: 2*x, 1), 10))
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
"""
while True:
yield start
try:
start = func(start)
except StopIteration:
break
def with_iter(context_manager):
"""Wrap an iterable in a ``with`` statement, so it closes once exhausted.
For example, this will close the file when the iterator is exhausted::
upper_lines = (line.upper() for line in with_iter(open('foo')))
Any context manager which returns an iterable is a candidate for
``with_iter``.
"""
with context_manager as iterable:
yield from iterable
def one(iterable, too_short=None, too_long=None):
"""Return the first item from *iterable*, which is expected to contain only
that item. Raise an exception if *iterable* is empty or has more than one
item.
:func:`one` is useful for ensuring that an iterable contains only one item.
For example, it can be used to retrieve the result of a database query
that is expected to return a single row.
If *iterable* is empty, ``ValueError`` will be raised. You may specify a
different exception with the *too_short* keyword:
>>> it = []
>>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: too many items in iterable (expected 1)'
>>> too_short = IndexError('too few items')
>>> one(it, too_short=too_short) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
IndexError: too few items
Similarly, if *iterable* contains more than one item, ``ValueError`` will
be raised. You may specify a different exception with the *too_long*
keyword:
>>> it = ['too', 'many']
>>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: Expected exactly one item in iterable, but got 'too',
'many', and perhaps more.
>>> too_long = RuntimeError
>>> one(it, too_long=too_long) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
RuntimeError
Note that :func:`one` attempts to advance *iterable* twice to ensure there
is only one item. See :func:`spy` or :func:`peekable` to check iterable
contents less destructively.
"""
it = iter(iterable)
try:
first_value = next(it)
except StopIteration as e:
raise (
too_short or ValueError('too few items in iterable (expected 1)')
) from e
try:
second_value = next(it)
except StopIteration:
pass
else:
msg = (
'Expected exactly one item in iterable, but got {!r}, {!r}, '
'and perhaps more.'.format(first_value, second_value)
)
raise too_long or ValueError(msg)
return first_value
def raise_(exception, *args):
raise exception(*args)
def strictly_n(iterable, n, too_short=None, too_long=None):
"""Validate that *iterable* has exactly *n* items and return them if
it does. If it has fewer than *n* items, call function *too_short*
with those items. If it has more than *n* items, call function
*too_long* with the first ``n + 1`` items.
>>> iterable = ['a', 'b', 'c', 'd']
>>> n = 4
>>> list(strictly_n(iterable, n))
['a', 'b', 'c', 'd']
By default, *too_short* and *too_long* are functions that raise
``ValueError``.
>>> list(strictly_n('ab', 3)) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: too few items in iterable (got 2)
>>> list(strictly_n('abc', 2)) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: too many items in iterable (got at least 3)
You can instead supply functions that do something else.
*too_short* will be called with the number of items in *iterable*.
*too_long* will be called with `n + 1`.
>>> def too_short(item_count):
... raise RuntimeError
>>> it = strictly_n('abcd', 6, too_short=too_short)
>>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
RuntimeError
>>> def too_long(item_count):
... print('The boss is going to hear about this')
>>> it = strictly_n('abcdef', 4, too_long=too_long)
>>> list(it)
The boss is going to hear about this
['a', 'b', 'c', 'd']
"""
if too_short is None:
too_short = lambda item_count: raise_(
ValueError,
'Too few items in iterable (got {})'.format(item_count),
)
if too_long is None:
too_long = lambda item_count: raise_(
ValueError,
'Too many items in iterable (got at least {})'.format(item_count),
)
it = iter(iterable)
for i in range(n):
try:
item = next(it)
except StopIteration:
too_short(i)
return
else:
yield item
try:
next(it)
except StopIteration:
pass
else:
too_long(n + 1)
def distinct_permutations(iterable, r=None):
"""Yield successive distinct permutations of the elements in *iterable*.
>>> sorted(distinct_permutations([1, 0, 1]))
[(0, 1, 1), (1, 0, 1), (1, 1, 0)]
Equivalent to ``set(permutations(iterable))``, except duplicates are not
generated and thrown away. For larger input sequences this is much more
efficient.
Duplicate permutations arise when there are duplicated elements in the
input iterable. The number of items returned is
`n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of
items input, and each `x_i` is the count of a distinct item in the input
sequence.
If *r* is given, only the *r*-length permutations are yielded.
>>> sorted(distinct_permutations([1, 0, 1], r=2))
[(0, 1), (1, 0), (1, 1)]
>>> sorted(distinct_permutations(range(3), r=2))
[(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
"""
# Algorithm: https://w.wiki/Qai
def _full(A):
while True:
# Yield the permutation we have
yield tuple(A)
# Find the largest index i such that A[i] < A[i + 1]
for i in range(size - 2, -1, -1):
if A[i] < A[i + 1]:
break
# If no such index exists, this permutation is the last one
else:
return
# Find the largest index j greater than j such that A[i] < A[j]
for j in range(size - 1, i, -1):
if A[i] < A[j]:
break
# Swap the value of A[i] with that of A[j], then reverse the
# sequence from A[i + 1] to form the new permutation
A[i], A[j] = A[j], A[i]
A[i + 1 :] = A[: i - size : -1] # A[i + 1:][::-1]
# Algorithm: modified from the above
def _partial(A, r):
# Split A into the first r items and the last r items
head, tail = A[:r], A[r:]
right_head_indexes = range(r - 1, -1, -1)
left_tail_indexes = range(len(tail))
while True:
# Yield the permutation we have
yield tuple(head)
# Starting from the right, find the first index of the head with
# value smaller than the maximum value of the tail - call it i.
pivot = tail[-1]
for i in right_head_indexes:
if head[i] < pivot:
break
pivot = head[i]
else:
return
# Starting from the left, find the first value of the tail
# with a value greater than head[i] and swap.
for j in left_tail_indexes:
if tail[j] > head[i]:
head[i], tail[j] = tail[j], head[i]
break
# If we didn't find one, start from the right and find the first
# index of the head with a value greater than head[i] and swap.
else:
for j in right_head_indexes:
if head[j] > head[i]:
head[i], head[j] = head[j], head[i]
break
# Reverse head[i + 1:] and swap it with tail[:r - (i + 1)]
tail += head[: i - r : -1] # head[i + 1:][::-1]
i += 1
head[i:], tail[:] = tail[: r - i], tail[r - i :]
items = sorted(iterable)
size = len(items)
if r is None:
r = size
if 0 < r <= size:
return _full(items) if (r == size) else _partial(items, r)
return iter(() if r else ((),))
def intersperse(e, iterable, n=1):
"""Intersperse filler element *e* among the items in *iterable*, leaving
*n* items between each filler element.
>>> list(intersperse('!', [1, 2, 3, 4, 5]))
[1, '!', 2, '!', 3, '!', 4, '!', 5]
>>> list(intersperse(None, [1, 2, 3, 4, 5], n=2))
[1, 2, None, 3, 4, None, 5]
"""
if n == 0:
raise ValueError('n must be > 0')
elif n == 1:
# interleave(repeat(e), iterable) -> e, x_0, e, x_1, e, x_2...
# islice(..., 1, None) -> x_0, e, x_1, e, x_2...
return islice(interleave(repeat(e), iterable), 1, None)
else:
# interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]...
# islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]...
# flatten(...) -> x_0, x_1, e, x_2, x_3...
filler = repeat([e])
chunks = chunked(iterable, n)
return flatten(islice(interleave(filler, chunks), 1, None))
def unique_to_each(*iterables):
"""Return the elements from each of the input iterables that aren't in the
other input iterables.
For example, suppose you have a set of packages, each with a set of
dependencies::
{'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}
If you remove one package, which dependencies can also be removed?
If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not
associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for
``pkg_2``, and ``D`` is only needed for ``pkg_3``::
>>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
[['A'], ['C'], ['D']]
If there are duplicates in one input iterable that aren't in the others
they will be duplicated in the output. Input order is preserved::
>>> unique_to_each("mississippi", "missouri")
[['p', 'p'], ['o', 'u', 'r']]
It is assumed that the elements of each iterable are hashable.
"""
pool = [list(it) for it in iterables]
counts = Counter(chain.from_iterable(map(set, pool)))
uniques = {element for element in counts if counts[element] == 1}
return [list(filter(uniques.__contains__, it)) for it in pool]
def windowed(seq, n, fillvalue=None, step=1):
"""Return a sliding window of width *n* over the given iterable.
>>> all_windows = windowed([1, 2, 3, 4, 5], 3)
>>> list(all_windows)
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
When the window is larger than the iterable, *fillvalue* is used in place
of missing values:
>>> list(windowed([1, 2, 3], 4))
[(1, 2, 3, None)]
Each window will advance in increments of *step*:
>>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
[(1, 2, 3), (3, 4, 5), (5, 6, '!')]
To slide into the iterable's items, use :func:`chain` to add filler items
to the left:
>>> iterable = [1, 2, 3, 4]
>>> n = 3
>>> padding = [None] * (n - 1)
>>> list(windowed(chain(padding, iterable), 3))
[(None, None, 1), (None, 1, 2), (1, 2, 3), (2, 3, 4)]
"""
if n < 0:
raise ValueError('n must be >= 0')
if n == 0:
yield tuple()
return
if step < 1:
raise ValueError('step must be >= 1')
window = deque(maxlen=n)
i = n
for _ in map(window.append, seq):
i -= 1
if not i:
i = step
yield tuple(window)
size = len(window)
if size == 0:
return
elif size < n:
yield tuple(chain(window, repeat(fillvalue, n - size)))
elif 0 < i < min(step, n):
window += (fillvalue,) * i
yield tuple(window)
def substrings(iterable):
"""Yield all of the substrings of *iterable*.
>>> [''.join(s) for s in substrings('more')]
['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more']
Note that non-string iterables can also be subdivided.
>>> list(substrings([0, 1, 2]))
[(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]
"""
# The length-1 substrings
seq = []
for item in iter(iterable):
seq.append(item)
yield (item,)
seq = tuple(seq)
item_count = len(seq)
# And the rest
for n in range(2, item_count + 1):
for i in range(item_count - n + 1):
yield seq[i : i + n]
def substrings_indexes(seq, reverse=False):
"""Yield all substrings and their positions in *seq*
The items yielded will be a tuple of the form ``(substr, i, j)``, where
``substr == seq[i:j]``.
This function only works for iterables that support slicing, such as
``str`` objects.
>>> for item in substrings_indexes('more'):
... print(item)
('m', 0, 1)
('o', 1, 2)
('r', 2, 3)
('e', 3, 4)
('mo', 0, 2)
('or', 1, 3)
('re', 2, 4)
('mor', 0, 3)
('ore', 1, 4)
('more', 0, 4)
Set *reverse* to ``True`` to yield the same items in the opposite order.
"""
r = range(1, len(seq) + 1)
if reverse:
r = reversed(r)
return (
(seq[i : i + L], i, i + L) for L in r for i in range(len(seq) - L + 1)
)
class bucket:
"""Wrap *iterable* and return an object that buckets it iterable into
child iterables based on a *key* function.
>>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
>>> s = bucket(iterable, key=lambda x: x[0]) # Bucket by 1st character
>>> sorted(list(s)) # Get the keys
['a', 'b', 'c']
>>> a_iterable = s['a']
>>> next(a_iterable)
'a1'
>>> next(a_iterable)
'a2'
>>> list(s['b'])
['b1', 'b2', 'b3']
The original iterable will be advanced and its items will be cached until
they are used by the child iterables. This may require significant storage.
By default, attempting to select a bucket to which no items belong will
exhaust the iterable and cache all values.
If you specify a *validator* function, selected buckets will instead be
checked against it.
>>> from itertools import count
>>> it = count(1, 2) # Infinite sequence of odd numbers
>>> key = lambda x: x % 10 # Bucket by last digit
>>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only
>>> s = bucket(it, key=key, validator=validator)
>>> 2 in s
False
>>> list(s[2])
[]
"""
def __init__(self, iterable, key, validator=None):
self._it = iter(iterable)
self._key = key
self._cache = defaultdict(deque)
self._validator = validator or (lambda x: True)
def __contains__(self, value):
if not self._validator(value):
return False
try:
item = next(self[value])
except StopIteration:
return False
else:
self._cache[value].appendleft(item)
return True
def _get_values(self, value):
"""
Helper to yield items from the parent iterator that match *value*.
Items that don't match are stored in the local cache as they
are encountered.
"""
while True:
# If we've cached some items that match the target value, emit
# the first one and evict it from the cache.
if self._cache[value]:
yield self._cache[value].popleft()
# Otherwise we need to advance the parent iterator to search for
# a matching item, caching the rest.
else:
while True:
try:
item = next(self._it)
except StopIteration:
return
item_value = self._key(item)
if item_value == value:
yield item
break
elif self._validator(item_value):
self._cache[item_value].append(item)
def __iter__(self):
for item in self._it:
item_value = self._key(item)
if self._validator(item_value):
self._cache[item_value].append(item)
yield from self._cache.keys()
def __getitem__(self, value):
if not self._validator(value):
return iter(())
return self._get_values(value)
def spy(iterable, n=1):
"""Return a 2-tuple with a list containing the first *n* elements of
*iterable*, and an iterator with the same items as *iterable*.
