1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
|
/* This file contains liberal use of asserts to assist code development and
* debugging. Standard matplotlib builds disable asserts so they cause no
* performance reduction. To enable the asserts, you need to undefine the
* NDEBUG macro, which is achieved by adding the following
* undef_macros=['NDEBUG']
* to the appropriate make_extension call in setupext.py, and then rebuilding.
*/
#include "../mplutils.h"
#include "_tri.h"
#include <algorithm>
#include <random>
#include <set>
TriEdge::TriEdge()
: tri(-1), edge(-1)
{}
TriEdge::TriEdge(int tri_, int edge_)
: tri(tri_), edge(edge_)
{}
bool TriEdge::operator<(const TriEdge& other) const
{
if (tri != other.tri)
return tri < other.tri;
else
return edge < other.edge;
}
bool TriEdge::operator==(const TriEdge& other) const
{
return tri == other.tri && edge == other.edge;
}
bool TriEdge::operator!=(const TriEdge& other) const
{
return !operator==(other);
}
std::ostream& operator<<(std::ostream& os, const TriEdge& tri_edge)
{
return os << tri_edge.tri << ' ' << tri_edge.edge;
}
XY::XY()
{}
XY::XY(const double& x_, const double& y_)
: x(x_), y(y_)
{}
double XY::angle() const
{
return atan2(y, x);
}
double XY::cross_z(const XY& other) const
{
return x*other.y - y*other.x;
}
bool XY::is_right_of(const XY& other) const
{
if (x == other.x)
return y > other.y;
else
return x > other.x;
}
bool XY::operator==(const XY& other) const
{
return x == other.x && y == other.y;
}
bool XY::operator!=(const XY& other) const
{
return x != other.x || y != other.y;
}
XY XY::operator*(const double& multiplier) const
{
return XY(x*multiplier, y*multiplier);
}
const XY& XY::operator+=(const XY& other)
{
x += other.x;
y += other.y;
return *this;
}
const XY& XY::operator-=(const XY& other)
{
x -= other.x;
y -= other.y;
return *this;
}
XY XY::operator+(const XY& other) const
{
return XY(x + other.x, y + other.y);
}
XY XY::operator-(const XY& other) const
{
return XY(x - other.x, y - other.y);
}
std::ostream& operator<<(std::ostream& os, const XY& xy)
{
return os << '(' << xy.x << ' ' << xy.y << ')';
}
XYZ::XYZ(const double& x_, const double& y_, const double& z_)
: x(x_), y(y_), z(z_)
{}
XYZ XYZ::cross(const XYZ& other) const
{
return XYZ(y*other.z - z*other.y,
z*other.x - x*other.z,
x*other.y - y*other.x);
}
double XYZ::dot(const XYZ& other) const
{
return x*other.x + y*other.y + z*other.z;
}
XYZ XYZ::operator-(const XYZ& other) const
{
return XYZ(x - other.x, y - other.y, z - other.z);
}
std::ostream& operator<<(std::ostream& os, const XYZ& xyz)
{
return os << '(' << xyz.x << ' ' << xyz.y << ' ' << xyz.z << ')';
}
BoundingBox::BoundingBox()
: empty(true), lower(0.0, 0.0), upper(0.0, 0.0)
{}
void BoundingBox::add(const XY& point)
{
if (empty) {
empty = false;
lower = upper = point;
} else {
if (point.x < lower.x) lower.x = point.x;
else if (point.x > upper.x) upper.x = point.x;
if (point.y < lower.y) lower.y = point.y;
else if (point.y > upper.y) upper.y = point.y;
}
}
void BoundingBox::expand(const XY& delta)
{
if (!empty) {
lower -= delta;
upper += delta;
}
}
ContourLine::ContourLine()
: std::vector<XY>()
{}
void ContourLine::push_back(const XY& point)
{
if (empty() || point != back())
std::vector<XY>::push_back(point);
}
void ContourLine::write() const
{
std::cout << "ContourLine of " << size() << " points:";
for (const_iterator it = begin(); it != end(); ++it)
std::cout << ' ' << *it;
std::cout << std::endl;
}
void write_contour(const Contour& contour)
{
std::cout << "Contour of " << contour.size() << " lines." << std::endl;
for (Contour::const_iterator it = contour.begin(); it != contour.end(); ++it)
it->write();
}
Triangulation::Triangulation(const CoordinateArray& x,
const CoordinateArray& y,
const TriangleArray& triangles,
const MaskArray& mask,
const EdgeArray& edges,
const NeighborArray& neighbors,
bool correct_triangle_orientations)
: _x(x),
_y(y),
_triangles(triangles),
_mask(mask),
_edges(edges),
_neighbors(neighbors)
{
if (_x.ndim() != 1 || _y.ndim() != 1 || _x.shape(0) != _y.shape(0))
throw std::invalid_argument("x and y must be 1D arrays of the same length");
if (_triangles.ndim() != 2 || _triangles.shape(1) != 3)
throw std::invalid_argument("triangles must be a 2D array of shape (?,3)");
// Optional mask.
