aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/more-itertools/py2/more_itertools/more.py
blob: bd32a26130423f1cdc64f9da787d514f3ca8ce6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
from __future__ import print_function

from collections import Counter, defaultdict, deque
from functools import partial, wraps
from heapq import merge
from itertools import (
    chain,
    compress,
    count,
    cycle,
    dropwhile,
    groupby,
    islice,
    repeat,
    starmap,
    takewhile,
    tee
)
from operator import itemgetter, lt, gt, sub
from sys import maxsize, version_info
try:
    from collections.abc import Sequence
except ImportError:
    from collections import Sequence

from six import binary_type, string_types, text_type
from six.moves import filter, map, range, zip, zip_longest

from .recipes import consume, flatten, take

__all__ = [
    'adjacent',
    'always_iterable',
    'always_reversible',
    'bucket',
    'chunked',
    'circular_shifts',
    'collapse',
    'collate',
    'consecutive_groups',
    'consumer',
    'count_cycle',
    'difference',
    'distinct_permutations',
    'distribute',
    'divide',
    'exactly_n',
    'first',
    'groupby_transform',
    'ilen',
    'interleave_longest',
    'interleave',
    'intersperse',
    'islice_extended',
    'iterate',
    'last',
    'locate',
    'lstrip',
    'make_decorator',
    'map_reduce',
    'numeric_range',
    'one',
    'padded',
    'peekable',
    'replace',
    'rlocate',
    'rstrip',
    'run_length',
    'seekable',
    'SequenceView',
    'side_effect',
    'sliced',
    'sort_together',
    'split_at',
    'split_after',
    'split_before',
    'split_into',
    'spy',
    'stagger',
    'strip',
    'substrings',
    'unique_to_each',
    'unzip',
    'windowed',
    'with_iter',
    'zip_offset',
]

_marker = object()


def chunked(iterable, n):
    """Break *iterable* into lists of length *n*:

        >>> list(chunked([1, 2, 3, 4, 5, 6], 3))
        [[1, 2, 3], [4, 5, 6]]

    If the length of *iterable* is not evenly divisible by *n*, the last
    returned list will be shorter:

        >>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
        [[1, 2, 3], [4, 5, 6], [7, 8]]

    To use a fill-in value instead, see the :func:`grouper` recipe.

    :func:`chunked` is useful for splitting up a computation on a large number
    of keys into batches, to be pickled and sent off to worker processes. One
    example is operations on rows in MySQL, which does not implement
    server-side cursors properly and would otherwise load the entire dataset
    into RAM on the client.

    """
    return iter(partial(take, n, iter(iterable)), [])


def first(iterable, default=_marker):
    """Return the first item of *iterable*, or *default* if *iterable* is
    empty.

        >>> first([0, 1, 2, 3])
        0
        >>> first([], 'some default')
        'some default'

    If *default* is not provided and there are no items in the iterable,
    raise ``ValueError``.

    :func:`first` is useful when you have a generator of expensive-to-retrieve
    values and want any arbitrary one. It is marginally shorter than
    ``next(iter(iterable), default)``.

    """
    try:
        return next(iter(iterable))
    except StopIteration:
        # I'm on the edge about raising ValueError instead of StopIteration. At
        # the moment, ValueError wins, because the caller could conceivably
        # want to do something different with flow control when I raise the
        # exception, and it's weird to explicitly catch StopIteration.
        if default is _marker:
            raise ValueError('first() was called on an empty iterable, and no '
                             'default value was provided.')
        return default


def last(iterable, default=_marker):
    """Return the last item of *iterable*, or *default* if *iterable* is
    empty.

        >>> last([0, 1, 2, 3])
        3
        >>> last([], 'some default')
        'some default'

    If *default* is not provided and there are no items in the iterable,
    raise ``ValueError``.
    """
    try:
        try:
            # Try to access the last item directly
            return iterable[-1]
        except (TypeError, AttributeError, KeyError):
            # If not slice-able, iterate entirely using length-1 deque
            return deque(iterable, maxlen=1)[0]
    except IndexError:  # If the iterable was empty
        if default is _marker:
            raise ValueError('last() was called on an empty iterable, and no '
                             'default value was provided.')
        return default


class peekable(object):
    """Wrap an iterator to allow lookahead and prepending elements.

    Call :meth:`peek` on the result to get the value that will be returned
    by :func:`next`. This won't advance the iterator:

        >>> p = peekable(['a', 'b'])
        >>> p.peek()
        'a'
        >>> next(p)
        'a'

    Pass :meth:`peek` a default value to return that instead of raising
    ``StopIteration`` when the iterator is exhausted.

        >>> p = peekable([])
        >>> p.peek('hi')
        'hi'

    peekables also offer a :meth:`prepend` method, which "inserts" items
    at the head of the iterable:

        >>> p = peekable([1, 2, 3])
        >>> p.prepend(10, 11, 12)
        >>> next(p)
        10
        >>> p.peek()
        11
        >>> list(p)
        [11, 12, 1, 2, 3]

    peekables can be indexed. Index 0 is the item that will be returned by
    :func:`next`, index 1 is the item after that, and so on:
    The values up to the given index will be cached.

        >>> p = peekable(['a', 'b', 'c', 'd'])
        >>> p[0]
        'a'
        >>> p[1]
        'b'
        >>> next(p)
        'a'

    Negative indexes are supported, but be aware that they will cache the
    remaining items in the source iterator, which may require significant
    storage.

    To check whether a peekable is exhausted, check its truth value:

        >>> p = peekable(['a', 'b'])
        >>> if p:  # peekable has items
        ...     list(p)
        ['a', 'b']
        >>> if not p:  # peekable is exhaused
        ...     list(p)
        []

    """
    def __init__(self, iterable):
        self._it = iter(iterable)
        self._cache = deque()

    def __iter__(self):
        return self

    def __bool__(self):
        try:
            self.peek()
        except StopIteration:
            return False
        return True

    def __nonzero__(self):
        # For Python 2 compatibility
        return self.__bool__()

    def peek(self, default=_marker):
        """Return the item that will be next returned from ``next()``.

        Return ``default`` if there are no items left. If ``default`` is not
        provided, raise ``StopIteration``.

        """
        if not self._cache:
            try:
                self._cache.append(next(self._it))
            except StopIteration:
                if default is _marker:
                    raise
                return default
        return self._cache[0]

    def prepend(self, *items):
        """Stack up items to be the next ones returned from ``next()`` or
        ``self.peek()``. The items will be returned in
        first in, first out order::

            >>> p = peekable([1, 2, 3])
            >>> p.prepend(10, 11, 12)
            >>> next(p)
            10
            >>> list(p)
            [11, 12, 1, 2, 3]

        It is possible, by prepending items, to "resurrect" a peekable that
        previously raised ``StopIteration``.

            >>> p = peekable([])
            >>> next(p)
            Traceback (most recent call last):
              ...
            StopIteration
            >>> p.prepend(1)
            >>> next(p)
            1
            >>> next(p)
            Traceback (most recent call last):
              ...
            StopIteration

        """
        self._cache.extendleft(reversed(items))

    def __next__(self):
        if self._cache:
            return self._cache.popleft()

        return next(self._it)

    next = __next__  # For Python 2 compatibility

    def _get_slice(self, index):
        # Normalize the slice's arguments
        step = 1 if (index.step is None) else index.step
        if step > 0:
            start = 0 if (index.start is None) else index.start
            stop = maxsize if (index.stop is None) else index.stop
        elif step < 0:
            start = -1 if (index.start is None) else index.start
            stop = (-maxsize - 1) if (index.stop is None) else index.stop
        else:
            raise ValueError('slice step cannot be zero')

        # If either the start or stop index is negative, we'll need to cache
        # the rest of the iterable in order to slice from the right side.
        if (start < 0) or (stop < 0):
            self._cache.extend(self._it)
        # Otherwise we'll need to find the rightmost index and cache to that
        # point.
        else:
            n = min(max(start, stop) + 1, maxsize)
            cache_len = len(self._cache)
            if n >= cache_len:
                self._cache.extend(islice(self._it, n - cache_len))

        return list(self._cache)[index]

    def __getitem__(self, index):
        if isinstance(index, slice):
            return self._get_slice(index)

        cache_len = len(self._cache)
        if index < 0:
            self._cache.extend(self._it)
        elif index >= cache_len:
            self._cache.extend(islice(self._it, index + 1 - cache_len))

        return self._cache[index]


def _collate(*iterables, **kwargs):
    """Helper for ``collate()``, called when the user is using the ``reverse``
    or ``key`` keyword arguments on Python versions below 3.5.