This allows you to "look ahead" at the items in the iterable without
advancing it.
There is one item in the list by default:
>>> iterable = 'abcdefg'
>>> head, iterable = spy(iterable)
>>> head
['a']
>>> list(iterable)
['a', 'b', 'c', 'd', 'e', 'f', 'g']
You may use unpacking to retrieve items instead of lists:
>>> (head,), iterable = spy('abcdefg')
>>> head
'a'
>>> (first, second), iterable = spy('abcdefg', 2)
>>> first
'a'
>>> second
'b'
The number of items requested can be larger than the number of items in
the iterable:
>>> iterable = [1, 2, 3, 4, 5]
>>> head, iterable = spy(iterable, 10)
>>> head
[1, 2, 3, 4, 5]
>>> list(iterable)
[1, 2, 3, 4, 5]
"""
it = iter(iterable)
head = take(n, it)
return head.copy(), chain(head, it)
def interleave(*iterables):
"""Return a new iterable yielding from each iterable in turn,
until the shortest is exhausted.
>>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
[1, 4, 6, 2, 5, 7]
For a version that doesn't terminate after the shortest iterable is
exhausted, see :func:`interleave_longest`.
"""
return chain.from_iterable(zip(*iterables))
def interleave_longest(*iterables):
"""Return a new iterable yielding from each iterable in turn,
skipping any that are exhausted.
>>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
[1, 4, 6, 2, 5, 7, 3, 8]
This function produces the same output as :func:`roundrobin`, but may
perform better for some inputs (in particular when the number of iterables
is large).
"""
i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker))
return (x for x in i if x is not _marker)
def interleave_evenly(iterables, lengths=None):
"""
Interleave multiple iterables so that their elements are evenly distributed
throughout the output sequence.
>>> iterables = [1, 2, 3, 4, 5], ['a', 'b']
>>> list(interleave_evenly(iterables))
[1, 2, 'a', 3, 4, 'b', 5]
>>> iterables = [[1, 2, 3], [4, 5], [6, 7, 8]]
>>> list(interleave_evenly(iterables))
[1, 6, 4, 2, 7, 3, 8, 5]
This function requires iterables of known length. Iterables without
``__len__()`` can be used by manually specifying lengths with *lengths*:
>>> from itertools import combinations, repeat
>>> iterables = [combinations(range(4), 2), ['a', 'b', 'c']]
>>> lengths = [4 * (4 - 1) // 2, 3]
>>> list(interleave_evenly(iterables, lengths=lengths))
[(0, 1), (0, 2), 'a', (0, 3), (1, 2), 'b', (1, 3), (2, 3), 'c']
Based on Bresenham's algorithm.
"""
if lengths is None:
try:
lengths = [len(it) for it in iterables]
except TypeError:
raise ValueError(
'Iterable lengths could not be determined automatically. '
'Specify them with the lengths keyword.'
)
elif len(iterables) != len(lengths):
raise ValueError('Mismatching number of iterables and lengths.')
dims = len(lengths)
# sort iterables by length, descending
lengths_permute = sorted(
range(dims), key=lambda i: lengths[i], reverse=True
)
lengths_desc = [lengths[i] for i in lengths_permute]
iters_desc = [iter(iterables[i]) for i in lengths_permute]
# the longest iterable is the primary one (Bresenham: the longest
# distance along an axis)
delta_primary, deltas_secondary = lengths_desc[0], lengths_desc[1:]
iter_primary, iters_secondary = iters_desc[0], iters_desc[1:]
errors = [delta_primary // dims] * len(deltas_secondary)
to_yield = sum(lengths)
while to_yield:
yield next(iter_primary)
to_yield -= 1
# update errors for each secondary iterable
errors = [e - delta for e, delta in zip(errors, deltas_secondary)]
# those iterables for which the error is negative are yielded
# ("diagonal step" in Bresenham)
for i, e in enumerate(errors):
if e < 0:
yield next(iters_secondary[i])
to_yield -= 1
errors[i] += delta_primary
def collapse(iterable, base_type=None, levels=None):
"""Flatten an iterable with multiple levels of nesting (e.g., a list of
lists of tuples) into non-iterable types.
>>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
>>> list(collapse(iterable))
[1, 2, 3, 4, 5, 6]
Binary and text strings are not considered iterable and
will not be collapsed.
To avoid collapsing other types, specify *base_type*:
>>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
>>> list(collapse(iterable, base_type=tuple))
['ab', ('cd', 'ef'), 'gh', 'ij']
Specify *levels* to stop flattening after a certain level:
>>> iterable = [('a', ['b']), ('c', ['d'])]
>>> list(collapse(iterable)) # Fully flattened
['a', 'b', 'c', 'd']
>>> list(collapse(iterable, levels=1)) # Only one level flattened
['a', ['b'], 'c', ['d']]
"""
def walk(node, level):
if (
((levels is not None) and (level > levels))
or isinstance(node, (str, bytes))
or ((base_type is not None) and isinstance(node, base_type))
):
yield node
return
try:
tree = iter(node)
except TypeError:
yield node
return
else:
for child in tree:
yield from walk(child, level + 1)
yield from walk(iterable, 0)
def side_effect(func, iterable, chunk_size=None, before=None, after=None):
"""Invoke *func* on each item in *iterable* (or on each *chunk_size* group
of items) before yielding the item.
`func` must be a function that takes a single argument. Its return value
will be discarded.
*before* and *after* are optional functions that take no arguments. They
will be executed before iteration starts and after it ends, respectively.
`side_effect` can be used for logging, updating progress bars, or anything
that is not functionally "pure."
Emitting a status message:
>>> from more_itertools import consume
>>> func = lambda item: print('Received {}'.format(item))
>>> consume(side_effect(func, range(2)))
Received 0
Received 1
Operating on chunks of items:
>>> pair_sums = []
>>> func = lambda chunk: pair_sums.append(sum(chunk))
>>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
[0, 1, 2, 3, 4, 5]
>>> list(pair_sums)
[1, 5, 9]
Writing to a file-like object:
>>> from io import StringIO
>>> from more_itertools import consume
>>> f = StringIO()
>>> func = lambda x: print(x, file=f)
>>> before = lambda: print(u'HEADER', file=f)
>>> after = f.close
>>> it = [u'a', u'b', u'c']
>>> consume(side_effect(func, it, before=before, after=after))
>>> f.closed
True
"""
try:
if before is not None:
before()
if chunk_size is None:
for item in iterable:
func(item)
yield item
else:
for chunk in chunked(iterable, chunk_size):
func(chunk)
yield from chunk
finally:
if after is not None:
after()
def sliced(seq, n, strict=False):
"""Yield slices of length *n* from the sequence *seq*.
>>> list(sliced((1, 2, 3, 4, 5, 6), 3))
[(1, 2, 3), (4, 5, 6)]
By the default, the last yielded slice will have fewer than *n* elements
if the length of *seq* is not divisible by *n*:
>>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
[(1, 2, 3), (4, 5, 6), (7, 8)]
If the length of *seq* is not divisible by *n* and *strict* is
``True``, then ``ValueError`` will be raised before the last
slice is yielded.
This function will only work for iterables that support slicing.
For non-sliceable iterables, see :func:`chunked`.
"""
iterator = takewhile(len, (seq[i : i + n] for i in count(0, n)))
if strict:
def ret():
for _slice in iterator:
if len(_slice) != n:
raise ValueError("seq is not divisible by n.")
yield _slice
return iter(ret())
else:
return iterator
def split_at(iterable, pred, maxsplit=-1, keep_separator=False):
"""Yield lists of items from *iterable*, where each list is delimited by
an item where callable *pred* returns ``True``.
>>> list(split_at('abcdcba', lambda x: x == 'b'))
[['a'], ['c', 'd', 'c'], ['a']]
>>> list(split_at(range(10), lambda n: n % 2 == 1))
[[0], [2], [4], [6], [8], []]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_at(range(10), lambda n: n % 2 == 1, maxsplit=2))
[[0], [2], [4, 5, 6, 7, 8, 9]]
By default, the delimiting items are not included in the output.
To include them, set *keep_separator* to ``True``.
>>> list(split_at('abcdcba', lambda x: x == 'b', keep_separator=True))
[['a'], ['b'], ['c', 'd', 'c'], ['b'], ['a']]
"""
if maxsplit == 0:
yield list(iterable)
return
buf = []
it = iter(iterable)
for item in it:
if pred(item):
yield buf
if keep_separator:
yield [item]
if maxsplit == 1:
yield list(it)
return
buf = []
maxsplit -= 1
else:
buf.append(item)
yield buf
def split_before(iterable, pred, maxsplit=-1):
"""Yield lists of items from *iterable*, where each list ends just before
an item for which callable *pred* returns ``True``:
>>> list(split_before('OneTwo', lambda s: s.isupper()))
[['O', 'n', 'e'], ['T', 'w', 'o']]
>>> list(split_before(range(10), lambda n: n % 3 == 0))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_before(range(10), lambda n: n % 3 == 0, maxsplit=2))
[[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]
"""
if maxsplit == 0:
yield list(iterable)
return
buf = []
it = iter(iterable)
for item in it:
if pred(item) and buf:
yield buf
if maxsplit == 1:
yield [item] + list(it)
return
buf = []
maxsplit -= 1
buf.append(item)
if buf:
yield buf
def split_after(iterable, pred, maxsplit=-1):
"""Yield lists of items from *iterable*, where each list ends with an
item where callable *pred* returns ``True``:
>>> list(split_after('one1two2', lambda s: s.isdigit()))
[['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]
>>> list(split_after(range(10), lambda n: n % 3 == 0))
[[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_after(range(10), lambda n: n % 3 == 0, maxsplit=2))
[[0], [1, 2, 3], [4, 5, 6, 7, 8, 9]]
"""
if maxsplit == 0:
yield list(iterable)
return
buf = []
it = iter(iterable)
for item in it:
buf.append(item)
if pred(item) and buf:
yield buf
if maxsplit == 1:
buf = list(it)
if buf:
yield buf
return
buf = []
maxsplit -= 1
if buf:
yield buf
def split_when(iterable, pred, maxsplit=-1):
"""Split *iterable* into pieces based on the output of *pred*.
*pred* should be a function that takes successive pairs of items and
returns ``True`` if the iterable should be split in between them.
For example, to find runs of increasing numbers, split the iterable when
element ``i`` is larger than element ``i + 1``:
>>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2], lambda x, y: x > y))
[[1, 2, 3, 3], [2, 5], [2, 4], [2]]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2],
... lambda x, y: x > y, maxsplit=2))
[[1, 2, 3, 3], [2, 5], [2, 4, 2]]
"""
if maxsplit == 0:
yield list(iterable)
return
it = iter(iterable)
try:
cur_item = next(it)
except StopIteration:
return
buf = [cur_item]
for next_item in it:
if pred(cur_item, next_item):
yield buf
if maxsplit == 1:
yield [next_item] + list(it)
return
buf = []
maxsplit -= 1
buf.append(next_item)
cur_item = next_item
yield buf
def split_into(iterable, sizes):
"""Yield a list of sequential items from *iterable* of length 'n' for each
integer 'n' in *sizes*.
>>> list(split_into([1,2,3,4,5,6], [1,2,3]))
[[1], [2, 3], [4, 5, 6]]
If the sum of *sizes* is smaller than the length of *iterable*, then the
remaining items of *iterable* will not be returned.
>>> list(split_into([1,2,3,4,5,6], [2,3]))
[[1, 2], [3, 4, 5]]
If the sum of *sizes* is larger than the length of *iterable*, fewer items
will be returned in the iteration that overruns *iterable* and further
lists will be empty:
>>> list(split_into([1,2,3,4], [1,2,3,4]))
[[1], [2, 3], [4], []]
When a ``None`` object is encountered in *sizes*, the returned list will
contain items up to the end of *iterable* the same way that itertools.slice
does:
>>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None]))
[[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]]
:func:`split_into` can be useful for grouping a series of items where the
sizes of the groups are not uniform. An example would be where in a row
from a table, multiple columns represent elements of the same feature
(e.g. a point represented by x,y,z) but, the format is not the same for
all columns.
"""
# convert the iterable argument into an iterator so its contents can
# be consumed by islice in case it is a generator
it = iter(iterable)
for size in sizes:
if size is None:
yield list(it)
return
else:
yield list(islice(it, size))
def padded(iterable, fillvalue=None, n=None, next_multiple=False):
"""Yield the elements from *iterable*, followed by *fillvalue*, such that
at least *n* items are emitted.
>>> list(padded([1, 2, 3], '?', 5))
[1, 2, 3, '?', '?']
If *next_multiple* is ``True``, *fillvalue* will be emitted until the
number of items emitted is a multiple of *n*::
>>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
[1, 2, 3, 4, None, None]
If *n* is ``None``, *fillvalue* will be emitted indefinitely.