if (_mask.size() > 0 &&
(_mask.ndim() != 1 || _mask.shape(0) != _triangles.shape(0)))
throw std::invalid_argument(
"mask must be a 1D array with the same length as the triangles array");
// Optional edges.
if (_edges.size() > 0 &&
(_edges.ndim() != 2 || _edges.shape(1) != 2))
throw std::invalid_argument("edges must be a 2D array with shape (?,2)");
// Optional neighbors.
if (_neighbors.size() > 0 &&
(_neighbors.ndim() != 2 || _neighbors.shape() != _triangles.shape()))
throw std::invalid_argument(
"neighbors must be a 2D array with the same shape as the triangles array");
if (correct_triangle_orientations)
correct_triangles();
}
void Triangulation::calculate_boundaries()
{
get_neighbors(); // Ensure _neighbors has been created.
// Create set of all boundary TriEdges, which are those which do not
// have a neighbor triangle.
typedef std::set<TriEdge> BoundaryEdges;
BoundaryEdges boundary_edges;
for (int tri = 0; tri < get_ntri(); ++tri) {
if (!is_masked(tri)) {
for (int edge = 0; edge < 3; ++edge) {
if (get_neighbor(tri, edge) == -1) {
boundary_edges.insert(TriEdge(tri, edge));
}
}
}
}
// Take any boundary edge and follow the boundary until return to start
// point, removing edges from boundary_edges as they are used. At the same
// time, initialise the _tri_edge_to_boundary_map.
while (!boundary_edges.empty()) {
// Start of new boundary.
BoundaryEdges::iterator it = boundary_edges.begin();
int tri = it->tri;
int edge = it->edge;
_boundaries.push_back(Boundary());
Boundary& boundary = _boundaries.back();
while (true) {
boundary.push_back(TriEdge(tri, edge));
boundary_edges.erase(it);
_tri_edge_to_boundary_map[TriEdge(tri, edge)] =
BoundaryEdge(_boundaries.size()-1, boundary.size()-1);
// Move to next edge of current triangle.
edge = (edge+1) % 3;
// Find start point index of boundary edge.
int point = get_triangle_point(tri, edge);
// Find next TriEdge by traversing neighbors until find one
// without a neighbor.
while (get_neighbor(tri, edge) != -1) {
tri = get_neighbor(tri, edge);
edge = get_edge_in_triangle(tri, point);
}
if (TriEdge(tri,edge) == boundary.front())
break; // Reached beginning of this boundary, so finished it.
else
it = boundary_edges.find(TriEdge(tri, edge));
}
}
}
void Triangulation::calculate_edges()
{
assert(!has_edges() && "Expected empty edges array");
// Create set of all edges, storing them with start point index less than
// end point index.
typedef std::set<Edge> EdgeSet;
EdgeSet edge_set;
for (int tri = 0; tri < get_ntri(); ++tri) {
if (!is_masked(tri)) {
for (int edge = 0; edge < 3; edge++) {
int start = get_triangle_point(tri, edge);
int end = get_triangle_point(tri, (edge+1)%3);
edge_set.insert(start > end ? Edge(start,end) : Edge(end,start));
}
}
}
// Convert to python _edges array.