    """
    key = kwargs.pop('key', lambda a: a)
    reverse = kwargs.pop('reverse', False)

    min_or_max = partial(max if reverse else min, key=itemgetter(0))
    peekables = [peekable(it) for it in iterables]
    peekables = [p for p in peekables if p]  # Kill empties.
    while peekables:
        _, p = min_or_max((key(p.peek()), p) for p in peekables)
        yield next(p)
        peekables = [x for x in peekables if x]


def collate(*iterables, **kwargs):
    """Return a sorted merge of the items from each of several already-sorted
    *iterables*.

        >>> list(collate('ACDZ', 'AZ', 'JKL'))
        ['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z']

    Works lazily, keeping only the next value from each iterable in memory. Use
    :func:`collate` to, for example, perform a n-way mergesort of items that
    don't fit in memory.

    If a *key* function is specified, the iterables will be sorted according
    to its result:

        >>> key = lambda s: int(s)  # Sort by numeric value, not by string
        >>> list(collate(['1', '10'], ['2', '11'], key=key))
        ['1', '2', '10', '11']


    If the *iterables* are sorted in descending order, set *reverse* to
    ``True``:

        >>> list(collate([5, 3, 1], [4, 2, 0], reverse=True))
        [5, 4, 3, 2, 1, 0]

    If the elements of the passed-in iterables are out of order, you might get
    unexpected results.

    On Python 2.7, this function delegates to :func:`heapq.merge` if neither
    of the keyword arguments are specified. On Python 3.5+, this function
    is an alias for :func:`heapq.merge`.

    """
    if not kwargs:
        return merge(*iterables)

    return _collate(*iterables, **kwargs)


# If using Python version 3.5 or greater, heapq.merge() will be faster than
# collate - use that instead.
if version_info >= (3, 5, 0):
    _collate_docstring = collate.__doc__
    collate = partial(merge)
    collate.__doc__ = _collate_docstring


def consumer(func):
    """Decorator that automatically advances a PEP-342-style "reverse iterator"
    to its first yield point so you don't have to call ``next()`` on it
    manually.

        >>> @consumer
        ... def tally():
        ...     i = 0
        ...     while True:
        ...         print('Thing number %s is %s.' % (i, (yield)))
        ...         i += 1
        ...
        >>> t = tally()
        >>> t.send('red')
        Thing number 0 is red.
        >>> t.send('fish')
        Thing number 1 is fish.

    Without the decorator, you would have to call ``next(t)`` before
    ``t.send()`` could be used.

    """
    @wraps(func)
    def wrapper(*args, **kwargs):
        gen = func(*args, **kwargs)
        next(gen)
        return gen
    return wrapper


def ilen(iterable):
    """Return the number of items in *iterable*.

        >>> ilen(x for x in range(1000000) if x % 3 == 0)
        333334

    This consumes the iterable, so handle with care.

    """
    # This approach was selected because benchmarks showed it's likely the
    # fastest of the known implementations at the time of writing.
    # See GitHub tracker: #236, #230.
    counter = count()
    deque(zip(iterable, counter), maxlen=0)
    return next(counter)


def iterate(func, start):
    """Return ``start``, ``func(start)``, ``func(func(start))``, ...

        >>> from itertools import islice
        >>> list(islice(iterate(lambda x: 2*x, 1), 10))
        [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

    """
    while True:
        yield start
        start = func(start)


def with_iter(context_manager):
    """Wrap an iterable in a ``with`` statement, so it closes once exhausted.

    For example, this will close the file when the iterator is exhausted::

        upper_lines = (line.upper() for line in with_iter(open('foo')))

    Any context manager which returns an iterable is a candidate for
    ``with_iter``.

    """
    with context_manager as iterable:
        for item in iterable:
            yield item


def one(iterable, too_short=None, too_long=None):
    """Return the first item from *iterable*, which is expected to contain only
    that item. Raise an exception if *iterable* is empty or has more than one
    item.

    :func:`one` is useful for ensuring that an iterable contains only one item.
    For example, it can be used to retrieve the result of a database query
    that is expected to return a single row.

    If *iterable* is empty, ``ValueError`` will be raised. You may specify a
    different exception with the *too_short* keyword:

        >>> it = []
        >>> one(it)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        ValueError: too many items in iterable (expected 1)'
        >>> too_short = IndexError('too few items')
        >>> one(it, too_short=too_short)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        IndexError: too few items

    Similarly, if *iterable* contains more than one item, ``ValueError`` will
    be raised. You may specify a different exception with the *too_long*
    keyword:

        >>> it = ['too', 'many']
        >>> one(it)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        ValueError: too many items in iterable (expected 1)'
        >>> too_long = RuntimeError
        >>> one(it, too_long=too_long)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        RuntimeError

    Note that :func:`one` attempts to advance *iterable* twice to ensure there
    is only one item. If there is more than one, both items will be discarded.
    See :func:`spy` or :func:`peekable` to check iterable contents less
    destructively.

    """
    it = iter(iterable)

    try:
        value = next(it)
    except StopIteration:
        raise too_short or ValueError('too few items in iterable (expected 1)')

    try:
        next(it)
    except StopIteration:
        pass
    else:
        raise too_long or ValueError('too many items in iterable (expected 1)')

    return value


def distinct_permutations(iterable):
    """Yield successive distinct permutations of the elements in *iterable*.

        >>> sorted(distinct_permutations([1, 0, 1]))
        [(0, 1, 1), (1, 0, 1), (1, 1, 0)]

    Equivalent to ``set(permutations(iterable))``, except duplicates are not
    generated and thrown away. For larger input sequences this is much more
    efficient.

    Duplicate permutations arise when there are duplicated elements in the
    input iterable. The number of items returned is
    `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of
    items input, and each `x_i` is the count of a distinct item in the input
    sequence.

    """
    def perm_unique_helper(item_counts, perm, i):
        """Internal helper function

        :arg item_counts: Stores the unique items in ``iterable`` and how many
            times they are repeated
        :arg perm: The permutation that is being built for output
        :arg i: The index of the permutation being modified

        The output permutations are built up recursively; the distinct items
        are placed until their repetitions are exhausted.
        """
        if i < 0:
            yield tuple(perm)
        else:
            for item in item_counts:
                if item_counts[item] <= 0:
                    continue
                perm[i] = item
                item_counts[item] -= 1
                for x in perm_unique_helper(item_counts, perm, i - 1):
                    yield x
                item_counts[item] += 1

    item_counts = Counter(iterable)
    length = sum(item_counts.values())

    return perm_unique_helper(item_counts, [None] * length, length - 1)


def intersperse(e, iterable, n=1):
    """Intersperse filler element *e* among the items in *iterable*, leaving
    *n* items between each filler element.

        >>> list(intersperse('!', [1, 2, 3, 4, 5]))
        [1, '!', 2, '!', 3, '!', 4, '!', 5]

        >>> list(intersperse(None, [1, 2, 3, 4, 5], n=2))
        [1, 2, None, 3, 4, None, 5]

    """
    if n == 0:
        raise ValueError('n must be > 0')
    elif n == 1:
        # interleave(repeat(e), iterable) -> e, x_0, e, e, x_1, e, x_2...
        # islice(..., 1, None) -> x_0, e, e, x_1, e, x_2...
        return islice(interleave(repeat(e), iterable), 1, None)
    else:
        # interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]...
        # islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]...
        # flatten(...) -> x_0, x_1, e, x_2, x_3...
        filler = repeat([e])
        chunks = chunked(iterable, n)
        return flatten(islice(interleave(filler, chunks), 1, None))


def unique_to_each(*iterables):
    """Return the elements from each of the input iterables that aren't in the
    other input iterables.