"""
it = iter(iterable)
if n is None:
yield from chain(it, repeat(fillvalue))
elif n < 1:
raise ValueError('n must be at least 1')
else:
item_count = 0
for item in it:
yield item
item_count += 1
remaining = (n - item_count) % n if next_multiple else n - item_count
for _ in range(remaining):
yield fillvalue
def repeat_each(iterable, n=2):
"""Repeat each element in *iterable* *n* times.
>>> list(repeat_each('ABC', 3))
['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']
"""
return chain.from_iterable(map(repeat, iterable, repeat(n)))
def repeat_last(iterable, default=None):
"""After the *iterable* is exhausted, keep yielding its last element.
>>> list(islice(repeat_last(range(3)), 5))
[0, 1, 2, 2, 2]
If the iterable is empty, yield *default* forever::
>>> list(islice(repeat_last(range(0), 42), 5))
[42, 42, 42, 42, 42]
"""
item = _marker
for item in iterable:
yield item
final = default if item is _marker else item
yield from repeat(final)
def distribute(n, iterable):
"""Distribute the items from *iterable* among *n* smaller iterables.
>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
>>> list(group_1)
[1, 3, 5]
>>> list(group_2)
[2, 4, 6]
If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical:
>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
>>> [list(c) for c in children]
[[1, 4, 7], [2, 5], [3, 6]]
If the length of *iterable* is smaller than *n*, then the last returned
iterables will be empty:
>>> children = distribute(5, [1, 2, 3])
>>> [list(c) for c in children]
[[1], [2], [3], [], []]
This function uses :func:`itertools.tee` and may require significant
storage. If you need the order items in the smaller iterables to match the
original iterable, see :func:`divide`.
"""
if n < 1:
raise ValueError('n must be at least 1')
children = tee(iterable, n)
return [islice(it, index, None, n) for index, it in enumerate(children)]
def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None):
"""Yield tuples whose elements are offset from *iterable*.
The amount by which the `i`-th item in each tuple is offset is given by
the `i`-th item in *offsets*.
>>> list(stagger([0, 1, 2, 3]))
[(None, 0, 1), (0, 1, 2), (1, 2, 3)]
>>> list(stagger(range(8), offsets=(0, 2, 4)))
[(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]
By default, the sequence will end when the final element of a tuple is the
last item in the iterable. To continue until the first element of a tuple
is the last item in the iterable, set *longest* to ``True``::
>>> list(stagger([0, 1, 2, 3], longest=True))
[(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]
By default, ``None`` will be used to replace offsets beyond the end of the
sequence. Specify *fillvalue* to use some other value.
"""
children = tee(iterable, len(offsets))
return zip_offset(
*children, offsets=offsets, longest=longest, fillvalue=fillvalue
)
def zip_equal(*iterables):
"""``zip`` the input *iterables* together, but raise
``UnequalIterablesError`` if they aren't all the same length.
>>> it_1 = range(3)
>>> it_2 = iter('abc')
>>> list(zip_equal(it_1, it_2))
[(0, 'a'), (1, 'b'), (2, 'c')]
>>> it_1 = range(3)
>>> it_2 = iter('abcd')
>>> list(zip_equal(it_1, it_2)) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
more_itertools.more.UnequalIterablesError: Iterables have different
lengths
"""
if hexversion >= 0x30A00A6:
warnings.warn(
(
'zip_equal will be removed in a future version of '
'more-itertools. Use the builtin zip function with '
'strict=True instead.'
),
DeprecationWarning,
)
return _zip_equal(*iterables)
def zip_offset(*iterables, offsets, longest=False, fillvalue=None):
"""``zip`` the input *iterables* together, but offset the `i`-th iterable
by the `i`-th item in *offsets*.
>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]
This can be used as a lightweight alternative to SciPy or pandas to analyze
data sets in which some series have a lead or lag relationship.
By default, the sequence will end when the shortest iterable is exhausted.
To continue until the longest iterable is exhausted, set *longest* to
``True``.
>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]
By default, ``None`` will be used to replace offsets beyond the end of the
sequence. Specify *fillvalue* to use some other value.
"""
if len(iterables) != len(offsets):
raise ValueError("Number of iterables and offsets didn't match")
staggered = []
for it, n in zip(iterables, offsets):
if n < 0:
staggered.append(chain(repeat(fillvalue, -n), it))
elif n > 0:
staggered.append(islice(it, n, None))
else:
staggered.append(it)
if longest:
return zip_longest(*staggered, fillvalue=fillvalue)
return zip(*staggered)
def sort_together(iterables, key_list=(0,), key=None, reverse=False):
"""Return the input iterables sorted together, with *key_list* as the
priority for sorting. All iterables are trimmed to the length of the
shortest one.
This can be used like the sorting function in a spreadsheet. If each
iterable represents a column of data, the key list determines which
columns are used for sorting.
By default, all iterables are sorted using the ``0``-th iterable::
>>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
>>> sort_together(iterables)
[(1, 2, 3, 4), ('d', 'c', 'b', 'a')]
Set a different key list to sort according to another iterable.
Specifying multiple keys dictates how ties are broken::
>>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
>>> sort_together(iterables, key_list=(1, 2))
[(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]
To sort by a function of the elements of the iterable, pass a *key*
function. Its arguments are the elements of the iterables corresponding to
the key list::
>>> names = ('a', 'b', 'c')
>>> lengths = (1, 2, 3)
>>> widths = (5, 2, 1)
>>> def area(length, width):
... return length * width
>>> sort_together([names, lengths, widths], key_list=(1, 2), key=area)
[('c', 'b', 'a'), (3, 2, 1), (1, 2, 5)]
Set *reverse* to ``True`` to sort in descending order.
>>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
[(3, 2, 1), ('a', 'b', 'c')]
"""
if key is None:
# if there is no key function, the key argument to sorted is an
# itemgetter
key_argument = itemgetter(*key_list)
else:
# if there is a key function, call it with the items at the offsets
# specified by the key function as arguments
key_list = list(key_list)
if len(key_list) == 1:
# if key_list contains a single item, pass the item at that offset
# as the only argument to the key function
key_offset = key_list[0]
key_argument = lambda zipped_items: key(zipped_items[key_offset])
else:
# if key_list contains multiple items, use itemgetter to return a
# tuple of items, which we pass as *args to the key function
get_key_items = itemgetter(*key_list)
key_argument = lambda zipped_items: key(
*get_key_items(zipped_items)
)
return list(
zip(*sorted(zip(*iterables), key=key_argument, reverse=reverse))
)
def unzip(iterable):
"""The inverse of :func:`zip`, this function disaggregates the elements
of the zipped *iterable*.
The ``i``-th iterable contains the ``i``-th element from each element
of the zipped iterable. The first element is used to determine the
length of the remaining elements.
>>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> letters, numbers = unzip(iterable)
>>> list(letters)
['a', 'b', 'c', 'd']
>>> list(numbers)
[1, 2, 3, 4]
This is similar to using ``zip(*iterable)``, but it avoids reading
*iterable* into memory. Note, however, that this function uses
:func:`itertools.tee` and thus may require significant storage.
"""
head, iterable = spy(iter(iterable))
if not head:
# empty iterable, e.g. zip([], [], [])
return ()
# spy returns a one-length iterable as head
head = head[0]
iterables = tee(iterable, len(head))
def itemgetter(i):
def getter(obj):
try:
return obj[i]
except IndexError:
# basically if we have an iterable like
# iter([(1, 2, 3), (4, 5), (6,)])
# the second unzipped iterable would fail at the third tuple
# since it would try to access tup[1]
# same with the third unzipped iterable and the second tuple
# to support these "improperly zipped" iterables,
# we create a custom itemgetter
# which just stops the unzipped iterables
# at first length mismatch
raise StopIteration
return getter
return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables))
def divide(n, iterable):
"""Divide the elements from *iterable* into *n* parts, maintaining
order.
>>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
>>> list(group_1)
[1, 2, 3]
>>> list(group_2)
[4, 5, 6]
If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical:
>>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
>>> [list(c) for c in children]
[[1, 2, 3], [4, 5], [6, 7]]
If the length of the iterable is smaller than n, then the last returned
iterables will be empty:
>>> children = divide(5, [1, 2, 3])
>>> [list(c) for c in children]
[[1], [2], [3], [], []]
This function will exhaust the iterable before returning and may require
significant storage. If order is not important, see :func:`distribute`,
which does not first pull the iterable into memory.
"""
if n < 1:
raise ValueError('n must be at least 1')
try:
iterable[:0]
except TypeError:
seq = tuple(iterable)
else:
seq = iterable
q, r = divmod(len(seq), n)
ret = []
stop = 0
for i in range(1, n + 1):
start = stop
stop += q + 1 if i <= r else q
ret.append(iter(seq[start:stop]))
return ret
def always_iterable(obj, base_type=(str, bytes)):
"""If *obj* is iterable, return an iterator over its items::
>>> obj = (1, 2, 3)
>>> list(always_iterable(obj))
[1, 2, 3]
If *obj* is not iterable, return a one-item iterable containing *obj*::
>>> obj = 1
>>> list(always_iterable(obj))
[1]
If *obj* is ``None``, return an empty iterable:
>>> obj = None
>>> list(always_iterable(None))
[]
By default, binary and text strings are not considered iterable::
>>> obj = 'foo'
>>> list(always_iterable(obj))
['foo']
If *base_type* is set, objects for which ``isinstance(obj, base_type)``
returns ``True`` won't be considered iterable.
>>> obj = {'a': 1}
>>> list(always_iterable(obj)) # Iterate over the dict's keys
['a']
>>> list(always_iterable(obj, base_type=dict)) # Treat dicts as a unit
[{'a': 1}]
Set *base_type* to ``None`` to avoid any special handling and treat objects
Python considers iterable as iterable:
>>> obj = 'foo'
>>> list(always_iterable(obj, base_type=None))
['f', 'o', 'o']
"""
if obj is None:
return iter(())
if (base_type is not None) and isinstance(obj, base_type):
return iter((obj,))
try:
return iter(obj)
except TypeError:
return iter((obj,))
def adjacent(predicate, iterable, distance=1):
"""Return an iterable over `(bool, item)` tuples where the `item` is
drawn from *iterable* and the `bool` indicates whether
that item satisfies the *predicate* or is adjacent to an item that does.
For example, to find whether items are adjacent to a ``3``::
>>> list(adjacent(lambda x: x == 3, range(6)))
[(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]
Set *distance* to change what counts as adjacent. For example, to find
whether items are two places away from a ``3``:
>>> list(adjacent(lambda x: x == 3, range(6), distance=2))
[(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]
This is useful for contextualizing the results of a search function.
For example, a code comparison tool might want to identify lines that
have changed, but also surrounding lines to give the viewer of the diff
context.
The predicate function will only be called once for each item in the
iterable.
See also :func:`groupby_transform`, which can be used with this function
to group ranges of items with the same `bool` value.
"""
# Allow distance=0 mainly for testing that it reproduces results with map()
if distance < 0:
raise ValueError('distance must be at least 0')
i1, i2 = tee(iterable)
padding = [False] * distance
selected = chain(padding, map(predicate, i1), padding)
adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1))
return zip(adjacent_to_selected, i2)
def groupby_transform(iterable, keyfunc=None, valuefunc=None, reducefunc=None):
"""An extension of :func:`itertools.groupby` that can apply transformations
to the grouped data.
* *keyfunc* is a function computing a key value for each item in *iterable*
* *valuefunc* is a function that transforms the individual items from
*iterable* after grouping
* *reducefunc* is a function that transforms each group of items
>>> iterable = 'aAAbBBcCC'
>>> keyfunc = lambda k: k.upper()
>>> valuefunc = lambda v: v.lower()
>>> reducefunc = lambda g: ''.join(g)
>>> list(groupby_transform(iterable, keyfunc, valuefunc, reducefunc))
[('A', 'aaa'), ('B', 'bbb'), ('C', 'ccc')]
Each optional argument defaults to an identity function if not specified.
:func:`groupby_transform` is useful when grouping elements of an iterable
using a separate iterable as the key. To do this, :func:`zip` the iterables
and pass a *keyfunc* that extracts the first element and a *valuefunc*
that extracts the second element::
>>> from operator import itemgetter
>>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
>>> values = 'abcdefghi'
>>> iterable = zip(keys, values)
>>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
>>> [(k, ''.join(g)) for k, g in grouper]
[(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]
Note that the order of items in the iterable is significant.
Only adjacent items are grouped together, so if you don't want any
duplicate groups, you should sort the iterable by the key function.
"""
ret = groupby(iterable, keyfunc)
if valuefunc:
ret = ((k, map(valuefunc, g)) for k, g in ret)
if reducefunc:
ret = ((k, reducefunc(g)) for k, g in ret)
return ret
class numeric_range(abc.Sequence, abc.Hashable):
"""An extension of the built-in ``range()`` function whose arguments can
be any orderable numeric type.