py::ssize_t dims[2] = {static_cast<py::ssize_t>(edge_set.size()), 2};
_edges = EdgeArray(dims);
auto edges = _edges.mutable_data();
int i = 0;
for (EdgeSet::const_iterator it = edge_set.begin(); it != edge_set.end(); ++it) {
edges[i++] = it->start;
edges[i++] = it->end;
}
}
void Triangulation::calculate_neighbors()
{
assert(!has_neighbors() && "Expected empty neighbors array");
// Create _neighbors array with shape (ntri,3) and initialise all to -1.
py::ssize_t dims[2] = {get_ntri(), 3};
_neighbors = NeighborArray(dims);
auto* neighbors = _neighbors.mutable_data();
int tri, edge;
std::fill(neighbors, neighbors+3*get_ntri(), -1);
// For each triangle edge (start to end point), find corresponding neighbor
// edge from end to start point. Do this by traversing all edges and
// storing them in a map from edge to TriEdge. If corresponding neighbor
// edge is already in the map, don't need to store new edge as neighbor
// already found.
typedef std::map<Edge, TriEdge> EdgeToTriEdgeMap;
EdgeToTriEdgeMap edge_to_tri_edge_map;
for (tri = 0; tri < get_ntri(); ++tri) {
if (!is_masked(tri)) {
for (edge = 0; edge < 3; ++edge) {
int start = get_triangle_point(tri, edge);
int end = get_triangle_point(tri, (edge+1)%3);
EdgeToTriEdgeMap::iterator it =
edge_to_tri_edge_map.find(Edge(end,start));
if (it == edge_to_tri_edge_map.end()) {
// No neighbor edge exists in the edge_to_tri_edge_map, so
// add this edge to it.
edge_to_tri_edge_map[Edge(start,end)] = TriEdge(tri,edge);
} else {
// Neighbor edge found, set the two elements of _neighbors
// and remove edge from edge_to_tri_edge_map.
neighbors[3*tri + edge] = it->second.tri;
neighbors[3*it->second.tri + it->second.edge] = tri;
edge_to_tri_edge_map.erase(it);
}
}
}
}
// Note that remaining edges in the edge_to_tri_edge_map correspond to
// boundary edges, but the boundaries are calculated separately elsewhere.
}
Triangulation::TwoCoordinateArray Triangulation::calculate_plane_coefficients(
const CoordinateArray& z)
{
if (z.ndim() != 1 || z.shape(0) != _x.shape(0))
throw std::invalid_argument(
"z must be a 1D array with the same length as the triangulation x and y arrays");
int dims[2] = {get_ntri(), 3};
Triangulation::TwoCoordinateArray planes_array(dims);
auto planes = planes_array.mutable_unchecked<2>();
auto triangles = _triangles.unchecked<2>();
auto x = _x.unchecked<1>();
auto y = _y.unchecked<1>();
auto z_ptr = z.unchecked<1>();
int point;
for (int tri = 0; tri < get_ntri(); ++tri) {
if (is_masked(tri)) {
planes(tri, 0) = 0.0;
planes(tri, 1) = 0.0;
planes(tri, 2) = 0.0;
}
else {
// Equation of plane for all points r on plane is r.normal = p
// where normal is vector normal to the plane, and p is a
// constant. Rewrite as
// r_x*normal_x + r_y*normal_y + r_z*normal_z = p
// and rearrange to give
// r_z = (-normal_x/normal_z)*r_x + (-normal_y/normal_z)*r_y +
// p/normal_z
point = triangles(tri, 0);
XYZ point0(x(point), y(point), z_ptr(point));
point = triangles(tri, 1);
XYZ side01 = XYZ(x(point), y(point), z_ptr(point)) - point0;
point = triangles(tri, 2);
XYZ side02 = XYZ(x(point), y(point), z_ptr(point)) - point0;
XYZ normal = side01.cross(side02);
if (normal.z == 0.0) {
// Normal is in x-y plane which means triangle consists of
// colinear points. To avoid dividing by zero, we use the
// Moore-Penrose pseudo-inverse.