    For example, suppose you have a set of packages, each with a set of
    dependencies::

        {'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}

    If you remove one package, which dependencies can also be removed?

    If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not
    associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for
    ``pkg_2``, and ``D`` is only needed for ``pkg_3``::

        >>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
        [['A'], ['C'], ['D']]

    If there are duplicates in one input iterable that aren't in the others
    they will be duplicated in the output. Input order is preserved::

        >>> unique_to_each("mississippi", "missouri")
        [['p', 'p'], ['o', 'u', 'r']]

    It is assumed that the elements of each iterable are hashable.

    """
    pool = [list(it) for it in iterables]
    counts = Counter(chain.from_iterable(map(set, pool)))
    uniques = {element for element in counts if counts[element] == 1}
    return [list(filter(uniques.__contains__, it)) for it in pool]


def windowed(seq, n, fillvalue=None, step=1):
    """Return a sliding window of width *n* over the given iterable.

        >>> all_windows = windowed([1, 2, 3, 4, 5], 3)
        >>> list(all_windows)
        [(1, 2, 3), (2, 3, 4), (3, 4, 5)]

    When the window is larger than the iterable, *fillvalue* is used in place
    of missing values::

        >>> list(windowed([1, 2, 3], 4))
        [(1, 2, 3, None)]

    Each window will advance in increments of *step*:

        >>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
        [(1, 2, 3), (3, 4, 5), (5, 6, '!')]

    """
    if n < 0:
        raise ValueError('n must be >= 0')
    if n == 0:
        yield tuple()
        return
    if step < 1:
        raise ValueError('step must be >= 1')

    it = iter(seq)
    window = deque([], n)
    append = window.append

    # Initial deque fill
    for _ in range(n):
        append(next(it, fillvalue))
    yield tuple(window)

    # Appending new items to the right causes old items to fall off the left
    i = 0
    for item in it:
        append(item)
        i = (i + 1) % step
        if i % step == 0:
            yield tuple(window)

    # If there are items from the iterable in the window, pad with the given
    # value and emit them.
    if (i % step) and (step - i < n):
        for _ in range(step - i):
            append(fillvalue)
        yield tuple(window)


def substrings(iterable, join_func=None):
    """Yield all of the substrings of *iterable*.

        >>> [''.join(s) for s in substrings('more')]
        ['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more']

    Note that non-string iterables can also be subdivided.

        >>> list(substrings([0, 1, 2]))
        [(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]

    """
    # The length-1 substrings
    seq = []
    for item in iter(iterable):
        seq.append(item)
        yield (item,)
    seq = tuple(seq)
    item_count = len(seq)

    # And the rest
    for n in range(2, item_count + 1):
        for i in range(item_count - n + 1):
            yield seq[i:i + n]


class bucket(object):
    """Wrap *iterable* and return an object that buckets it iterable into
    child iterables based on a *key* function.

        >>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
        >>> s = bucket(iterable, key=lambda x: x[0])
        >>> a_iterable = s['a']
        >>> next(a_iterable)
        'a1'
        >>> next(a_iterable)
        'a2'
        >>> list(s['b'])
        ['b1', 'b2', 'b3']

    The original iterable will be advanced and its items will be cached until
    they are used by the child iterables. This may require significant storage.

    By default, attempting to select a bucket to which no items belong  will
    exhaust the iterable and cache all values.
    If you specify a *validator* function, selected buckets will instead be
    checked against it.

        >>> from itertools import count
        >>> it = count(1, 2)  # Infinite sequence of odd numbers
        >>> key = lambda x: x % 10  # Bucket by last digit
        >>> validator = lambda x: x in {1, 3, 5, 7, 9}  # Odd digits only
        >>> s = bucket(it, key=key, validator=validator)
        >>> 2 in s
        False
        >>> list(s[2])
        []

    """
    def __init__(self, iterable, key, validator=None):
        self._it = iter(iterable)
        self._key = key
        self._cache = defaultdict(deque)
        self._validator = validator or (lambda x: True)

    def __contains__(self, value):
        if not self._validator(value):
            return False

        try:
            item = next(self[value])
        except StopIteration:
            return False
        else:
            self._cache[value].appendleft(item)

        return True

    def _get_values(self, value):
        """
        Helper to yield items from the parent iterator that match *value*.
        Items that don't match are stored in the local cache as they
        are encountered.
        """
        while True:
            # If we've cached some items that match the target value, emit
            # the first one and evict it from the cache.
            if self._cache[value]:
                yield self._cache[value].popleft()
            # Otherwise we need to advance the parent iterator to search for
            # a matching item, caching the rest.
            else:
                while True:
                    try:
                        item = next(self._it)
                    except StopIteration:
                        return
                    item_value = self._key(item)
                    if item_value == value:
                        yield item
                        break
                    elif self._validator(item_value):
                        self._cache[item_value].append(item)

    def __getitem__(self, value):
        if not self._validator(value):
            return iter(())

        return self._get_values(value)


def spy(iterable, n=1):
    """Return a 2-tuple with a list containing the first *n* elements of
    *iterable*, and an iterator with the same items as *iterable*.
    This allows you to "look ahead" at the items in the iterable without
    advancing it.

    There is one item in the list by default:

        >>> iterable = 'abcdefg'
        >>> head, iterable = spy(iterable)
        >>> head
        ['a']
        >>> list(iterable)
        ['a', 'b', 'c', 'd', 'e', 'f', 'g']

    You may use unpacking to retrieve items instead of lists:

        >>> (head,), iterable = spy('abcdefg')
        >>> head
        'a'
        >>> (first, second), iterable = spy('abcdefg', 2)
        >>> first
        'a'
        >>> second
        'b'

    The number of items requested can be larger than the number of items in
    the iterable:

        >>> iterable = [1, 2, 3, 4, 5]
        >>> head, iterable = spy(iterable, 10)
        >>> head
        [1, 2, 3, 4, 5]
        >>> list(iterable)
        [1, 2, 3, 4, 5]

    """
    it = iter(iterable)
    head = take(n, it)

    return head, chain(head, it)


def interleave(*iterables):
    """Return a new iterable yielding from each iterable in turn,
    until the shortest is exhausted.

        >>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
        [1, 4, 6, 2, 5, 7]

    For a version that doesn't terminate after the shortest iterable is
    exhausted, see :func:`interleave_longest`.

    """
    return chain.from_iterable(zip(*iterables))


def interleave_longest(*iterables):
    """Return a new iterable yielding from each iterable in turn,
    skipping any that are exhausted.

        >>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
        [1, 4, 6, 2, 5, 7, 3, 8]

    This function produces the same output as :func:`roundrobin`, but may
    perform better for some inputs (in particular when the number of iterables
    is large).

    """
    i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker))
    return (x for x in i if x is not _marker)


def collapse(iterable, base_type=None, levels=None):
    """Flatten an iterable with multiple levels of nesting (e.g., a list of
    lists of tuples) into non-iterable types.

        >>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
        >>> list(collapse(iterable))
        [1, 2, 3, 4, 5, 6]

    String types are not considered iterable and will not be collapsed.
    To avoid collapsing other types, specify *base_type*:

        >>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
        >>> list(collapse(iterable, base_type=tuple))
        ['ab', ('cd', 'ef'), 'gh', 'ij']

    Specify *levels* to stop flattening after a certain level:

    >>> iterable = [('a', ['b']), ('c', ['d'])]
    >>> list(collapse(iterable))  # Fully flattened
    ['a', 'b', 'c', 'd']
    >>> list(collapse(iterable, levels=1))  # Only one level flattened
    ['a', ['b'], 'c', ['d']]

    """
    def walk(node, level):
        if (
            ((levels is not None) and (level > levels)) or
            isinstance(node, string_types) or
            ((base_type is not None) and isinstance(node, base_type))
        ):
            yield node
            return

        try:
            tree = iter(node)
        except TypeError:
            yield node
            return
        else:
            for child in tree:
                for x in walk(child, level + 1):
                    yield x

    for x in walk(iterable, 0):
        yield x


def side_effect(func, iterable, chunk_size=None, before=None, after=None):
    """Invoke *func* on each item in *iterable* (or on each *chunk_size* group
    of items) before yielding the item.