With only *stop* specified, *start* defaults to ``0`` and *step*
defaults to ``1``. The output items will match the type of *stop*:
>>> list(numeric_range(3.5))
[0.0, 1.0, 2.0, 3.0]
With only *start* and *stop* specified, *step* defaults to ``1``. The
output items will match the type of *start*:
>>> from decimal import Decimal
>>> start = Decimal('2.1')
>>> stop = Decimal('5.1')
>>> list(numeric_range(start, stop))
[Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]
With *start*, *stop*, and *step* specified the output items will match
the type of ``start + step``:
>>> from fractions import Fraction
>>> start = Fraction(1, 2) # Start at 1/2
>>> stop = Fraction(5, 2) # End at 5/2
>>> step = Fraction(1, 2) # Count by 1/2
>>> list(numeric_range(start, stop, step))
[Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]
If *step* is zero, ``ValueError`` is raised. Negative steps are supported:
>>> list(numeric_range(3, -1, -1.0))
[3.0, 2.0, 1.0, 0.0]
Be aware of the limitations of floating point numbers; the representation
of the yielded numbers may be surprising.
``datetime.datetime`` objects can be used for *start* and *stop*, if *step*
is a ``datetime.timedelta`` object:
>>> import datetime
>>> start = datetime.datetime(2019, 1, 1)
>>> stop = datetime.datetime(2019, 1, 3)
>>> step = datetime.timedelta(days=1)
>>> items = iter(numeric_range(start, stop, step))
>>> next(items)
datetime.datetime(2019, 1, 1, 0, 0)
>>> next(items)
datetime.datetime(2019, 1, 2, 0, 0)
"""
_EMPTY_HASH = hash(range(0, 0))
def __init__(self, *args):
argc = len(args)
if argc == 1:
(self._stop,) = args
self._start = type(self._stop)(0)
self._step = type(self._stop - self._start)(1)
elif argc == 2:
self._start, self._stop = args
self._step = type(self._stop - self._start)(1)
elif argc == 3:
self._start, self._stop, self._step = args
elif argc == 0:
raise TypeError(
'numeric_range expected at least '
'1 argument, got {}'.format(argc)
)
else:
raise TypeError(
'numeric_range expected at most '
'3 arguments, got {}'.format(argc)
)
self._zero = type(self._step)(0)
if self._step == self._zero:
raise ValueError('numeric_range() arg 3 must not be zero')
self._growing = self._step > self._zero
def __bool__(self):
if self._growing:
return self._start < self._stop
else:
return self._start > self._stop
def __contains__(self, elem):
if self._growing:
if self._start <= elem < self._stop:
return (elem - self._start) % self._step == self._zero
else:
if self._start >= elem > self._stop:
return (self._start - elem) % (-self._step) == self._zero
return False
def __eq__(self, other):
if isinstance(other, numeric_range):
empty_self = not bool(self)
empty_other = not bool(other)
if empty_self or empty_other:
return empty_self and empty_other # True if both empty
else:
return (
self._start == other._start
and self._step == other._step
and self._get_by_index(-1) == other._get_by_index(-1)
)
else:
return False
def __getitem__(self, key):
if isinstance(key, int):
return self._get_by_index(key)
elif isinstance(key, slice):
step = self._step if key.step is None else key.step * self._step
if key.start is None or key.start <= -self._len:
start = self._start
elif key.start >= self._len:
start = self._stop
else: # -self._len < key.start < self._len
start = self._get_by_index(key.start)
if key.stop is None or key.stop >= self._len:
stop = self._stop
elif key.stop <= -self._len:
stop = self._start
else: # -self._len < key.stop < self._len
stop = self._get_by_index(key.stop)
return numeric_range(start, stop, step)
else:
raise TypeError(
'numeric range indices must be '
'integers or slices, not {}'.format(type(key).__name__)
)
def __hash__(self):
if self:
return hash((self._start, self._get_by_index(-1), self._step))
else:
return self._EMPTY_HASH
def __iter__(self):
values = (self._start + (n * self._step) for n in count())
if self._growing:
return takewhile(partial(gt, self._stop), values)
else:
return takewhile(partial(lt, self._stop), values)
def __len__(self):
return self._len
@cached_property
def _len(self):
if self._growing:
start = self._start
stop = self._stop
step = self._step
else:
start = self._stop
stop = self._start
step = -self._step
distance = stop - start
if distance <= self._zero:
return 0
else: # distance > 0 and step > 0: regular euclidean division
q, r = divmod(distance, step)
return int(q) + int(r != self._zero)
def __reduce__(self):
return numeric_range, (self._start, self._stop, self._step)
def __repr__(self):
if self._step == 1:
return "numeric_range({}, {})".format(
repr(self._start), repr(self._stop)
)
else:
return "numeric_range({}, {}, {})".format(
repr(self._start), repr(self._stop), repr(self._step)
)
def __reversed__(self):
return iter(
numeric_range(
self._get_by_index(-1), self._start - self._step, -self._step
)
)
def count(self, value):
return int(value in self)
def index(self, value):
if self._growing:
if self._start <= value < self._stop:
q, r = divmod(value - self._start, self._step)
if r == self._zero:
return int(q)
else:
if self._start >= value > self._stop:
q, r = divmod(self._start - value, -self._step)
if r == self._zero:
return int(q)
raise ValueError("{} is not in numeric range".format(value))
def _get_by_index(self, i):
if i < 0:
i += self._len
if i < 0 or i >= self._len:
raise IndexError("numeric range object index out of range")
return self._start + i * self._step
def count_cycle(iterable, n=None):
"""Cycle through the items from *iterable* up to *n* times, yielding
the number of completed cycles along with each item. If *n* is omitted the
process repeats indefinitely.
>>> list(count_cycle('AB', 3))
[(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]
"""
iterable = tuple(iterable)
if not iterable:
return iter(())
counter = count() if n is None else range(n)
return ((i, item) for i in counter for item in iterable)
def mark_ends(iterable):
"""Yield 3-tuples of the form ``(is_first, is_last, item)``.
>>> list(mark_ends('ABC'))
[(True, False, 'A'), (False, False, 'B'), (False, True, 'C')]
Use this when looping over an iterable to take special action on its first
and/or last items:
>>> iterable = ['Header', 100, 200, 'Footer']
>>> total = 0
>>> for is_first, is_last, item in mark_ends(iterable):
... if is_first:
... continue # Skip the header
... if is_last:
... continue # Skip the footer
... total += item
>>> print(total)
300
"""
it = iter(iterable)
try:
b = next(it)
except StopIteration:
return
try:
for i in count():
a = b
b = next(it)
yield i == 0, False, a
except StopIteration:
yield i == 0, True, a
def locate(iterable, pred=bool, window_size=None):
"""Yield the index of each item in *iterable* for which *pred* returns
``True``.
*pred* defaults to :func:`bool`, which will select truthy items:
>>> list(locate([0, 1, 1, 0, 1, 0, 0]))
[1, 2, 4]
Set *pred* to a custom function to, e.g., find the indexes for a particular
item.
>>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
[1, 3]
If *window_size* is given, then the *pred* function will be called with
that many items. This enables searching for sub-sequences:
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pred = lambda *args: args == (1, 2, 3)
>>> list(locate(iterable, pred=pred, window_size=3))
[1, 5, 9]
Use with :func:`seekable` to find indexes and then retrieve the associated
items:
>>> from itertools import count
>>> from more_itertools import seekable
>>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count())
>>> it = seekable(source)
>>> pred = lambda x: x > 100
>>> indexes = locate(it, pred=pred)
>>> i = next(indexes)
>>> it.seek(i)
>>> next(it)
106
"""
if window_size is None:
return compress(count(), map(pred, iterable))
if window_size < 1:
raise ValueError('window size must be at least 1')
it = windowed(iterable, window_size, fillvalue=_marker)
return compress(count(), starmap(pred, it))
def longest_common_prefix(iterables):
"""Yield elements of the longest common prefix amongst given *iterables*.
>>> ''.join(longest_common_prefix(['abcd', 'abc', 'abf']))
'ab'
"""
return (c[0] for c in takewhile(all_equal, zip(*iterables)))
def lstrip(iterable, pred):
"""Yield the items from *iterable*, but strip any from the beginning
for which *pred* returns ``True``.
For example, to remove a set of items from the start of an iterable:
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(lstrip(iterable, pred))
[1, 2, None, 3, False, None]
This function is analogous to to :func:`str.lstrip`, and is essentially
an wrapper for :func:`itertools.dropwhile`.
"""
return dropwhile(pred, iterable)
def rstrip(iterable, pred):
"""Yield the items from *iterable*, but strip any from the end
for which *pred* returns ``True``.
For example, to remove a set of items from the end of an iterable:
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(rstrip(iterable, pred))
[None, False, None, 1, 2, None, 3]
This function is analogous to :func:`str.rstrip`.
"""
cache = []
cache_append = cache.append
cache_clear = cache.clear
for x in iterable:
if pred(x):
cache_append(x)
else:
yield from cache
cache_clear()
yield x
def strip(iterable, pred):
"""Yield the items from *iterable*, but strip any from the
beginning and end for which *pred* returns ``True``.
For example, to remove a set of items from both ends of an iterable:
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(strip(iterable, pred))
[1, 2, None, 3]
This function is analogous to :func:`str.strip`.
"""
return rstrip(lstrip(iterable, pred), pred)
class islice_extended:
"""An extension of :func:`itertools.islice` that supports negative values
for *stop*, *start*, and *step*.
>>> iterable = iter('abcdefgh')
>>> list(islice_extended(iterable, -4, -1))
['e', 'f', 'g']
Slices with negative values require some caching of *iterable*, but this
function takes care to minimize the amount of memory required.
For example, you can use a negative step with an infinite iterator:
>>> from itertools import count
>>> list(islice_extended(count(), 110, 99, -2))
[110, 108, 106, 104, 102, 100]
You can also use slice notation directly:
>>> iterable = map(str, count())
>>> it = islice_extended(iterable)[10:20:2]
>>> list(it)
['10', '12', '14', '16', '18']
"""
def __init__(self, iterable, *args):
it = iter(iterable)
if args:
self._iterable = _islice_helper(it, slice(*args))
else:
self._iterable = it
def __iter__(self):
return self
def __next__(self):
return next(self._iterable)
def __getitem__(self, key):
if isinstance(key, slice):
return islice_extended(_islice_helper(self._iterable, key))
raise TypeError('islice_extended.__getitem__ argument must be a slice')
def _islice_helper(it, s):
start = s.start
stop = s.stop
if s.step == 0:
raise ValueError('step argument must be a non-zero integer or None.')
step = s.step or 1
if step > 0:
start = 0 if (start is None) else start
if start < 0:
# Consume all but the last -start items
cache = deque(enumerate(it, 1), maxlen=-start)
len_iter = cache[-1][0] if cache else 0
# Adjust start to be positive
i = max(len_iter + start, 0)
# Adjust stop to be positive
if stop is None:
j = len_iter
elif stop >= 0:
j = min(stop, len_iter)
else:
j = max(len_iter + stop, 0)
# Slice the cache
n = j - i
if n <= 0:
return
for index, item in islice(cache, 0, n, step):
yield item
elif (stop is not None) and (stop < 0):
# Advance to the start position
next(islice(it, start, start), None)
# When stop is negative, we have to carry -stop items while
# iterating
cache = deque(islice(it, -stop), maxlen=-stop)
for index, item in enumerate(it):
cached_item = cache.popleft()
if index % step == 0:
yield cached_item
cache.append(item)
else:
# When both start and stop are positive we have the normal case
yield from islice(it, start, stop, step)
else:
start = -1 if (start is None) else start
if (stop is not None) and (stop < 0):
# Consume all but the last items
n = -stop - 1
cache = deque(enumerate(it, 1), maxlen=n)
len_iter = cache[-1][0] if cache else 0
# If start and stop are both negative they are comparable and
# we can just slice. Otherwise we can adjust start to be negative
# and then slice.
if start < 0:
i, j = start, stop
else:
i, j = min(start - len_iter, -1), None
for index, item in list(cache)[i:j:step]:
yield item
else:
# Advance to the stop position
if stop is not None:
m = stop + 1
next(islice(it, m, m), None)
# stop is positive, so if start is negative they are not comparable
# and we need the rest of the items.
if start < 0:
i = start
n = None
# stop is None and start is positive, so we just need items up to
# the start index.
elif stop is None:
i = None
n = start + 1
# Both stop and start are positive, so they are comparable.
else:
i = None
n = start - stop
if n <= 0:
return
cache = list(islice(it, n))
yield from cache[i::step]
def always_reversible(iterable):
"""An extension of :func:`reversed` that supports all iterables, not
just those which implement the ``Reversible`` or ``Sequence`` protocols.
>>> print(*always_reversible(x for x in range(3)))
2 1 0
If the iterable is already reversible, this function returns the
result of :func:`reversed()`. If the iterable is not reversible,
this function will cache the remaining items in the iterable and
yield them in reverse order, which may require significant storage.
"""
try:
return reversed(iterable)
except TypeError:
return reversed(list(iterable))
def consecutive_groups(iterable, ordering=lambda x: x):
"""Yield groups of consecutive items using :func:`itertools.groupby`.
The *ordering* function determines whether two items are adjacent by
returning their position.