double sum2 = (side01.x*side01.x + side01.y*side01.y +
side02.x*side02.x + side02.y*side02.y);
double a = (side01.x*side01.z + side02.x*side02.z) / sum2;
double b = (side01.y*side01.z + side02.y*side02.z) / sum2;
planes(tri, 0) = a;
planes(tri, 1) = b;
planes(tri, 2) = point0.z - a*point0.x - b*point0.y;
}
else {
planes(tri, 0) = -normal.x / normal.z; // x
planes(tri, 1) = -normal.y / normal.z; // y
planes(tri, 2) = normal.dot(point0) / normal.z; // constant
}
}
}
return planes_array;
}
void Triangulation::correct_triangles()
{
auto triangles = _triangles.mutable_data();
auto neighbors = _neighbors.mutable_data();
for (int tri = 0; tri < get_ntri(); ++tri) {
XY point0 = get_point_coords(triangles[3*tri]);
XY point1 = get_point_coords(triangles[3*tri+1]);
XY point2 = get_point_coords(triangles[3*tri+2]);
if ( (point1 - point0).cross_z(point2 - point0) < 0.0) {
// Triangle points are clockwise, so change them to anticlockwise.
std::swap(triangles[3*tri+1], triangles[3*tri+2]);
if (has_neighbors())
std::swap(neighbors[3*tri+1], neighbors[3*tri+2]);
}
}
}
const Triangulation::Boundaries& Triangulation::get_boundaries() const
{
if (_boundaries.empty())
const_cast<Triangulation*>(this)->calculate_boundaries();
return _boundaries;
}
void Triangulation::get_boundary_edge(const TriEdge& triEdge,
int& boundary,
int& edge) const
{
get_boundaries(); // Ensure _tri_edge_to_boundary_map has been created.
TriEdgeToBoundaryMap::const_iterator it =
_tri_edge_to_boundary_map.find(triEdge);
assert(it != _tri_edge_to_boundary_map.end() &&
"TriEdge is not on a boundary");
boundary = it->second.boundary;
edge = it->second.edge;
}
int Triangulation::get_edge_in_triangle(int tri, int point) const
{
assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds");
assert(point >= 0 && point < get_npoints() && "Point index out of bounds.");
auto triangles = _triangles.data();
for (int edge = 0; edge < 3; ++edge) {
if (triangles[3*tri + edge] == point)
return edge;
}
return -1; // point is not in triangle.
}
Triangulation::EdgeArray& Triangulation::get_edges()
{
if (!has_edges())
calculate_edges();
return _edges;
}
int Triangulation::get_neighbor(int tri, int edge) const
{
assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds");
assert(edge >= 0 && edge < 3 && "Edge index out of bounds");
if (!has_neighbors())
const_cast<Triangulation&>(*this).calculate_neighbors();
return _neighbors.data()[3*tri + edge];
}
TriEdge Triangulation::get_neighbor_edge(int tri, int edge) const
{
int neighbor_tri = get_neighbor(tri, edge);
if (neighbor_tri == -1)
return TriEdge(-1,-1);
else
return TriEdge(neighbor_tri,
get_edge_in_triangle(neighbor_tri,
get_triangle_point(tri,
(edge+1)%3)));
}
Triangulation::NeighborArray& Triangulation::get_neighbors()
{
if (!has_neighbors())
calculate_neighbors();
return _neighbors;
}
int Triangulation::get_npoints() const
{
return _x.shape(0);
}
int Triangulation::get_ntri() const
{
return _triangles.shape(0);
}
XY Triangulation::get_point_coords(int point) const
{
assert(point >= 0 && point < get_npoints() && "Point index out of bounds.");
return XY(_x.data()[point], _y.data()[point]);
}
int Triangulation::get_triangle_point(int tri, int edge) const
{
assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds");
assert(edge >= 0 && edge < 3 && "Edge index out of bounds");
return _triangles.data()[3*tri + edge];
}
int Triangulation::get_triangle_point(const TriEdge& tri_edge) const
{
return get_triangle_point(tri_edge.tri, tri_edge.edge);
}
bool Triangulation::has_edges() const
{
return _edges.size() > 0;
}
bool Triangulation::has_mask() const
{
return _mask.size() > 0;
}
bool Triangulation::has_neighbors() const
{
return _neighbors.size() > 0;
}
bool Triangulation::is_masked(int tri) const
{
assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds.");
return has_mask() && _mask.data()[tri];
}
void Triangulation::set_mask(const MaskArray& mask)
{
if (mask.size() > 0 &&
(mask.ndim() != 1 || mask.shape(0) != _triangles.shape(0)))
throw std::invalid_argument(
"mask must be a 1D array with the same length as the triangles array");
_mask = mask;
// Clear derived fields so they are recalculated when needed.