    `func` must be a function that takes a single argument. Its return value
    will be discarded.

    *before* and *after* are optional functions that take no arguments. They
    will be executed before iteration starts and after it ends, respectively.

    `side_effect` can be used for logging, updating progress bars, or anything
    that is not functionally "pure."

    Emitting a status message:

        >>> from more_itertools import consume
        >>> func = lambda item: print('Received {}'.format(item))
        >>> consume(side_effect(func, range(2)))
        Received 0
        Received 1

    Operating on chunks of items:

        >>> pair_sums = []
        >>> func = lambda chunk: pair_sums.append(sum(chunk))
        >>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
        [0, 1, 2, 3, 4, 5]
        >>> list(pair_sums)
        [1, 5, 9]

    Writing to a file-like object:

        >>> from io import StringIO
        >>> from more_itertools import consume
        >>> f = StringIO()
        >>> func = lambda x: print(x, file=f)
        >>> before = lambda: print(u'HEADER', file=f)
        >>> after = f.close
        >>> it = [u'a', u'b', u'c']
        >>> consume(side_effect(func, it, before=before, after=after))
        >>> f.closed
        True

    """
    try:
        if before is not None:
            before()

        if chunk_size is None:
            for item in iterable:
                func(item)
                yield item
        else:
            for chunk in chunked(iterable, chunk_size):
                func(chunk)
                for item in chunk:
                    yield item
    finally:
        if after is not None:
            after()


def sliced(seq, n):
    """Yield slices of length *n* from the sequence *seq*.

        >>> list(sliced((1, 2, 3, 4, 5, 6), 3))
        [(1, 2, 3), (4, 5, 6)]

    If the length of the sequence is not divisible by the requested slice
    length, the last slice will be shorter.

        >>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
        [(1, 2, 3), (4, 5, 6), (7, 8)]

    This function will only work for iterables that support slicing.
    For non-sliceable iterables, see :func:`chunked`.

    """
    return takewhile(bool, (seq[i: i + n] for i in count(0, n)))


def split_at(iterable, pred):
    """Yield lists of items from *iterable*, where each list is delimited by
    an item where callable *pred* returns ``True``. The lists do not include
    the delimiting items.

        >>> list(split_at('abcdcba', lambda x: x == 'b'))
        [['a'], ['c', 'd', 'c'], ['a']]

        >>> list(split_at(range(10), lambda n: n % 2 == 1))
        [[0], [2], [4], [6], [8], []]
    """
    buf = []
    for item in iterable:
        if pred(item):
            yield buf
            buf = []
        else:
            buf.append(item)
    yield buf


def split_before(iterable, pred):
    """Yield lists of items from *iterable*, where each list starts with an
    item where callable *pred* returns ``True``:

        >>> list(split_before('OneTwo', lambda s: s.isupper()))
        [['O', 'n', 'e'], ['T', 'w', 'o']]

        >>> list(split_before(range(10), lambda n: n % 3 == 0))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

    """
    buf = []
    for item in iterable:
        if pred(item) and buf:
            yield buf
            buf = []
        buf.append(item)
    yield buf


def split_after(iterable, pred):
    """Yield lists of items from *iterable*, where each list ends with an
    item where callable *pred* returns ``True``:

        >>> list(split_after('one1two2', lambda s: s.isdigit()))
        [['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]

        >>> list(split_after(range(10), lambda n: n % 3 == 0))
        [[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]

    """
    buf = []
    for item in iterable:
        buf.append(item)
        if pred(item) and buf:
            yield buf
            buf = []
    if buf:
        yield buf


def split_into(iterable, sizes):
    """Yield a list of sequential items from *iterable* of length 'n' for each
    integer 'n' in *sizes*.

        >>> list(split_into([1,2,3,4,5,6], [1,2,3]))
        [[1], [2, 3], [4, 5, 6]]

    If the sum of *sizes* is smaller than the length of *iterable*, then the
    remaining items of *iterable* will not be returned.

        >>> list(split_into([1,2,3,4,5,6], [2,3]))
        [[1, 2], [3, 4, 5]]

    If the sum of *sizes* is larger than the length of *iterable*, fewer items
    will be returned in the iteration that overruns *iterable* and further
    lists will be empty:

        >>> list(split_into([1,2,3,4], [1,2,3,4]))
        [[1], [2, 3], [4], []]

    When a ``None`` object is encountered in *sizes*, the returned list will
    contain items up to the end of *iterable* the same way that itertools.slice
    does:

        >>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None]))
        [[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]]

    :func:`split_into` can be useful for grouping a series of items where the
    sizes of the groups are not uniform. An example would be where in a row
    from a table, multiple columns represent elements of the same feature
    (e.g. a point represented by x,y,z) but, the format is not the same for
    all columns.
    """
    # convert the iterable argument into an iterator so its contents can
    # be consumed by islice in case it is a generator
    it = iter(iterable)

    for size in sizes:
        if size is None:
            yield list(it)
            return
        else:
            yield list(islice(it, size))


def padded(iterable, fillvalue=None, n=None, next_multiple=False):
    """Yield the elements from *iterable*, followed by *fillvalue*, such that
    at least *n* items are emitted.

        >>> list(padded([1, 2, 3], '?', 5))
        [1, 2, 3, '?', '?']

    If *next_multiple* is ``True``, *fillvalue* will be emitted until the
    number of items emitted is a multiple of *n*::

        >>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
        [1, 2, 3, 4, None, None]

    If *n* is ``None``, *fillvalue* will be emitted indefinitely.

    """
    it = iter(iterable)
    if n is None:
        for item in chain(it, repeat(fillvalue)):
            yield item
    elif n < 1:
        raise ValueError('n must be at least 1')
    else:
        item_count = 0
        for item in it:
            yield item
            item_count += 1

        remaining = (n - item_count) % n if next_multiple else n - item_count
        for _ in range(remaining):
            yield fillvalue


def distribute(n, iterable):
    """Distribute the items from *iterable* among *n* smaller iterables.

        >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 3, 5]
        >>> list(group_2)
        [2, 4, 6]

    If the length of *iterable* is not evenly divisible by *n*, then the
    length of the returned iterables will not be identical:

        >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 4, 7], [2, 5], [3, 6]]

    If the length of *iterable* is smaller than *n*, then the last returned
    iterables will be empty:

        >>> children = distribute(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]

    This function uses :func:`itertools.tee` and may require significant
    storage. If you need the order items in the smaller iterables to match the
    original iterable, see :func:`divide`.

    """
    if n < 1:
        raise ValueError('n must be at least 1')

    children = tee(iterable, n)
    return [islice(it, index, None, n) for index, it in enumerate(children)]


def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None):
    """Yield tuples whose elements are offset from *iterable*.
    The amount by which the `i`-th item in each tuple is offset is given by
    the `i`-th item in *offsets*.

        >>> list(stagger([0, 1, 2, 3]))
        [(None, 0, 1), (0, 1, 2), (1, 2, 3)]
        >>> list(stagger(range(8), offsets=(0, 2, 4)))
        [(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]

    By default, the sequence will end when the final element of a tuple is the
    last item in the iterable. To continue until the first element of a tuple
    is the last item in the iterable, set *longest* to ``True``::

        >>> list(stagger([0, 1, 2, 3], longest=True))
        [(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]

    By default, ``None`` will be used to replace offsets beyond the end of the
    sequence. Specify *fillvalue* to use some other value.