By default, the ordering function is the identity function. This is
suitable for finding runs of numbers:
>>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40]
>>> for group in consecutive_groups(iterable):
... print(list(group))
[1]
[10, 11, 12]
[20]
[30, 31, 32, 33]
[40]
For finding runs of adjacent letters, try using the :meth:`index` method
of a string of letters:
>>> from string import ascii_lowercase
>>> iterable = 'abcdfgilmnop'
>>> ordering = ascii_lowercase.index
>>> for group in consecutive_groups(iterable, ordering):
... print(list(group))
['a', 'b', 'c', 'd']
['f', 'g']
['i']
['l', 'm', 'n', 'o', 'p']
Each group of consecutive items is an iterator that shares it source with
*iterable*. When an an output group is advanced, the previous group is
no longer available unless its elements are copied (e.g., into a ``list``).
>>> iterable = [1, 2, 11, 12, 21, 22]
>>> saved_groups = []
>>> for group in consecutive_groups(iterable):
... saved_groups.append(list(group)) # Copy group elements
>>> saved_groups
[[1, 2], [11, 12], [21, 22]]
"""
for k, g in groupby(
enumerate(iterable), key=lambda x: x[0] - ordering(x[1])
):
yield map(itemgetter(1), g)
def difference(iterable, func=sub, *, initial=None):
"""This function is the inverse of :func:`itertools.accumulate`. By default
it will compute the first difference of *iterable* using
:func:`operator.sub`:
>>> from itertools import accumulate
>>> iterable = accumulate([0, 1, 2, 3, 4]) # produces 0, 1, 3, 6, 10
>>> list(difference(iterable))
[0, 1, 2, 3, 4]
*func* defaults to :func:`operator.sub`, but other functions can be
specified. They will be applied as follows::
A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ...
For example, to do progressive division:
>>> iterable = [1, 2, 6, 24, 120]
>>> func = lambda x, y: x // y
>>> list(difference(iterable, func))
[1, 2, 3, 4, 5]
If the *initial* keyword is set, the first element will be skipped when
computing successive differences.
>>> it = [10, 11, 13, 16] # from accumulate([1, 2, 3], initial=10)
>>> list(difference(it, initial=10))
[1, 2, 3]
"""
a, b = tee(iterable)
try:
first = [next(b)]
except StopIteration:
return iter([])
if initial is not None:
first = []
return chain(first, map(func, b, a))
class SequenceView(Sequence):
"""Return a read-only view of the sequence object *target*.
:class:`SequenceView` objects are analogous to Python's built-in
"dictionary view" types. They provide a dynamic view of a sequence's items,
meaning that when the sequence updates, so does the view.
>>> seq = ['0', '1', '2']
>>> view = SequenceView(seq)
>>> view
SequenceView(['0', '1', '2'])
>>> seq.append('3')
>>> view
SequenceView(['0', '1', '2', '3'])
Sequence views support indexing, slicing, and length queries. They act
like the underlying sequence, except they don't allow assignment:
>>> view[1]
'1'
>>> view[1:-1]
['1', '2']
>>> len(view)
4
Sequence views are useful as an alternative to copying, as they don't
require (much) extra storage.
"""
def __init__(self, target):
if not isinstance(target, Sequence):
raise TypeError
self._target = target
def __getitem__(self, index):
return self._target[index]
def __len__(self):
return len(self._target)
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, repr(self._target))
class seekable:
"""Wrap an iterator to allow for seeking backward and forward. This
progressively caches the items in the source iterable so they can be
re-visited.
Call :meth:`seek` with an index to seek to that position in the source
iterable.
To "reset" an iterator, seek to ``0``:
>>> from itertools import count
>>> it = seekable((str(n) for n in count()))
>>> next(it), next(it), next(it)
('0', '1', '2')
>>> it.seek(0)
>>> next(it), next(it), next(it)
('0', '1', '2')
>>> next(it)
'3'
You can also seek forward:
>>> it = seekable((str(n) for n in range(20)))
>>> it.seek(10)
>>> next(it)
'10'
>>> it.relative_seek(-2) # Seeking relative to the current position
>>> next(it)
'9'
>>> it.seek(20) # Seeking past the end of the source isn't a problem
>>> list(it)
[]
>>> it.seek(0) # Resetting works even after hitting the end
>>> next(it), next(it), next(it)
('0', '1', '2')
Call :meth:`peek` to look ahead one item without advancing the iterator:
>>> it = seekable('1234')
>>> it.peek()
'1'
>>> list(it)
['1', '2', '3', '4']
>>> it.peek(default='empty')
'empty'
Before the iterator is at its end, calling :func:`bool` on it will return
``True``. After it will return ``False``:
>>> it = seekable('5678')
>>> bool(it)
True
>>> list(it)
['5', '6', '7', '8']
>>> bool(it)
False
You may view the contents of the cache with the :meth:`elements` method.
That returns a :class:`SequenceView`, a view that updates automatically:
>>> it = seekable((str(n) for n in range(10)))
>>> next(it), next(it), next(it)
('0', '1', '2')
>>> elements = it.elements()
>>> elements
SequenceView(['0', '1', '2'])
>>> next(it)
'3'
>>> elements
SequenceView(['0', '1', '2', '3'])
By default, the cache grows as the source iterable progresses, so beware of
wrapping very large or infinite iterables. Supply *maxlen* to limit the
size of the cache (this of course limits how far back you can seek).
>>> from itertools import count
>>> it = seekable((str(n) for n in count()), maxlen=2)
>>> next(it), next(it), next(it), next(it)
('0', '1', '2', '3')
>>> list(it.elements())
['2', '3']
>>> it.seek(0)
>>> next(it), next(it), next(it), next(it)
('2', '3', '4', '5')
>>> next(it)
'6'
"""
def __init__(self, iterable, maxlen=None):
self._source = iter(iterable)
if maxlen is None:
self._cache = []
else:
self._cache = deque([], maxlen)
self._index = None
def __iter__(self):
return self
def __next__(self):
if self._index is not None:
try:
item = self._cache[self._index]
except IndexError:
self._index = None
else:
self._index += 1
return item
item = next(self._source)
self._cache.append(item)
return item
def __bool__(self):
try:
self.peek()
except StopIteration:
return False
return True
def peek(self, default=_marker):
try:
peeked = next(self)
except StopIteration:
if default is _marker:
raise
return default
if self._index is None:
self._index = len(self._cache)
self._index -= 1
return peeked
def elements(self):
return SequenceView(self._cache)
def seek(self, index):
self._index = index
remainder = index - len(self._cache)
if remainder > 0:
consume(self, remainder)
def relative_seek(self, count):
index = len(self._cache)
self.seek(max(index + count, 0))
class run_length:
"""
:func:`run_length.encode` compresses an iterable with run-length encoding.
It yields groups of repeated items with the count of how many times they
were repeated:
>>> uncompressed = 'abbcccdddd'
>>> list(run_length.encode(uncompressed))
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
:func:`run_length.decode` decompresses an iterable that was previously
compressed with run-length encoding. It yields the items of the
decompressed iterable:
>>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> list(run_length.decode(compressed))
['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd']
"""
@staticmethod
def encode(iterable):
return ((k, ilen(g)) for k, g in groupby(iterable))
@staticmethod
def decode(iterable):
return chain.from_iterable(repeat(k, n) for k, n in iterable)
def exactly_n(iterable, n, predicate=bool):
"""Return ``True`` if exactly ``n`` items in the iterable are ``True``
according to the *predicate* function.
>>> exactly_n([True, True, False], 2)
True
>>> exactly_n([True, True, False], 1)
False
>>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3)
True
The iterable will be advanced until ``n + 1`` truthy items are encountered,
so avoid calling it on infinite iterables.
"""
return len(take(n + 1, filter(predicate, iterable))) == n
def circular_shifts(iterable):
"""Return a list of circular shifts of *iterable*.
>>> circular_shifts(range(4))
[(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)]
"""
lst = list(iterable)
return take(len(lst), windowed(cycle(lst), len(lst)))
def make_decorator(wrapping_func, result_index=0):
"""Return a decorator version of *wrapping_func*, which is a function that
modifies an iterable. *result_index* is the position in that function's
signature where the iterable goes.
This lets you use itertools on the "production end," i.e. at function
definition. This can augment what the function returns without changing the
function's code.
For example, to produce a decorator version of :func:`chunked`:
>>> from more_itertools import chunked
>>> chunker = make_decorator(chunked, result_index=0)
>>> @chunker(3)
... def iter_range(n):
... return iter(range(n))
...
>>> list(iter_range(9))
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
To only allow truthy items to be returned:
>>> truth_serum = make_decorator(filter, result_index=1)
>>> @truth_serum(bool)
... def boolean_test():
... return [0, 1, '', ' ', False, True]
...
>>> list(boolean_test())
[1, ' ', True]
The :func:`peekable` and :func:`seekable` wrappers make for practical
decorators:
>>> from more_itertools import peekable
>>> peekable_function = make_decorator(peekable)
>>> @peekable_function()
... def str_range(*args):
... return (str(x) for x in range(*args))
...
>>> it = str_range(1, 20, 2)
>>> next(it), next(it), next(it)
('1', '3', '5')
>>> it.peek()
'7'
>>> next(it)
'7'
"""
# See https://sites.google.com/site/bbayles/index/decorator_factory for
# notes on how this works.
def decorator(*wrapping_args, **wrapping_kwargs):
def outer_wrapper(f):
def inner_wrapper(*args, **kwargs):
result = f(*args, **kwargs)
wrapping_args_ = list(wrapping_args)
wrapping_args_.insert(result_index, result)
return wrapping_func(*wrapping_args_, **wrapping_kwargs)
return inner_wrapper
return outer_wrapper
return decorator
def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None):
"""Return a dictionary that maps the items in *iterable* to categories
defined by *keyfunc*, transforms them with *valuefunc*, and
then summarizes them by category with *reducefunc*.
*valuefunc* defaults to the identity function if it is unspecified.
If *reducefunc* is unspecified, no summarization takes place:
>>> keyfunc = lambda x: x.upper()
>>> result = map_reduce('abbccc', keyfunc)
>>> sorted(result.items())
[('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])]
Specifying *valuefunc* transforms the categorized items:
>>> keyfunc = lambda x: x.upper()
>>> valuefunc = lambda x: 1
>>> result = map_reduce('abbccc', keyfunc, valuefunc)
>>> sorted(result.items())
[('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])]
Specifying *reducefunc* summarizes the categorized items:
>>> keyfunc = lambda x: x.upper()
>>> valuefunc = lambda x: 1
>>> reducefunc = sum
>>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc)
>>> sorted(result.items())
[('A', 1), ('B', 2), ('C', 3)]
You may want to filter the input iterable before applying the map/reduce
procedure:
>>> all_items = range(30)
>>> items = [x for x in all_items if 10 <= x <= 20] # Filter
>>> keyfunc = lambda x: x % 2 # Evens map to 0; odds to 1
>>> categories = map_reduce(items, keyfunc=keyfunc)
>>> sorted(categories.items())
[(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])]
>>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum)
>>> sorted(summaries.items())
[(0, 90), (1, 75)]
Note that all items in the iterable are gathered into a list before the
summarization step, which may require significant storage.
The returned object is a :obj:`collections.defaultdict` with the
``default_factory`` set to ``None``, such that it behaves like a normal
dictionary.
"""
valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc
ret = defaultdict(list)
for item in iterable:
key = keyfunc(item)
value = valuefunc(item)
ret[key].append(value)
if reducefunc is not None:
for key, value_list in ret.items():
ret[key] = reducefunc(value_list)
ret.default_factory = None
return ret
def rlocate(iterable, pred=bool, window_size=None):
"""Yield the index of each item in *iterable* for which *pred* returns
``True``, starting from the right and moving left.
*pred* defaults to :func:`bool`, which will select truthy items:
>>> list(rlocate([0, 1, 1, 0, 1, 0, 0])) # Truthy at 1, 2, and 4
[4, 2, 1]
Set *pred* to a custom function to, e.g., find the indexes for a particular
item:
>>> iterable = iter('abcb')
>>> pred = lambda x: x == 'b'
>>> list(rlocate(iterable, pred))
[3, 1]
If *window_size* is given, then the *pred* function will be called with
that many items. This enables searching for sub-sequences:
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pred = lambda *args: args == (1, 2, 3)
>>> list(rlocate(iterable, pred=pred, window_size=3))
[9, 5, 1]
Beware, this function won't return anything for infinite iterables.
If *iterable* is reversible, ``rlocate`` will reverse it and search from
the right. Otherwise, it will search from the left and return the results
in reverse order.
See :func:`locate` to for other example applications.
"""
if window_size is None:
try:
len_iter = len(iterable)
return (len_iter - i - 1 for i in locate(reversed(iterable), pred))
except TypeError:
pass
return reversed(list(locate(iterable, pred, window_size)))
def replace(iterable, pred, substitutes, count=None, window_size=1):
"""Yield the items from *iterable*, replacing the items for which *pred*
returns ``True`` with the items from the iterable *substitutes*.