_edges = EdgeArray();
_neighbors = NeighborArray();
_boundaries.clear();
}
void Triangulation::write_boundaries() const
{
const Boundaries& bs = get_boundaries();
std::cout << "Number of boundaries: " << bs.size() << std::endl;
for (Boundaries::const_iterator it = bs.begin(); it != bs.end(); ++it) {
const Boundary& b = *it;
std::cout << " Boundary of " << b.size() << " points: ";
for (Boundary::const_iterator itb = b.begin(); itb != b.end(); ++itb) {
std::cout << *itb << ", ";
}
std::cout << std::endl;
}
}
TriContourGenerator::TriContourGenerator(Triangulation& triangulation,
const CoordinateArray& z)
: _triangulation(triangulation),
_z(z),
_interior_visited(2*_triangulation.get_ntri()),
_boundaries_visited(0),
_boundaries_used(0)
{
if (_z.ndim() != 1 || _z.shape(0) != _triangulation.get_npoints())
throw std::invalid_argument(
"z must be a 1D array with the same length as the x and y arrays");
}
void TriContourGenerator::clear_visited_flags(bool include_boundaries)
{
// Clear _interiorVisited.
std::fill(_interior_visited.begin(), _interior_visited.end(), false);
if (include_boundaries) {
if (_boundaries_visited.empty()) {
const Boundaries& boundaries = get_boundaries();
// Initialise _boundaries_visited.
_boundaries_visited.reserve(boundaries.size());
for (Boundaries::const_iterator it = boundaries.begin();
it != boundaries.end(); ++it)
_boundaries_visited.push_back(BoundaryVisited(it->size()));
// Initialise _boundaries_used.
_boundaries_used = BoundariesUsed(boundaries.size());
}
// Clear _boundaries_visited.
for (BoundariesVisited::iterator it = _boundaries_visited.begin();
it != _boundaries_visited.end(); ++it)
std::fill(it->begin(), it->end(), false);
// Clear _boundaries_used.
std::fill(_boundaries_used.begin(), _boundaries_used.end(), false);
}
}
py::tuple TriContourGenerator::contour_line_to_segs_and_kinds(const Contour& contour)
{
// Convert all of the lines generated by a call to create_contour() into
// their Python equivalents for return to the calling function.
// A line is either a closed line loop (in which case the last point is
// identical to the first) or an open line strip. Two NumPy arrays are
// created for each line:
// vertices is a double array of shape (npoints, 2) containing the (x, y)
// coordinates of the points in the line
// codes is a uint8 array of shape (npoints,) containing the 'kind codes'
// which are defined in the Path class
// and they are appended to the Python lists vertices_list and codes_list
// respectively for return to the Python calling function.
py::list vertices_list(contour.size());
py::list codes_list(contour.size());
for (Contour::size_type i = 0; i < contour.size(); ++i) {
const ContourLine& contour_line = contour[i];
py::ssize_t npoints = static_cast<py::ssize_t>(contour_line.size());
py::ssize_t segs_dims[2] = {npoints, 2};
CoordinateArray segs(segs_dims);
double* segs_ptr = segs.mutable_data();
py::ssize_t codes_dims[1] = {npoints};
CodeArray codes(codes_dims);
unsigned char* codes_ptr = codes.mutable_data();
for (ContourLine::const_iterator it = contour_line.begin();
it != contour_line.end(); ++it) {
*segs_ptr++ = it->x;
*segs_ptr++ = it->y;
*codes_ptr++ = (it == contour_line.begin() ? MOVETO : LINETO);
}
// Closed line loop has identical first and last (x, y) points.