    """
    children = tee(iterable, len(offsets))

    return zip_offset(
        *children, offsets=offsets, longest=longest, fillvalue=fillvalue
    )


def zip_offset(*iterables, **kwargs):
    """``zip`` the input *iterables* together, but offset the `i`-th iterable
    by the `i`-th item in *offsets*.

        >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
        [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]

    This can be used as a lightweight alternative to SciPy or pandas to analyze
    data sets in which some series have a lead or lag relationship.

    By default, the sequence will end when the shortest iterable is exhausted.
    To continue until the longest iterable is exhausted, set *longest* to
    ``True``.

        >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
        [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]

    By default, ``None`` will be used to replace offsets beyond the end of the
    sequence. Specify *fillvalue* to use some other value.

    """
    offsets = kwargs['offsets']
    longest = kwargs.get('longest', False)
    fillvalue = kwargs.get('fillvalue', None)

    if len(iterables) != len(offsets):
        raise ValueError("Number of iterables and offsets didn't match")

    staggered = []
    for it, n in zip(iterables, offsets):
        if n < 0:
            staggered.append(chain(repeat(fillvalue, -n), it))
        elif n > 0:
            staggered.append(islice(it, n, None))
        else:
            staggered.append(it)

    if longest:
        return zip_longest(*staggered, fillvalue=fillvalue)

    return zip(*staggered)


def sort_together(iterables, key_list=(0,), reverse=False):
    """Return the input iterables sorted together, with *key_list* as the
    priority for sorting. All iterables are trimmed to the length of the
    shortest one.

    This can be used like the sorting function in a spreadsheet. If each
    iterable represents a column of data, the key list determines which
    columns are used for sorting.

    By default, all iterables are sorted using the ``0``-th iterable::

        >>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
        >>> sort_together(iterables)
        [(1, 2, 3, 4), ('d', 'c', 'b', 'a')]

    Set a different key list to sort according to another iterable.
    Specifying multiple keys dictates how ties are broken::

        >>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
        >>> sort_together(iterables, key_list=(1, 2))
        [(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]

    Set *reverse* to ``True`` to sort in descending order.

        >>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
        [(3, 2, 1), ('a', 'b', 'c')]

    """
    return list(zip(*sorted(zip(*iterables),
                            key=itemgetter(*key_list),
                            reverse=reverse)))


def unzip(iterable):
    """The inverse of :func:`zip`, this function disaggregates the elements
    of the zipped *iterable*.

    The ``i``-th iterable contains the ``i``-th element from each element
    of the zipped iterable. The first element is used to to determine the
    length of the remaining elements.

        >>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
        >>> letters, numbers = unzip(iterable)
        >>> list(letters)
        ['a', 'b', 'c', 'd']
        >>> list(numbers)
        [1, 2, 3, 4]

    This is similar to using ``zip(*iterable)``, but it avoids reading
    *iterable* into memory. Note, however, that this function uses
    :func:`itertools.tee` and thus may require significant storage.

    """
    head, iterable = spy(iter(iterable))
    if not head:
        # empty iterable, e.g. zip([], [], [])
        return ()
    # spy returns a one-length iterable as head
    head = head[0]
    iterables = tee(iterable, len(head))

    def itemgetter(i):
        def getter(obj):
            try:
                return obj[i]
            except IndexError:
                # basically if we have an iterable like
                # iter([(1, 2, 3), (4, 5), (6,)])
                # the second unzipped iterable would fail at the third tuple
                # since it would try to access tup[1]
                # same with the third unzipped iterable and the second tuple
                # to support these "improperly zipped" iterables,
                # we create a custom itemgetter
                # which just stops the unzipped iterables
                # at first length mismatch
                raise StopIteration
        return getter

    return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables))


def divide(n, iterable):
    """Divide the elements from *iterable* into *n* parts, maintaining
    order.

        >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 2, 3]
        >>> list(group_2)
        [4, 5, 6]

    If the length of *iterable* is not evenly divisible by *n*, then the
    length of the returned iterables will not be identical:

        >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 2, 3], [4, 5], [6, 7]]

    If the length of the iterable is smaller than n, then the last returned
    iterables will be empty:

        >>> children = divide(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]

    This function will exhaust the iterable before returning and may require
    significant storage. If order is not important, see :func:`distribute`,
    which does not first pull the iterable into memory.

    """
    if n < 1:
        raise ValueError('n must be at least 1')

    seq = tuple(iterable)
    q, r = divmod(len(seq), n)

    ret = []
    for i in range(n):
        start = (i * q) + (i if i < r else r)
        stop = ((i + 1) * q) + (i + 1 if i + 1 < r else r)
        ret.append(iter(seq[start:stop]))

    return ret


def always_iterable(obj, base_type=(text_type, binary_type)):
    """If *obj* is iterable, return an iterator over its items::

        >>> obj = (1, 2, 3)
        >>> list(always_iterable(obj))
        [1, 2, 3]

    If *obj* is not iterable, return a one-item iterable containing *obj*::

        >>> obj = 1
        >>> list(always_iterable(obj))
        [1]

    If *obj* is ``None``, return an empty iterable:

        >>> obj = None
        >>> list(always_iterable(None))
        []

    By default, binary and text strings are not considered iterable::

        >>> obj = 'foo'
        >>> list(always_iterable(obj))
        ['foo']

    If *base_type* is set, objects for which ``isinstance(obj, base_type)``
    returns ``True`` won't be considered iterable.

        >>> obj = {'a': 1}
        >>> list(always_iterable(obj))  # Iterate over the dict's keys
        ['a']
        >>> list(always_iterable(obj, base_type=dict))  # Treat dicts as a unit
        [{'a': 1}]

    Set *base_type* to ``None`` to avoid any special handling and treat objects
    Python considers iterable as iterable:

        >>> obj = 'foo'
        >>> list(always_iterable(obj, base_type=None))
        ['f', 'o', 'o']
    """
    if obj is None:
        return iter(())

    if (base_type is not None) and isinstance(obj, base_type):
        return iter((obj,))

    try:
        return iter(obj)
    except TypeError:
        return iter((obj,))


def adjacent(predicate, iterable, distance=1):
    """Return an iterable over `(bool, item)` tuples where the `item` is
    drawn from *iterable* and the `bool` indicates whether
    that item satisfies the *predicate* or is adjacent to an item that does.

    For example, to find whether items are adjacent to a ``3``::

        >>> list(adjacent(lambda x: x == 3, range(6)))
        [(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]

    Set *distance* to change what counts as adjacent. For example, to find
    whether items are two places away from a ``3``:

        >>> list(adjacent(lambda x: x == 3, range(6), distance=2))
        [(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]

    This is useful for contextualizing the results of a search function.
    For example, a code comparison tool might want to identify lines that
    have changed, but also surrounding lines to give the viewer of the diff
    context.

    The predicate function will only be called once for each item in the
    iterable.

    See also :func:`groupby_transform`, which can be used with this function
    to group ranges of items with the same `bool` value.

    """
    # Allow distance=0 mainly for testing that it reproduces results with map()
    if distance < 0:
        raise ValueError('distance must be at least 0')

    i1, i2 = tee(iterable)
    padding = [False] * distance
    selected = chain(padding, map(predicate, i1), padding)
    adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1))
    return zip(adjacent_to_selected, i2)


def groupby_transform(iterable, keyfunc=None, valuefunc=None):
    """An extension of :func:`itertools.groupby` that transforms the values of
    *iterable* after grouping them.
    *keyfunc* is a function used to compute a grouping key for each item.
    *valuefunc* is a function for transforming the items after grouping.

        >>> iterable = 'AaaABbBCcA'
        >>> keyfunc = lambda x: x.upper()
        >>> valuefunc = lambda x: x.lower()
        >>> grouper = groupby_transform(iterable, keyfunc, valuefunc)
        >>> [(k, ''.join(g)) for k, g in grouper]
        [('A', 'aaaa'), ('B', 'bbb'), ('C', 'cc'), ('A', 'a')]

    *keyfunc* and *valuefunc* default to identity functions if they are not
    specified.