>>> iterable = [1, 1, 0, 1, 1, 0, 1, 1]
>>> pred = lambda x: x == 0
>>> substitutes = (2, 3)
>>> list(replace(iterable, pred, substitutes))
[1, 1, 2, 3, 1, 1, 2, 3, 1, 1]
If *count* is given, the number of replacements will be limited:
>>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0]
>>> pred = lambda x: x == 0
>>> substitutes = [None]
>>> list(replace(iterable, pred, substitutes, count=2))
[1, 1, None, 1, 1, None, 1, 1, 0]
Use *window_size* to control the number of items passed as arguments to
*pred*. This allows for locating and replacing subsequences.
>>> iterable = [0, 1, 2, 5, 0, 1, 2, 5]
>>> window_size = 3
>>> pred = lambda *args: args == (0, 1, 2) # 3 items passed to pred
>>> substitutes = [3, 4] # Splice in these items
>>> list(replace(iterable, pred, substitutes, window_size=window_size))
[3, 4, 5, 3, 4, 5]
"""
if window_size < 1:
raise ValueError('window_size must be at least 1')
# Save the substitutes iterable, since it's used more than once
substitutes = tuple(substitutes)
# Add padding such that the number of windows matches the length of the
# iterable
it = chain(iterable, [_marker] * (window_size - 1))
windows = windowed(it, window_size)
n = 0
for w in windows:
# If the current window matches our predicate (and we haven't hit
# our maximum number of replacements), splice in the substitutes
# and then consume the following windows that overlap with this one.
# For example, if the iterable is (0, 1, 2, 3, 4...)
# and the window size is 2, we have (0, 1), (1, 2), (2, 3)...
# If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2)
if pred(*w):
if (count is None) or (n < count):
n += 1
yield from substitutes
consume(windows, window_size - 1)
continue
# If there was no match (or we've reached the replacement limit),
# yield the first item from the window.
if w and (w[0] is not _marker):
yield w[0]
def partitions(iterable):
"""Yield all possible order-preserving partitions of *iterable*.
>>> iterable = 'abc'
>>> for part in partitions(iterable):
... print([''.join(p) for p in part])
['abc']
['a', 'bc']
['ab', 'c']
['a', 'b', 'c']
This is unrelated to :func:`partition`.
"""
sequence = list(iterable)
n = len(sequence)
for i in powerset(range(1, n)):
yield [sequence[i:j] for i, j in zip((0,) + i, i + (n,))]
def set_partitions(iterable, k=None):
"""
Yield the set partitions of *iterable* into *k* parts. Set partitions are
not order-preserving.
>>> iterable = 'abc'
>>> for part in set_partitions(iterable, 2):
... print([''.join(p) for p in part])
['a', 'bc']
['ab', 'c']
['b', 'ac']
If *k* is not given, every set partition is generated.
>>> iterable = 'abc'
>>> for part in set_partitions(iterable):
... print([''.join(p) for p in part])
['abc']
['a', 'bc']
['ab', 'c']
['b', 'ac']
['a', 'b', 'c']
"""
L = list(iterable)
n = len(L)
if k is not None:
if k < 1:
raise ValueError(
"Can't partition in a negative or zero number of groups"
)
elif k > n:
return
def set_partitions_helper(L, k):
n = len(L)
if k == 1:
yield [L]
elif n == k:
yield [[s] for s in L]
else:
e, *M = L
for p in set_partitions_helper(M, k - 1):
yield [[e], *p]
for p in set_partitions_helper(M, k):
for i in range(len(p)):
yield p[:i] + [[e] + p[i]] + p[i + 1 :]
if k is None:
for k in range(1, n + 1):
yield from set_partitions_helper(L, k)
else:
yield from set_partitions_helper(L, k)
class time_limited:
"""
Yield items from *iterable* until *limit_seconds* have passed.
If the time limit expires before all items have been yielded, the
``timed_out`` parameter will be set to ``True``.
>>> from time import sleep
>>> def generator():
... yield 1
... yield 2
... sleep(0.2)
... yield 3
>>> iterable = time_limited(0.1, generator())
>>> list(iterable)
[1, 2]
>>> iterable.timed_out
True
Note that the time is checked before each item is yielded, and iteration
stops if the time elapsed is greater than *limit_seconds*. If your time
limit is 1 second, but it takes 2 seconds to generate the first item from
the iterable, the function will run for 2 seconds and not yield anything.
"""
def __init__(self, limit_seconds, iterable):
if limit_seconds < 0:
raise ValueError('limit_seconds must be positive')
self.limit_seconds = limit_seconds
self._iterable = iter(iterable)
self._start_time = monotonic()
self.timed_out = False
def __iter__(self):
return self
def __next__(self):
item = next(self._iterable)
if monotonic() - self._start_time > self.limit_seconds:
self.timed_out = True
raise StopIteration
return item
def only(iterable, default=None, too_long=None):
"""If *iterable* has only one item, return it.
If it has zero items, return *default*.
If it has more than one item, raise the exception given by *too_long*,
which is ``ValueError`` by default.
>>> only([], default='missing')
'missing'
>>> only([1])
1
>>> only([1, 2]) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: Expected exactly one item in iterable, but got 1, 2,
and perhaps more.'
>>> only([1, 2], too_long=TypeError) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError
Note that :func:`only` attempts to advance *iterable* twice to ensure there
is only one item. See :func:`spy` or :func:`peekable` to check
iterable contents less destructively.
"""
it = iter(iterable)
first_value = next(it, default)
try:
second_value = next(it)
except StopIteration:
pass
else:
msg = (
'Expected exactly one item in iterable, but got {!r}, {!r}, '
'and perhaps more.'.format(first_value, second_value)
)
raise too_long or ValueError(msg)
return first_value
class _IChunk:
def __init__(self, iterable, n):
self._it = islice(iterable, n)
self._cache = deque()
def fill_cache(self):
self._cache.extend(self._it)
def __iter__(self):
return self
def __next__(self):
try:
return next(self._it)
except StopIteration:
if self._cache:
return self._cache.popleft()
else:
raise
def ichunked(iterable, n):
"""Break *iterable* into sub-iterables with *n* elements each.
:func:`ichunked` is like :func:`chunked`, but it yields iterables
instead of lists.
If the sub-iterables are read in order, the elements of *iterable*
won't be stored in memory.
If they are read out of order, :func:`itertools.tee` is used to cache
elements as necessary.
>>> from itertools import count
>>> all_chunks = ichunked(count(), 4)
>>> c_1, c_2, c_3 = next(all_chunks), next(all_chunks), next(all_chunks)
>>> list(c_2) # c_1's elements have been cached; c_3's haven't been
[4, 5, 6, 7]
>>> list(c_1)
[0, 1, 2, 3]
>>> list(c_3)
[8, 9, 10, 11]
"""
source = peekable(iter(iterable))
ichunk_marker = object()
while True:
# Check to see whether we're at the end of the source iterable
item = source.peek(ichunk_marker)
if item is ichunk_marker:
return
chunk = _IChunk(source, n)
yield chunk
# Advance the source iterable and fill previous chunk's cache
chunk.fill_cache()
def iequals(*iterables):
"""Return ``True`` if all given *iterables* are equal to each other,
which means that they contain the same elements in the same order.
The function is useful for comparing iterables of different data types
or iterables that do not support equality checks.
>>> iequals("abc", ['a', 'b', 'c'], ('a', 'b', 'c'), iter("abc"))
True
>>> iequals("abc", "acb")
False
Not to be confused with :func:`all_equals`, which checks whether all
elements of iterable are equal to each other.
"""
return all(map(all_equal, zip_longest(*iterables, fillvalue=object())))
def distinct_combinations(iterable, r):
"""Yield the distinct combinations of *r* items taken from *iterable*.
>>> list(distinct_combinations([0, 0, 1], 2))
[(0, 0), (0, 1)]
Equivalent to ``set(combinations(iterable))``, except duplicates are not
generated and thrown away. For larger input sequences this is much more
efficient.
"""
if r < 0:
raise ValueError('r must be non-negative')
elif r == 0:
yield ()
return
pool = tuple(iterable)
generators = [unique_everseen(enumerate(pool), key=itemgetter(1))]
current_combo = [None] * r
level = 0
while generators:
try:
cur_idx, p = next(generators[-1])
except StopIteration:
generators.pop()
level -= 1
continue
current_combo[level] = p
if level + 1 == r:
yield tuple(current_combo)
else:
generators.append(
unique_everseen(
enumerate(pool[cur_idx + 1 :], cur_idx + 1),
key=itemgetter(1),
)
)
level += 1
def filter_except(validator, iterable, *exceptions):
"""Yield the items from *iterable* for which the *validator* function does
not raise one of the specified *exceptions*.
*validator* is called for each item in *iterable*.
It should be a function that accepts one argument and raises an exception
if that item is not valid.
>>> iterable = ['1', '2', 'three', '4', None]
>>> list(filter_except(int, iterable, ValueError, TypeError))
['1', '2', '4']
If an exception other than one given by *exceptions* is raised by
*validator*, it is raised like normal.
"""
for item in iterable:
try:
validator(item)
except exceptions:
pass
else:
yield item
def map_except(function, iterable, *exceptions):
"""Transform each item from *iterable* with *function* and yield the
result, unless *function* raises one of the specified *exceptions*.
*function* is called to transform each item in *iterable*.
It should accept one argument.
>>> iterable = ['1', '2', 'three', '4', None]
>>> list(map_except(int, iterable, ValueError, TypeError))
[1, 2, 4]
If an exception other than one given by *exceptions* is raised by
*function*, it is raised like normal.
"""
for item in iterable:
try:
yield function(item)
except exceptions:
pass
def map_if(iterable, pred, func, func_else=lambda x: x):
"""Evaluate each item from *iterable* using *pred*. If the result is
equivalent to ``True``, transform the item with *func* and yield it.
Otherwise, transform the item with *func_else* and yield it.
*pred*, *func*, and *func_else* should each be functions that accept
one argument. By default, *func_else* is the identity function.
>>> from math import sqrt
>>> iterable = list(range(-5, 5))
>>> iterable
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
>>> list(map_if(iterable, lambda x: x > 3, lambda x: 'toobig'))
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 'toobig']
>>> list(map_if(iterable, lambda x: x >= 0,
... lambda x: f'{sqrt(x):.2f}', lambda x: None))
[None, None, None, None, None, '0.00', '1.00', '1.41', '1.73', '2.00']
"""
for item in iterable:
yield func(item) if pred(item) else func_else(item)
def _sample_unweighted(iterable, k):
# Implementation of "Algorithm L" from the 1994 paper by Kim-Hung Li:
# "Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))".
# Fill up the reservoir (collection of samples) with the first `k` samples
reservoir = take(k, iterable)
# Generate random number that's the largest in a sample of k U(0,1) numbers
# Largest order statistic: https://en.wikipedia.org/wiki/Order_statistic
W = exp(log(random()) / k)
# The number of elements to skip before changing the reservoir is a random
# number with a geometric distribution. Sample it using random() and logs.
next_index = k + floor(log(random()) / log(1 - W))
for index, element in enumerate(iterable, k):
if index == next_index:
reservoir[randrange(k)] = element
# The new W is the largest in a sample of k U(0, `old_W`) numbers
W *= exp(log(random()) / k)
next_index += floor(log(random()) / log(1 - W)) + 1
return reservoir
def _sample_weighted(iterable, k, weights):
# Implementation of "A-ExpJ" from the 2006 paper by Efraimidis et al. :
# "Weighted random sampling with a reservoir".
# Log-transform for numerical stability for weights that are small/large
weight_keys = (log(random()) / weight for weight in weights)
# Fill up the reservoir (collection of samples) with the first `k`
# weight-keys and elements, then heapify the list.
reservoir = take(k, zip(weight_keys, iterable))
heapify(reservoir)
# The number of jumps before changing the reservoir is a random variable
# with an exponential distribution. Sample it using random() and logs.
smallest_weight_key, _ = reservoir[0]
weights_to_skip = log(random()) / smallest_weight_key
for weight, element in zip(weights, iterable):
if weight >= weights_to_skip:
# The notation here is consistent with the paper, but we store
# the weight-keys in log-space for better numerical stability.
smallest_weight_key, _ = reservoir[0]
t_w = exp(weight * smallest_weight_key)
r_2 = uniform(t_w, 1) # generate U(t_w, 1)
weight_key = log(r_2) / weight
heapreplace(reservoir, (weight_key, element))
smallest_weight_key, _ = reservoir[0]
weights_to_skip = log(random()) / smallest_weight_key
else:
weights_to_skip -= weight
# Equivalent to [element for weight_key, element in sorted(reservoir)]
return [heappop(reservoir)[1] for _ in range(k)]
def sample(iterable, k, weights=None):
"""Return a *k*-length list of elements chosen (without replacement)
from the *iterable*. Like :func:`random.sample`, but works on iterables
of unknown length.