if (contour_line.size() > 1 &&
contour_line.front() == contour_line.back())
*(codes_ptr-1) = CLOSEPOLY;
vertices_list[i] = segs;
codes_list[i] = codes;
}
return py::make_tuple(vertices_list, codes_list);
}
py::tuple TriContourGenerator::contour_to_segs_and_kinds(const Contour& contour)
{
// Convert all of the polygons generated by a call to
// create_filled_contour() into their Python equivalents for return to the
// calling function. All of the polygons' points and kinds codes are
// combined into single NumPy arrays for each; this avoids having
// to determine which polygons are holes as this will be determined by the
// renderer. If there are ntotal points in all of the polygons, the two
// NumPy arrays created are:
// vertices is a double array of shape (ntotal, 2) containing the (x, y)
// coordinates of the points in the polygons
// codes is a uint8 array of shape (ntotal,) containing the 'kind codes'
// which are defined in the Path class
// and they are returned in the Python lists vertices_list and codes_list
// respectively.
Contour::const_iterator line;
ContourLine::const_iterator point;
// Find total number of points in all contour lines.
py::ssize_t n_points = 0;
for (line = contour.begin(); line != contour.end(); ++line)
n_points += static_cast<py::ssize_t>(line->size());
// Create segs array for point coordinates.
py::ssize_t segs_dims[2] = {n_points, 2};
TwoCoordinateArray segs(segs_dims);
double* segs_ptr = segs.mutable_data();
// Create kinds array for code types.
py::ssize_t codes_dims[1] = {n_points};
CodeArray codes(codes_dims);
unsigned char* codes_ptr = codes.mutable_data();
for (line = contour.begin(); line != contour.end(); ++line) {
for (point = line->begin(); point != line->end(); point++) {
*segs_ptr++ = point->x;
*segs_ptr++ = point->y;
*codes_ptr++ = (point == line->begin() ? MOVETO : LINETO);
}
if (line->size() > 1)
*(codes_ptr-1) = CLOSEPOLY;
}
py::list vertices_list(1);
vertices_list[0] = segs;
py::list codes_list(1);
codes_list[0] = codes;
return py::make_tuple(vertices_list, codes_list);
}
py::tuple TriContourGenerator::create_contour(const double& level)
{
clear_visited_flags(false);
Contour contour;
find_boundary_lines(contour, level);
find_interior_lines(contour, level, false, false);
return contour_line_to_segs_and_kinds(contour);
}
py::tuple TriContourGenerator::create_filled_contour(const double& lower_level,
const double& upper_level)
{
if (lower_level >= upper_level)
throw std::invalid_argument("filled contour levels must be increasing");
clear_visited_flags(true);
Contour contour;
find_boundary_lines_filled(contour, lower_level, upper_level);
find_interior_lines(contour, lower_level, false, true);
find_interior_lines(contour, upper_level, true, true);
return contour_to_segs_and_kinds(contour);
}
XY TriContourGenerator::edge_interp(int tri, int edge, const double& level)
{
return interp(_triangulation.get_triangle_point(tri, edge),
_triangulation.get_triangle_point(tri, (edge+1)%3),
level);
}
void TriContourGenerator::find_boundary_lines(Contour& contour,
const double& level)
{
// Traverse boundaries to find starting points for all contour lines that
// intersect the boundaries. For each starting point found, follow the
// line to its end before continuing.
const Triangulation& triang = _triangulation;
const Boundaries& boundaries = get_boundaries();
for (Boundaries::const_iterator it = boundaries.begin();
it != boundaries.end(); ++it) {
const Boundary& boundary = *it;
bool startAbove, endAbove = false;
for (Boundary::const_iterator itb = boundary.begin();
itb != boundary.end(); ++itb) {
if (itb == boundary.begin())
startAbove = get_z(triang.get_triangle_point(*itb)) >= level;
else
startAbove = endAbove;
endAbove = get_z(triang.get_triangle_point(itb->tri,
(itb->edge+1)%3)) >= level;
if (startAbove && !endAbove) {
// This boundary edge is the start point for a contour line,
// so follow the line.
contour.push_back(ContourLine());
ContourLine& contour_line = contour.back();
TriEdge tri_edge = *itb;
follow_interior(contour_line, tri_edge, true, level, false);
}
}
}
}
void TriContourGenerator::find_boundary_lines_filled(Contour& contour,
const double& lower_level,
const double& upper_level)
{
// Traverse boundaries to find starting points for all contour lines that
// intersect the boundaries. For each starting point found, follow the
// line to its end before continuing.