    :func:`groupby_transform` is useful when grouping elements of an iterable
    using a separate iterable as the key. To do this, :func:`zip` the iterables
    and pass a *keyfunc* that extracts the first element and a *valuefunc*
    that extracts the second element::

        >>> from operator import itemgetter
        >>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
        >>> values = 'abcdefghi'
        >>> iterable = zip(keys, values)
        >>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
        >>> [(k, ''.join(g)) for k, g in grouper]
        [(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]

    Note that the order of items in the iterable is significant.
    Only adjacent items are grouped together, so if you don't want any
    duplicate groups, you should sort the iterable by the key function.

    """
    valuefunc = (lambda x: x) if valuefunc is None else valuefunc
    return ((k, map(valuefunc, g)) for k, g in groupby(iterable, keyfunc))


def numeric_range(*args):
    """An extension of the built-in ``range()`` function whose arguments can
    be any orderable numeric type.

    With only *stop* specified, *start* defaults to ``0`` and *step*
    defaults to ``1``. The output items will match the type of *stop*:

        >>> list(numeric_range(3.5))
        [0.0, 1.0, 2.0, 3.0]

    With only *start* and *stop* specified, *step* defaults to ``1``. The
    output items will match the type of *start*:

        >>> from decimal import Decimal
        >>> start = Decimal('2.1')
        >>> stop = Decimal('5.1')
        >>> list(numeric_range(start, stop))
        [Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]

    With *start*, *stop*, and *step*  specified the output items will match
    the type of ``start + step``:

        >>> from fractions import Fraction
        >>> start = Fraction(1, 2)  # Start at 1/2
        >>> stop = Fraction(5, 2)  # End at 5/2
        >>> step = Fraction(1, 2)  # Count by 1/2
        >>> list(numeric_range(start, stop, step))
        [Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]

    If *step* is zero, ``ValueError`` is raised. Negative steps are supported:

        >>> list(numeric_range(3, -1, -1.0))
        [3.0, 2.0, 1.0, 0.0]

    Be aware of the limitations of floating point numbers; the representation
    of the yielded numbers may be surprising.

    """
    argc = len(args)
    if argc == 1:
        stop, = args
        start = type(stop)(0)
        step = 1
    elif argc == 2:
        start, stop = args
        step = 1
    elif argc == 3:
        start, stop, step = args
    else:
        err_msg = 'numeric_range takes at most 3 arguments, got {}'
        raise TypeError(err_msg.format(argc))

    values = (start + (step * n) for n in count())
    if step > 0:
        return takewhile(partial(gt, stop), values)
    elif step < 0:
        return takewhile(partial(lt, stop), values)
    else:
        raise ValueError('numeric_range arg 3 must not be zero')


def count_cycle(iterable, n=None):
    """Cycle through the items from *iterable* up to *n* times, yielding
    the number of completed cycles along with each item. If *n* is omitted the
    process repeats indefinitely.

    >>> list(count_cycle('AB', 3))
    [(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]

    """
    iterable = tuple(iterable)
    if not iterable:
        return iter(())
    counter = count() if n is None else range(n)
    return ((i, item) for i in counter for item in iterable)


def locate(iterable, pred=bool, window_size=None):
    """Yield the index of each item in *iterable* for which *pred* returns
    ``True``.

    *pred* defaults to :func:`bool`, which will select truthy items:

        >>> list(locate([0, 1, 1, 0, 1, 0, 0]))
        [1, 2, 4]

    Set *pred* to a custom function to, e.g., find the indexes for a particular
    item.

        >>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
        [1, 3]

    If *window_size* is given, then the *pred* function will be called with
    that many items. This enables searching for sub-sequences:

        >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
        >>> pred = lambda *args: args == (1, 2, 3)
        >>> list(locate(iterable, pred=pred, window_size=3))
        [1, 5, 9]

    Use with :func:`seekable` to find indexes and then retrieve the associated
    items:

        >>> from itertools import count
        >>> from more_itertools import seekable
        >>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count())
        >>> it = seekable(source)
        >>> pred = lambda x: x > 100
        >>> indexes = locate(it, pred=pred)
        >>> i = next(indexes)
        >>> it.seek(i)
        >>> next(it)
        106

    """
    if window_size is None:
        return compress(count(), map(pred, iterable))

    if window_size < 1:
        raise ValueError('window size must be at least 1')

    it = windowed(iterable, window_size, fillvalue=_marker)
    return compress(count(), starmap(pred, it))


def lstrip(iterable, pred):
    """Yield the items from *iterable*, but strip any from the beginning
    for which *pred* returns ``True``.

    For example, to remove a set of items from the start of an iterable:

        >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
        >>> pred = lambda x: x in {None, False, ''}
        >>> list(lstrip(iterable, pred))
        [1, 2, None, 3, False, None]

    This function is analogous to to :func:`str.lstrip`, and is essentially
    an wrapper for :func:`itertools.dropwhile`.

    """
    return dropwhile(pred, iterable)


def rstrip(iterable, pred):
    """Yield the items from *iterable*, but strip any from the end
    for which *pred* returns ``True``.

    For example, to remove a set of items from the end of an iterable:

        >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
        >>> pred = lambda x: x in {None, False, ''}
        >>> list(rstrip(iterable, pred))
        [None, False, None, 1, 2, None, 3]

    This function is analogous to :func:`str.rstrip`.

    """
    cache = []
    cache_append = cache.append
    for x in iterable:
        if pred(x):
            cache_append(x)
        else:
            for y in cache:
                yield y
            del cache[:]
            yield x


def strip(iterable, pred):
    """Yield the items from *iterable*, but strip any from the
    beginning and end for which *pred* returns ``True``.

    For example, to remove a set of items from both ends of an iterable:

        >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
        >>> pred = lambda x: x in {None, False, ''}
        >>> list(strip(iterable, pred))
        [1, 2, None, 3]

    This function is analogous to :func:`str.strip`.

    """
    return rstrip(lstrip(iterable, pred), pred)


def islice_extended(iterable, *args):
    """An extension of :func:`itertools.islice` that supports negative values
    for *stop*, *start*, and *step*.

        >>> iterable = iter('abcdefgh')
        >>> list(islice_extended(iterable, -4, -1))
        ['e', 'f', 'g']

    Slices with negative values require some caching of *iterable*, but this
    function takes care to minimize the amount of memory required.

    For example, you can use a negative step with an infinite iterator:

        >>> from itertools import count
        >>> list(islice_extended(count(), 110, 99, -2))
        [110, 108, 106, 104, 102, 100]

    """
    s = slice(*args)
    start = s.start
    stop = s.stop
    if s.step == 0:
        raise ValueError('step argument must be a non-zero integer or None.')
    step = s.step or 1

    it = iter(iterable)

    if step > 0:
        start = 0 if (start is None) else start

        if (start < 0):
            # Consume all but the last -start items
            cache = deque(enumerate(it, 1), maxlen=-start)
            len_iter = cache[-1][0] if cache else 0

            # Adjust start to be positive
            i = max(len_iter + start, 0)

            # Adjust stop to be positive
            if stop is None:
                j = len_iter
            elif stop >= 0:
                j = min(stop, len_iter)
            else:
                j = max(len_iter + stop, 0)

            # Slice the cache
            n = j - i
            if n <= 0:
                return

            for index, item in islice(cache, 0, n, step):
                yield item
        elif (stop is not None) and (stop < 0):
            # Advance to the start position
            next(islice(it, start, start), None)

            # When stop is negative, we have to carry -stop items while
            # iterating
            cache = deque(islice(it, -stop), maxlen=-stop)

            for index, item in enumerate(it):
                cached_item = cache.popleft()
                if index % step == 0:
                    yield cached_item
                cache.append(item)
        else:
            # When both start and stop are positive we have the normal case
            for item in islice(it, start, stop, step):
                yield item
    else:
        start = -1 if (start is None) else start

        if (stop is not None) and (stop < 0):
            # Consume all but the last items
            n = -stop - 1
            cache = deque(enumerate(it, 1), maxlen=n)
            len_iter = cache[-1][0] if cache else 0