>>> iterable = range(100)
>>> sample(iterable, 5) # doctest: +SKIP
[81, 60, 96, 16, 4]
An iterable with *weights* may also be given:
>>> iterable = range(100)
>>> weights = (i * i + 1 for i in range(100))
>>> sampled = sample(iterable, 5, weights=weights) # doctest: +SKIP
[79, 67, 74, 66, 78]
The algorithm can also be used to generate weighted random permutations.
The relative weight of each item determines the probability that it
appears late in the permutation.
>>> data = "abcdefgh"
>>> weights = range(1, len(data) + 1)
>>> sample(data, k=len(data), weights=weights) # doctest: +SKIP
['c', 'a', 'b', 'e', 'g', 'd', 'h', 'f']
"""
if k == 0:
return []
iterable = iter(iterable)
if weights is None:
return _sample_unweighted(iterable, k)
else:
weights = iter(weights)
return _sample_weighted(iterable, k, weights)
def is_sorted(iterable, key=None, reverse=False, strict=False):
"""Returns ``True`` if the items of iterable are in sorted order, and
``False`` otherwise. *key* and *reverse* have the same meaning that they do
in the built-in :func:`sorted` function.
>>> is_sorted(['1', '2', '3', '4', '5'], key=int)
True
>>> is_sorted([5, 4, 3, 1, 2], reverse=True)
False
If *strict*, tests for strict sorting, that is, returns ``False`` if equal
elements are found:
>>> is_sorted([1, 2, 2])
True
>>> is_sorted([1, 2, 2], strict=True)
False
The function returns ``False`` after encountering the first out-of-order
item. If there are no out-of-order items, the iterable is exhausted.
"""
compare = (le if reverse else ge) if strict else (lt if reverse else gt)
it = iterable if key is None else map(key, iterable)
return not any(starmap(compare, pairwise(it)))
class AbortThread(BaseException):
pass
class callback_iter:
"""Convert a function that uses callbacks to an iterator.
Let *func* be a function that takes a `callback` keyword argument.
For example:
>>> def func(callback=None):
... for i, c in [(1, 'a'), (2, 'b'), (3, 'c')]:
... if callback:
... callback(i, c)
... return 4
Use ``with callback_iter(func)`` to get an iterator over the parameters
that are delivered to the callback.
>>> with callback_iter(func) as it:
... for args, kwargs in it:
... print(args)
(1, 'a')
(2, 'b')
(3, 'c')
The function will be called in a background thread. The ``done`` property
indicates whether it has completed execution.
>>> it.done
True
If it completes successfully, its return value will be available
in the ``result`` property.
>>> it.result
4
Notes:
* If the function uses some keyword argument besides ``callback``, supply
*callback_kwd*.
* If it finished executing, but raised an exception, accessing the
``result`` property will raise the same exception.
* If it hasn't finished executing, accessing the ``result``
property from within the ``with`` block will raise ``RuntimeError``.
* If it hasn't finished executing, accessing the ``result`` property from
outside the ``with`` block will raise a
``more_itertools.AbortThread`` exception.
* Provide *wait_seconds* to adjust how frequently the it is polled for
output.
"""
def __init__(self, func, callback_kwd='callback', wait_seconds=0.1):
self._func = func
self._callback_kwd = callback_kwd
self._aborted = False
self._future = None
self._wait_seconds = wait_seconds
# Lazily import concurrent.future
self._executor = __import__(
'concurrent.futures'
).futures.ThreadPoolExecutor(max_workers=1)
self._iterator = self._reader()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self._aborted = True
self._executor.shutdown()
def __iter__(self):
return self
def __next__(self):
return next(self._iterator)
@property
def done(self):
if self._future is None:
return False
return self._future.done()
@property
def result(self):
if not self.done:
raise RuntimeError('Function has not yet completed')
return self._future.result()
def _reader(self):
q = Queue()
def callback(*args, **kwargs):
if self._aborted:
raise AbortThread('canceled by user')
q.put((args, kwargs))
self._future = self._executor.submit(
self._func, **{self._callback_kwd: callback}
)
while True:
try:
item = q.get(timeout=self._wait_seconds)
except Empty:
pass
else:
q.task_done()
yield item
if self._future.done():
break
remaining = []
while True:
try:
item = q.get_nowait()
except Empty:
break
else:
q.task_done()
remaining.append(item)
q.join()
yield from remaining
def windowed_complete(iterable, n):
"""
Yield ``(beginning, middle, end)`` tuples, where:
* Each ``middle`` has *n* items from *iterable*
* Each ``beginning`` has the items before the ones in ``middle``
* Each ``end`` has the items after the ones in ``middle``
>>> iterable = range(7)
>>> n = 3
>>> for beginning, middle, end in windowed_complete(iterable, n):
... print(beginning, middle, end)
() (0, 1, 2) (3, 4, 5, 6)
(0,) (1, 2, 3) (4, 5, 6)
(0, 1) (2, 3, 4) (5, 6)
(0, 1, 2) (3, 4, 5) (6,)
(0, 1, 2, 3) (4, 5, 6) ()
Note that *n* must be at least 0 and most equal to the length of
*iterable*.
This function will exhaust the iterable and may require significant
storage.
"""
if n < 0:
raise ValueError('n must be >= 0')
seq = tuple(iterable)
size = len(seq)
if n > size:
raise ValueError('n must be <= len(seq)')
for i in range(size - n + 1):
beginning = seq[:i]
middle = seq[i : i + n]
end = seq[i + n :]
yield beginning, middle, end
def all_unique(iterable, key=None):
"""
Returns ``True`` if all the elements of *iterable* are unique (no two
elements are equal).
>>> all_unique('ABCB')
False
If a *key* function is specified, it will be used to make comparisons.
>>> all_unique('ABCb')
True
>>> all_unique('ABCb', str.lower)
False
The function returns as soon as the first non-unique element is
encountered. Iterables with a mix of hashable and unhashable items can
be used, but the function will be slower for unhashable items.
"""
seenset = set()
seenset_add = seenset.add
seenlist = []
seenlist_add = seenlist.append
for element in map(key, iterable) if key else iterable:
try:
if element in seenset:
return False
seenset_add(element)
except TypeError:
if element in seenlist:
return False
seenlist_add(element)
return True
def nth_product(index, *args):
"""Equivalent to ``list(product(*args))[index]``.
The products of *args* can be ordered lexicographically.
:func:`nth_product` computes the product at sort position *index* without
computing the previous products.
>>> nth_product(8, range(2), range(2), range(2), range(2))
(1, 0, 0, 0)
``IndexError`` will be raised if the given *index* is invalid.
"""
pools = list(map(tuple, reversed(args)))
ns = list(map(len, pools))
c = reduce(mul, ns)
if index < 0:
index += c
if not 0 <= index < c:
raise IndexError
result = []
for pool, n in zip(pools, ns):
result.append(pool[index % n])
index //= n
return tuple(reversed(result))
def nth_permutation(iterable, r, index):
"""Equivalent to ``list(permutations(iterable, r))[index]```
The subsequences of *iterable* that are of length *r* where order is
important can be ordered lexicographically. :func:`nth_permutation`
computes the subsequence at sort position *index* directly, without
computing the previous subsequences.
>>> nth_permutation('ghijk', 2, 5)
('h', 'i')
``ValueError`` will be raised If *r* is negative or greater than the length
of *iterable*.
``IndexError`` will be raised if the given *index* is invalid.
"""
pool = list(iterable)
n = len(pool)
if r is None or r == n:
r, c = n, factorial(n)
elif not 0 <= r < n:
raise ValueError
else:
c = factorial(n) // factorial(n - r)
if index < 0:
index += c
if not 0 <= index < c:
raise IndexError
if c == 0:
return tuple()
result = [0] * r
q = index * factorial(n) // c if r < n else index
for d in range(1, n + 1):
q, i = divmod(q, d)
if 0 <= n - d < r:
result[n - d] = i
if q == 0:
break
return tuple(map(pool.pop, result))
def nth_combination_with_replacement(iterable, r, index):
"""Equivalent to
``list(combinations_with_replacement(iterable, r))[index]``.
The subsequences with repetition of *iterable* that are of length *r* can
be ordered lexicographically. :func:`nth_combination_with_replacement`
computes the subsequence at sort position *index* directly, without
computing the previous subsequences with replacement.
>>> nth_combination_with_replacement(range(5), 3, 5)
(0, 1, 1)
``ValueError`` will be raised If *r* is negative or greater than the length
of *iterable*.
``IndexError`` will be raised if the given *index* is invalid.
"""
pool = tuple(iterable)
n = len(pool)
if (r < 0) or (r > n):
raise ValueError
c = factorial(n + r - 1) // (factorial(r) * factorial(n - 1))
if index < 0:
index += c
if (index < 0) or (index >= c):
raise IndexError
result = []
i = 0
while r:
r -= 1
while n >= 0:
num_combs = factorial(n + r - 1) // (
factorial(r) * factorial(n - 1)
)
if index < num_combs:
break
n -= 1
i += 1
index -= num_combs
result.append(pool[i])
return tuple(result)
def value_chain(*args):
"""Yield all arguments passed to the function in the same order in which
they were passed. If an argument itself is iterable then iterate over its
values.
>>> list(value_chain(1, 2, 3, [4, 5, 6]))
[1, 2, 3, 4, 5, 6]
Binary and text strings are not considered iterable and are emitted
as-is:
>>> list(value_chain('12', '34', ['56', '78']))
['12', '34', '56', '78']
Multiple levels of nesting are not flattened.
"""
for value in args:
if isinstance(value, (str, bytes)):
yield value
continue
try:
yield from value
except TypeError:
yield value
def product_index(element, *args):
"""Equivalent to ``list(product(*args)).index(element)``
The products of *args* can be ordered lexicographically.
:func:`product_index` computes the first index of *element* without
computing the previous products.
>>> product_index([8, 2], range(10), range(5))
42
``ValueError`` will be raised if the given *element* isn't in the product
of *args*.
"""
index = 0
for x, pool in zip_longest(element, args, fillvalue=_marker):
if x is _marker or pool is _marker:
raise ValueError('element is not a product of args')
pool = tuple(pool)
index = index * len(pool) + pool.index(x)
return index
def combination_index(element, iterable):
"""Equivalent to ``list(combinations(iterable, r)).index(element)``
The subsequences of *iterable* that are of length *r* can be ordered
lexicographically. :func:`combination_index` computes the index of the
first *element*, without computing the previous combinations.
>>> combination_index('adf', 'abcdefg')
10
``ValueError`` will be raised if the given *element* isn't one of the
combinations of *iterable*.
"""
element = enumerate(element)
k, y = next(element, (None, None))
if k is None:
return 0
indexes = []
pool = enumerate(iterable)
for n, x in pool:
if x == y:
indexes.append(n)
tmp, y = next(element, (None, None))
if tmp is None:
break
else:
k = tmp
else:
raise ValueError('element is not a combination of iterable')
n, _ = last(pool, default=(n, None))
# Python versions below 3.8 don't have math.comb
index = 1
for i, j in enumerate(reversed(indexes), start=1):
j = n - j
if i <= j:
index += factorial(j) // (factorial(i) * factorial(j - i))
return factorial(n + 1) // (factorial(k + 1) * factorial(n - k)) - index
def combination_with_replacement_index(element, iterable):
"""Equivalent to
``list(combinations_with_replacement(iterable, r)).index(element)``
The subsequences with repetition of *iterable* that are of length *r* can
be ordered lexicographically. :func:`combination_with_replacement_index`
computes the index of the first *element*, without computing the previous
combinations with replacement.
>>> combination_with_replacement_index('adf', 'abcdefg')
20
``ValueError`` will be raised if the given *element* isn't one of the
combinations with replacement of *iterable*.
"""
element = tuple(element)
l = len(element)
element = enumerate(element)
k, y = next(element, (None, None))
if k is None:
return 0
indexes = []
pool = tuple(iterable)
for n, x in enumerate(pool):
while x == y:
indexes.append(n)
tmp, y = next(element, (None, None))
if tmp is None:
break
else:
k = tmp
if y is None:
break
else:
raise ValueError(
'element is not a combination with replacment of iterable'
)
n = len(pool)
occupations = [0] * n
for p in indexes:
occupations[p] += 1
index = 0
for k in range(1, n):
j = l + n - 1 - k - sum(occupations[:k])
i = n - k
if i <= j:
index += factorial(j) // (factorial(i) * factorial(j - i))
return index
def permutation_index(element, iterable):
"""Equivalent to ``list(permutations(iterable, r)).index(element)```
The subsequences of *iterable* that are of length *r* where order is
important can be ordered lexicographically. :func:`permutation_index`
computes the index of the first *element* directly, without computing
the previous permutations.
>>> permutation_index([1, 3, 2], range(5))
19
``ValueError`` will be raised if the given *element* isn't one of the
permutations of *iterable*.
"""
index = 0
pool = list(iterable)
for i, x in zip(range(len(pool), -1, -1), element):
r = pool.index(x)
index = index * i + r
del pool[r]
return index
class countable:
"""Wrap *iterable* and keep a count of how many items have been consumed.