            # If start and stop are both negative they are comparable and
            # we can just slice. Otherwise we can adjust start to be negative
            # and then slice.
            if start < 0:
                i, j = start, stop
            else:
                i, j = min(start - len_iter, -1), None

            for index, item in list(cache)[i:j:step]:
                yield item
        else:
            # Advance to the stop position
            if stop is not None:
                m = stop + 1
                next(islice(it, m, m), None)

            # stop is positive, so if start is negative they are not comparable
            # and we need the rest of the items.
            if start < 0:
                i = start
                n = None
            # stop is None and start is positive, so we just need items up to
            # the start index.
            elif stop is None:
                i = None
                n = start + 1
            # Both stop and start are positive, so they are comparable.
            else:
                i = None
                n = start - stop
                if n <= 0:
                    return

            cache = list(islice(it, n))

            for item in cache[i::step]:
                yield item


def always_reversible(iterable):
    """An extension of :func:`reversed` that supports all iterables, not
    just those which implement the ``Reversible`` or ``Sequence`` protocols.

        >>> print(*always_reversible(x for x in range(3)))
        2 1 0

    If the iterable is already reversible, this function returns the
    result of :func:`reversed()`. If the iterable is not reversible,
    this function will cache the remaining items in the iterable and
    yield them in reverse order, which may require significant storage.
    """
    try:
        return reversed(iterable)
    except TypeError:
        return reversed(list(iterable))


def consecutive_groups(iterable, ordering=lambda x: x):
    """Yield groups of consecutive items using :func:`itertools.groupby`.
    The *ordering* function determines whether two items are adjacent by
    returning their position.

    By default, the ordering function is the identity function. This is
    suitable for finding runs of numbers:

        >>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40]
        >>> for group in consecutive_groups(iterable):
        ...     print(list(group))
        [1]
        [10, 11, 12]
        [20]
        [30, 31, 32, 33]
        [40]

    For finding runs of adjacent letters, try using the :meth:`index` method
    of a string of letters:

        >>> from string import ascii_lowercase
        >>> iterable = 'abcdfgilmnop'
        >>> ordering = ascii_lowercase.index
        >>> for group in consecutive_groups(iterable, ordering):
        ...     print(list(group))
        ['a', 'b', 'c', 'd']
        ['f', 'g']
        ['i']
        ['l', 'm', 'n', 'o', 'p']

    """
    for k, g in groupby(
        enumerate(iterable), key=lambda x: x[0] - ordering(x[1])
    ):
        yield map(itemgetter(1), g)


def difference(iterable, func=sub):
    """By default, compute the first difference of *iterable* using
    :func:`operator.sub`.

        >>> iterable = [0, 1, 3, 6, 10]
        >>> list(difference(iterable))
        [0, 1, 2, 3, 4]

    This is the opposite of :func:`accumulate`'s default behavior:

        >>> from more_itertools import accumulate
        >>> iterable = [0, 1, 2, 3, 4]
        >>> list(accumulate(iterable))
        [0, 1, 3, 6, 10]
        >>> list(difference(accumulate(iterable)))
        [0, 1, 2, 3, 4]

    By default *func* is :func:`operator.sub`, but other functions can be
    specified. They will be applied as follows::

        A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ...

    For example, to do progressive division:

        >>> iterable = [1, 2, 6, 24, 120]  # Factorial sequence
        >>> func = lambda x, y: x // y
        >>> list(difference(iterable, func))
        [1, 2, 3, 4, 5]

    """
    a, b = tee(iterable)
    try:
        item = next(b)
    except StopIteration:
        return iter([])
    return chain([item], map(lambda x: func(x[1], x[0]), zip(a, b)))


class SequenceView(Sequence):
    """Return a read-only view of the sequence object *target*.

    :class:`SequenceView` objects are analogous to Python's built-in
    "dictionary view" types. They provide a dynamic view of a sequence's items,
    meaning that when the sequence updates, so does the view.

        >>> seq = ['0', '1', '2']
        >>> view = SequenceView(seq)
        >>> view
        SequenceView(['0', '1', '2'])
        >>> seq.append('3')
        >>> view
        SequenceView(['0', '1', '2', '3'])

    Sequence views support indexing, slicing, and length queries. They act
    like the underlying sequence, except they don't allow assignment:

        >>> view[1]
        '1'
        >>> view[1:-1]
        ['1', '2']
        >>> len(view)
        4

    Sequence views are useful as an alternative to copying, as they don't
    require (much) extra storage.

    """
    def __init__(self, target):
        if not isinstance(target, Sequence):
            raise TypeError
        self._target = target

    def __getitem__(self, index):
        return self._target[index]

    def __len__(self):
        return len(self._target)

    def __repr__(self):
        return '{}({})'.format(self.__class__.__name__, repr(self._target))


class seekable(object):
    """Wrap an iterator to allow for seeking backward and forward. This
    progressively caches the items in the source iterable so they can be
    re-visited.

    Call :meth:`seek` with an index to seek to that position in the source
    iterable.

    To "reset" an iterator, seek to ``0``:

        >>> from itertools import count
        >>> it = seekable((str(n) for n in count()))
        >>> next(it), next(it), next(it)
        ('0', '1', '2')
        >>> it.seek(0)
        >>> next(it), next(it), next(it)
        ('0', '1', '2')
        >>> next(it)
        '3'

    You can also seek forward:

        >>> it = seekable((str(n) for n in range(20)))
        >>> it.seek(10)
        >>> next(it)
        '10'
        >>> it.seek(20)  # Seeking past the end of the source isn't a problem
        >>> list(it)
        []
        >>> it.seek(0)  # Resetting works even after hitting the end
        >>> next(it), next(it), next(it)
        ('0', '1', '2')

    The cache grows as the source iterable progresses, so beware of wrapping
    very large or infinite iterables.

    You may view the contents of the cache with the :meth:`elements` method.
    That returns a :class:`SequenceView`, a view that updates automatically:

        >>> it = seekable((str(n) for n in range(10)))
        >>> next(it), next(it), next(it)
        ('0', '1', '2')
        >>> elements = it.elements()
        >>> elements
        SequenceView(['0', '1', '2'])
        >>> next(it)
        '3'
        >>> elements
        SequenceView(['0', '1', '2', '3'])

    """

    def __init__(self, iterable):
        self._source = iter(iterable)
        self._cache = []
        self._index = None

    def __iter__(self):
        return self

    def __next__(self):
        if self._index is not None:
            try:
                item = self._cache[self._index]
            except IndexError:
                self._index = None
            else:
                self._index += 1
                return item

        item = next(self._source)
        self._cache.append(item)
        return item

    next = __next__

    def elements(self):
        return SequenceView(self._cache)

    def seek(self, index):
        self._index = index
        remainder = index - len(self._cache)
        if remainder > 0:
            consume(self, remainder)


class run_length(object):
    """
    :func:`run_length.encode` compresses an iterable with run-length encoding.
    It yields groups of repeated items with the count of how many times they
    were repeated:

        >>> uncompressed = 'abbcccdddd'
        >>> list(run_length.encode(uncompressed))
        [('a', 1), ('b', 2), ('c', 3), ('d', 4)]

    :func:`run_length.decode` decompresses an iterable that was previously
    compressed with run-length encoding. It yields the items of the
    decompressed iterable:

        >>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
        >>> list(run_length.decode(compressed))
        ['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd']

    """

    @staticmethod
    def encode(iterable):
        return ((k, ilen(g)) for k, g in groupby(iterable))

    @staticmethod
    def decode(iterable):
        return chain.from_iterable(repeat(k, n) for k, n in iterable)


def exactly_n(iterable, n, predicate=bool):
    """Return ``True`` if exactly ``n`` items in the iterable are ``True``
    according to the *predicate* function.