The ``items_seen`` attribute starts at ``0`` and increments as the iterable
is consumed:
>>> iterable = map(str, range(10))
>>> it = countable(iterable)
>>> it.items_seen
0
>>> next(it), next(it)
('0', '1')
>>> list(it)
['2', '3', '4', '5', '6', '7', '8', '9']
>>> it.items_seen
10
"""
def __init__(self, iterable):
self._it = iter(iterable)
self.items_seen = 0
def __iter__(self):
return self
def __next__(self):
item = next(self._it)
self.items_seen += 1
return item
def chunked_even(iterable, n):
"""Break *iterable* into lists of approximately length *n*.
Items are distributed such the lengths of the lists differ by at most
1 item.
>>> iterable = [1, 2, 3, 4, 5, 6, 7]
>>> n = 3
>>> list(chunked_even(iterable, n)) # List lengths: 3, 2, 2
[[1, 2, 3], [4, 5], [6, 7]]
>>> list(chunked(iterable, n)) # List lengths: 3, 3, 1
[[1, 2, 3], [4, 5, 6], [7]]
"""
len_method = getattr(iterable, '__len__', None)
if len_method is None:
return _chunked_even_online(iterable, n)
else:
return _chunked_even_finite(iterable, len_method(), n)
def _chunked_even_online(iterable, n):
buffer = []
maxbuf = n + (n - 2) * (n - 1)
for x in iterable:
buffer.append(x)
if len(buffer) == maxbuf:
yield buffer[:n]
buffer = buffer[n:]
yield from _chunked_even_finite(buffer, len(buffer), n)
def _chunked_even_finite(iterable, N, n):
if N < 1:
return
# Lists are either size `full_size <= n` or `partial_size = full_size - 1`
q, r = divmod(N, n)
num_lists = q + (1 if r > 0 else 0)
q, r = divmod(N, num_lists)
full_size = q + (1 if r > 0 else 0)
partial_size = full_size - 1
num_full = N - partial_size * num_lists
num_partial = num_lists - num_full
# Yield num_full lists of full_size
partial_start_idx = num_full * full_size
if full_size > 0:
for i in range(0, partial_start_idx, full_size):
yield list(islice(iterable, i, i + full_size))
# Yield num_partial lists of partial_size
if partial_size > 0:
for i in range(
partial_start_idx,
partial_start_idx + (num_partial * partial_size),
partial_size,
):
yield list(islice(iterable, i, i + partial_size))
def zip_broadcast(*objects, scalar_types=(str, bytes), strict=False):
"""A version of :func:`zip` that "broadcasts" any scalar
(i.e., non-iterable) items into output tuples.
>>> iterable_1 = [1, 2, 3]
>>> iterable_2 = ['a', 'b', 'c']
>>> scalar = '_'
>>> list(zip_broadcast(iterable_1, iterable_2, scalar))
[(1, 'a', '_'), (2, 'b', '_'), (3, 'c', '_')]
The *scalar_types* keyword argument determines what types are considered
scalar. It is set to ``(str, bytes)`` by default. Set it to ``None`` to
treat strings and byte strings as iterable:
>>> list(zip_broadcast('abc', 0, 'xyz', scalar_types=None))
[('a', 0, 'x'), ('b', 0, 'y'), ('c', 0, 'z')]
If the *strict* keyword argument is ``True``, then
``UnequalIterablesError`` will be raised if any of the iterables have
different lengths.
"""
def is_scalar(obj):
if scalar_types and isinstance(obj, scalar_types):
return True
try:
iter(obj)
except TypeError:
return True
else:
return False
size = len(objects)
if not size:
return
new_item = [None] * size
iterables, iterable_positions = [], []
for i, obj in enumerate(objects):
if is_scalar(obj):
new_item[i] = obj
else:
iterables.append(iter(obj))
iterable_positions.append(i)
if not iterables:
yield tuple(objects)
return
zipper = _zip_equal if strict else zip
for item in zipper(*iterables):
for i, new_item[i] in zip(iterable_positions, item):
pass
yield tuple(new_item)
def unique_in_window(iterable, n, key=None):
"""Yield the items from *iterable* that haven't been seen recently.
*n* is the size of the lookback window.
>>> iterable = [0, 1, 0, 2, 3, 0]
>>> n = 3
>>> list(unique_in_window(iterable, n))
[0, 1, 2, 3, 0]
The *key* function, if provided, will be used to determine uniqueness:
>>> list(unique_in_window('abAcda', 3, key=lambda x: x.lower()))
['a', 'b', 'c', 'd', 'a']
The items in *iterable* must be hashable.
"""
if n <= 0:
raise ValueError('n must be greater than 0')
window = deque(maxlen=n)
counts = defaultdict(int)
use_key = key is not None
for item in iterable:
if len(window) == n:
to_discard = window[0]
if counts[to_discard] == 1:
del counts[to_discard]
else:
counts[to_discard] -= 1
k = key(item) if use_key else item
if k not in counts:
yield item
counts[k] += 1
window.append(k)
def duplicates_everseen(iterable, key=None):
"""Yield duplicate elements after their first appearance.
>>> list(duplicates_everseen('mississippi'))
['s', 'i', 's', 's', 'i', 'p', 'i']
>>> list(duplicates_everseen('AaaBbbCccAaa', str.lower))
['a', 'a', 'b', 'b', 'c', 'c', 'A', 'a', 'a']
This function is analagous to :func:`unique_everseen` and is subject to
the same performance considerations.
"""
seen_set = set()
seen_list = []
use_key = key is not None
for element in iterable:
k = key(element) if use_key else element
try:
if k not in seen_set:
seen_set.add(k)
else:
yield element
except TypeError:
if k not in seen_list:
seen_list.append(k)
else:
yield element
def duplicates_justseen(iterable, key=None):
"""Yields serially-duplicate elements after their first appearance.
>>> list(duplicates_justseen('mississippi'))
['s', 's', 'p']
>>> list(duplicates_justseen('AaaBbbCccAaa', str.lower))
['a', 'a', 'b', 'b', 'c', 'c', 'a', 'a']
This function is analagous to :func:`unique_justseen`.
"""
return flatten(g for _, g in groupby(iterable, key) for _ in g)
def minmax(iterable_or_value, *others, key=None, default=_marker):
"""Returns both the smallest and largest items in an iterable
or the largest of two or more arguments.
>>> minmax([3, 1, 5])
(1, 5)
>>> minmax(4, 2, 6)
(2, 6)
If a *key* function is provided, it will be used to transform the input
items for comparison.
>>> minmax([5, 30], key=str) # '30' sorts before '5'
(30, 5)
If a *default* value is provided, it will be returned if there are no
input items.
>>> minmax([], default=(0, 0))
(0, 0)
Otherwise ``ValueError`` is raised.
This function is based on the
`recipe <http://code.activestate.com/recipes/577916/>`__ by
Raymond Hettinger and takes care to minimize the number of comparisons
performed.
"""
iterable = (iterable_or_value, *others) if others else iterable_or_value
it = iter(iterable)
try:
lo = hi = next(it)
except StopIteration as e:
if default is _marker:
raise ValueError(
'`minmax()` argument is an empty iterable. '
'Provide a `default` value to suppress this error.'
) from e
return default
# Different branches depending on the presence of key. This saves a lot
# of unimportant copies which would slow the "key=None" branch
# significantly down.
if key is None:
for x, y in zip_longest(it, it, fillvalue=lo):
if y < x:
x, y = y, x
if x < lo:
lo = x
if hi < y:
hi = y
else:
lo_key = hi_key = key(lo)
for x, y in zip_longest(it, it, fillvalue=lo):
x_key, y_key = key(x), key(y)
if y_key < x_key:
x, y, x_key, y_key = y, x, y_key, x_key
if x_key < lo_key:
lo, lo_key = x, x_key
if hi_key < y_key:
hi, hi_key = y, y_key
return lo, hi
def constrained_batches(
iterable, max_size, max_count=None, get_len=len, strict=True
):
"""Yield batches of items from *iterable* with a combined size limited by
*max_size*.
>>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1']
>>> list(constrained_batches(iterable, 10))
[(b'12345', b'123'), (b'12345678', b'1', b'1'), (b'12', b'1')]
If a *max_count* is supplied, the number of items per batch is also
limited:
>>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1']
>>> list(constrained_batches(iterable, 10, max_count = 2))
[(b'12345', b'123'), (b'12345678', b'1'), (b'1', b'12'), (b'1',)]
If a *get_len* function is supplied, use that instead of :func:`len` to
determine item size.
If *strict* is ``True``, raise ``ValueError`` if any single item is bigger
than *max_size*. Otherwise, allow single items to exceed *max_size*.
"""
if max_size <= 0:
raise ValueError('maximum size must be greater than zero')
batch = []
batch_size = 0
batch_count = 0
for item in iterable:
item_len = get_len(item)
if strict and item_len > max_size:
raise ValueError('item size exceeds maximum size')
reached_count = batch_count == max_count
reached_size = item_len + batch_size > max_size
if batch_count and (reached_size or reached_count):
yield tuple(batch)
batch.clear()
batch_size = 0
batch_count = 0
batch.append(item)
batch_size += item_len
batch_count += 1
if batch:
yield tuple(batch)
def gray_product(*iterables):
"""Like :func:`itertools.product`, but return tuples in an order such
that only one element in the generated tuple changes from one iteration
to the next.
>>> list(gray_product('AB','CD'))
[('A', 'C'), ('B', 'C'), ('B', 'D'), ('A', 'D')]
This function consumes all of the input iterables before producing output.
If any of the input iterables have fewer than two items, ``ValueError``
is raised.
For information on the algorithm, see
`this section <https://www-cs-faculty.stanford.edu/~knuth/fasc2a.ps.gz>`__
of Donald Knuth's *The Art of Computer Programming*.
"""
all_iterables = tuple(tuple(x) for x in iterables)
iterable_count = len(all_iterables)
for iterable in all_iterables:
if len(iterable) < 2:
raise ValueError("each iterable must have two or more items")
# This is based on "Algorithm H" from section 7.2.1.1, page 20.
# a holds the indexes of the source iterables for the n-tuple to be yielded
# f is the array of "focus pointers"
# o is the array of "directions"
a = [0] * iterable_count
f = list(range(iterable_count + 1))
o = [1] * iterable_count
while True:
yield tuple(all_iterables[i][a[i]] for i in range(iterable_count))
j = f[0]
f[0] = 0
if j == iterable_count:
break
a[j] = a[j] + o[j]
if a[j] == 0 or a[j] == len(all_iterables[j]) - 1:
o[j] = -o[j]
f[j] = f[j + 1]
f[j + 1] = j + 1
def partial_product(*iterables):
"""Yields tuples containing one item from each iterator, with subsequent
tuples changing a single item at a time by advancing each iterator until it
is exhausted. This sequence guarantees every value in each iterable is
output at least once without generating all possible combinations.
This may be useful, for example, when testing an expensive function.
>>> list(partial_product('AB', 'C', 'DEF'))
[('A', 'C', 'D'), ('B', 'C', 'D'), ('B', 'C', 'E'), ('B', 'C', 'F')]
"""
iterators = list(map(iter, iterables))
try:
prod = [next(it) for it in iterators]
except StopIteration:
return
yield tuple(prod)
for i, it in enumerate(iterators):
for prod[i] in it:
yield tuple(prod)
def takewhile_inclusive(predicate, iterable):
"""A variant of :func:`takewhile` that yields one additional element.
>>> list(takewhile_inclusive(lambda x: x < 5, [1, 4, 6, 4, 1]))
[1, 4, 6]
:func:`takewhile` would return ``[1, 4]``.
"""
for x in iterable:
if predicate(x):
yield x
else:
yield x
break
def outer_product(func, xs, ys, *args, **kwargs):
"""A generalized outer product that applies a binary function to all
pairs of items. Returns a 2D matrix with ``len(xs)`` rows and ``len(ys)``
columns.
Also accepts ``*args`` and ``**kwargs`` that are passed to ``func``.
Multiplication table:
>>> list(outer_product(mul, range(1, 4), range(1, 6)))
[(1, 2, 3, 4, 5), (2, 4, 6, 8, 10), (3, 6, 9, 12, 15)]
Cross tabulation:
>>> xs = ['A', 'B', 'A', 'A', 'B', 'B', 'A', 'A', 'B', 'B']
>>> ys = ['X', 'X', 'X', 'Y', 'Z', 'Z', 'Y', 'Y', 'Z', 'Z']
>>> rows = list(zip(xs, ys))
>>> count_rows = lambda x, y: rows.count((x, y))
>>> list(outer_product(count_rows, sorted(set(xs)), sorted(set(ys))))
[(2, 3, 0), (1, 0, 4)]
Usage with ``*args`` and ``**kwargs``:
>>> animals = ['cat', 'wolf', 'mouse']
>>> list(outer_product(min, animals, animals, key=len))
[('cat', 'cat', 'cat'), ('cat', 'wolf', 'wolf'), ('cat', 'wolf', 'mouse')]
"""
ys = tuple(ys)
return batched(
starmap(lambda x, y: func(x, y, *args, **kwargs), product(xs, ys)),
n=len(ys),
)
|