        >>> exactly_n([True, True, False], 2)
        True
        >>> exactly_n([True, True, False], 1)
        False
        >>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3)
        True

    The iterable will be advanced until ``n + 1`` truthy items are encountered,
    so avoid calling it on infinite iterables.

    """
    return len(take(n + 1, filter(predicate, iterable))) == n


def circular_shifts(iterable):
    """Return a list of circular shifts of *iterable*.

        >>> circular_shifts(range(4))
        [(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)]
    """
    lst = list(iterable)
    return take(len(lst), windowed(cycle(lst), len(lst)))


def make_decorator(wrapping_func, result_index=0):
    """Return a decorator version of *wrapping_func*, which is a function that
    modifies an iterable. *result_index* is the position in that function's
    signature where the iterable goes.

    This lets you use itertools on the "production end," i.e. at function
    definition. This can augment what the function returns without changing the
    function's code.

    For example, to produce a decorator version of :func:`chunked`:

        >>> from more_itertools import chunked
        >>> chunker = make_decorator(chunked, result_index=0)
        >>> @chunker(3)
        ... def iter_range(n):
        ...     return iter(range(n))
        ...
        >>> list(iter_range(9))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

    To only allow truthy items to be returned:

        >>> truth_serum = make_decorator(filter, result_index=1)
        >>> @truth_serum(bool)
        ... def boolean_test():
        ...     return [0, 1, '', ' ', False, True]
        ...
        >>> list(boolean_test())
        [1, ' ', True]

    The :func:`peekable` and :func:`seekable` wrappers make for practical
    decorators:

        >>> from more_itertools import peekable
        >>> peekable_function = make_decorator(peekable)
        >>> @peekable_function()
        ... def str_range(*args):
        ...     return (str(x) for x in range(*args))
        ...
        >>> it = str_range(1, 20, 2)
        >>> next(it), next(it), next(it)
        ('1', '3', '5')
        >>> it.peek()
        '7'
        >>> next(it)
        '7'

    """
    # See https://sites.google.com/site/bbayles/index/decorator_factory for
    # notes on how this works.
    def decorator(*wrapping_args, **wrapping_kwargs):
        def outer_wrapper(f):
            def inner_wrapper(*args, **kwargs):
                result = f(*args, **kwargs)
                wrapping_args_ = list(wrapping_args)
                wrapping_args_.insert(result_index, result)
                return wrapping_func(*wrapping_args_, **wrapping_kwargs)

            return inner_wrapper

        return outer_wrapper

    return decorator


def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None):
    """Return a dictionary that maps the items in *iterable* to categories
    defined by *keyfunc*, transforms them with *valuefunc*, and
    then summarizes them by category with *reducefunc*.

    *valuefunc* defaults to the identity function if it is unspecified.
    If *reducefunc* is unspecified, no summarization takes place:

        >>> keyfunc = lambda x: x.upper()
        >>> result = map_reduce('abbccc', keyfunc)
        >>> sorted(result.items())
        [('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])]

    Specifying *valuefunc* transforms the categorized items:

        >>> keyfunc = lambda x: x.upper()
        >>> valuefunc = lambda x: 1
        >>> result = map_reduce('abbccc', keyfunc, valuefunc)
        >>> sorted(result.items())
        [('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])]

    Specifying *reducefunc* summarizes the categorized items:

        >>> keyfunc = lambda x: x.upper()
        >>> valuefunc = lambda x: 1
        >>> reducefunc = sum
        >>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc)
        >>> sorted(result.items())
        [('A', 1), ('B', 2), ('C', 3)]

    You may want to filter the input iterable before applying the map/reduce
    procedure:

        >>> all_items = range(30)
        >>> items = [x for x in all_items if 10 <= x <= 20]  # Filter
        >>> keyfunc = lambda x: x % 2  # Evens map to 0; odds to 1
        >>> categories = map_reduce(items, keyfunc=keyfunc)
        >>> sorted(categories.items())
        [(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])]
        >>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum)
        >>> sorted(summaries.items())
        [(0, 90), (1, 75)]

    Note that all items in the iterable are gathered into a list before the
    summarization step, which may require significant storage.

    The returned object is a :obj:`collections.defaultdict` with the
    ``default_factory`` set to ``None``, such that it behaves like a normal
    dictionary.

    """
    valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc

    ret = defaultdict(list)
    for item in iterable:
        key = keyfunc(item)
        value = valuefunc(item)
        ret[key].append(value)

    if reducefunc is not None:
        for key, value_list in ret.items():
            ret[key] = reducefunc(value_list)

    ret.default_factory = None
    return ret


def rlocate(iterable, pred=bool, window_size=None):
    """Yield the index of each item in *iterable* for which *pred* returns
    ``True``, starting from the right and moving left.

    *pred* defaults to :func:`bool`, which will select truthy items:

        >>> list(rlocate([0, 1, 1, 0, 1, 0, 0]))  # Truthy at 1, 2, and 4
        [4, 2, 1]

    Set *pred* to a custom function to, e.g., find the indexes for a particular
    item:

        >>> iterable = iter('abcb')
        >>> pred = lambda x: x == 'b'
        >>> list(rlocate(iterable, pred))
        [3, 1]

    If *window_size* is given, then the *pred* function will be called with
    that many items. This enables searching for sub-sequences:

        >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
        >>> pred = lambda *args: args == (1, 2, 3)
        >>> list(rlocate(iterable, pred=pred, window_size=3))
        [9, 5, 1]

    Beware, this function won't return anything for infinite iterables.
    If *iterable* is reversible, ``rlocate`` will reverse it and search from
    the right. Otherwise, it will search from the left and return the results
    in reverse order.

    See :func:`locate` to for other example applications.

    """
    if window_size is None:
        try:
            len_iter = len(iterable)
            return (
                len_iter - i - 1 for i in locate(reversed(iterable), pred)
            )
        except TypeError:
            pass

    return reversed(list(locate(iterable, pred, window_size)))


def replace(iterable, pred, substitutes, count=None, window_size=1):
    """Yield the items from *iterable*, replacing the items for which *pred*
    returns ``True`` with the items from the iterable *substitutes*.

        >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1]
        >>> pred = lambda x: x == 0
        >>> substitutes = (2, 3)
        >>> list(replace(iterable, pred, substitutes))
        [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]

    If *count* is given, the number of replacements will be limited:

        >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0]
        >>> pred = lambda x: x == 0
        >>> substitutes = [None]
        >>> list(replace(iterable, pred, substitutes, count=2))
        [1, 1, None, 1, 1, None, 1, 1, 0]

    Use *window_size* to control the number of items passed as arguments to
    *pred*. This allows for locating and replacing subsequences.

        >>> iterable = [0, 1, 2, 5, 0, 1, 2, 5]
        >>> window_size = 3
        >>> pred = lambda *args: args == (0, 1, 2)  # 3 items passed to pred
        >>> substitutes = [3, 4] # Splice in these items
        >>> list(replace(iterable, pred, substitutes, window_size=window_size))
        [3, 4, 5, 3, 4, 5]

    """
    if window_size < 1:
        raise ValueError('window_size must be at least 1')

    # Save the substitutes iterable, since it's used more than once
    substitutes = tuple(substitutes)

    # Add padding such that the number of windows matches the length of the
    # iterable
    it = chain(iterable, [_marker] * (window_size - 1))
    windows = windowed(it, window_size)

    n = 0
    for w in windows:
        # If the current window matches our predicate (and we haven't hit
        # our maximum number of replacements), splice in the substitutes
        # and then consume the following windows that overlap with this one.
        # For example, if the iterable is (0, 1, 2, 3, 4...)
        # and the window size is 2, we have (0, 1), (1, 2), (2, 3)...
        # If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2)
        if pred(*w):
            if (count is None) or (n < count):
                n += 1
                for s in substitutes:
                    yield s
                consume(windows, window_size - 1)
                continue

        # If there was no match (or we've reached the replacement limit),
        # yield the first item from the window.
        if w and (w[0] is not _marker):
            yield w[0]