const Triangulation& triang = _triangulation;
const Boundaries& boundaries = get_boundaries();
for (Boundaries::size_type i = 0; i < boundaries.size(); ++i) {
const Boundary& boundary = boundaries[i];
for (Boundary::size_type j = 0; j < boundary.size(); ++j) {
if (!_boundaries_visited[i][j]) {
// z values of start and end of this boundary edge.
double z_start = get_z(triang.get_triangle_point(boundary[j]));
double z_end = get_z(triang.get_triangle_point(
boundary[j].tri, (boundary[j].edge+1)%3));
// Does this boundary edge's z increase through upper level
// and/or decrease through lower level?
bool incr_upper = (z_start < upper_level && z_end >= upper_level);
bool decr_lower = (z_start >= lower_level && z_end < lower_level);
if (decr_lower || incr_upper) {
// Start point for contour line, so follow it.
contour.push_back(ContourLine());
ContourLine& contour_line = contour.back();
TriEdge start_tri_edge = boundary[j];
TriEdge tri_edge = start_tri_edge;
// Traverse interior and boundaries until return to start.
bool on_upper = incr_upper;
do {
follow_interior(contour_line, tri_edge, true,
on_upper ? upper_level : lower_level, on_upper);
on_upper = follow_boundary(contour_line, tri_edge,
lower_level, upper_level, on_upper);
} while (tri_edge != start_tri_edge);
// Close polygon.
contour_line.push_back(contour_line.front());
}
}
}
}
// Add full boundaries that lie between the lower and upper levels. These
// are boundaries that have not been touched by an internal contour line
// which are stored in _boundaries_used.
for (Boundaries::size_type i = 0; i < boundaries.size(); ++i) {
if (!_boundaries_used[i]) {
const Boundary& boundary = boundaries[i];
double z = get_z(triang.get_triangle_point(boundary[0]));
if (z >= lower_level && z < upper_level) {
contour.push_back(ContourLine());
ContourLine& contour_line = contour.back();
for (Boundary::size_type j = 0; j < boundary.size(); ++j)
contour_line.push_back(triang.get_point_coords(
triang.get_triangle_point(boundary[j])));
// Close polygon.
contour_line.push_back(contour_line.front());
}
}
}
}
void TriContourGenerator::find_interior_lines(Contour& contour,
const double& level,
bool on_upper,
bool filled)
{
const Triangulation& triang = _triangulation;
int ntri = triang.get_ntri();
for (int tri = 0; tri < ntri; ++tri) {
int visited_index = (on_upper ? tri+ntri : tri);
if (_interior_visited[visited_index] || triang.is_masked(tri))
continue; // Triangle has already been visited or is masked.
_interior_visited[visited_index] = true;
// Determine edge via which to leave this triangle.
int edge = get_exit_edge(tri, level, on_upper);
assert(edge >= -1 && edge < 3 && "Invalid exit edge");
if (edge == -1)
continue; // Contour does not pass through this triangle.
// Found start of new contour line loop.
contour.push_back(ContourLine());
ContourLine& contour_line = contour.back();
TriEdge tri_edge = triang.get_neighbor_edge(tri, edge);
follow_interior(contour_line, tri_edge, false, level, on_upper);
// Close line loop
contour_line.push_back(contour_line.front());
}
}
bool TriContourGenerator::follow_boundary(ContourLine& contour_line,
TriEdge& tri_edge,
const double& lower_level,
const double& upper_level,
bool on_upper)
{
const Triangulation& triang = _triangulation;
const Boundaries& boundaries = get_boundaries();
// Have TriEdge to start at, need equivalent boundary edge.
int boundary, edge;
triang.get_boundary_edge(tri_edge, boundary, edge);
_boundaries_used[boundary] = true;
bool stop = false;
bool first_edge = true;
double z_start, z_end = 0;
while (!stop)
{
assert(!_boundaries_visited[boundary][edge] && "Boundary already visited");
_boundaries_visited[boundary][edge] = true;
// z values of start and end points of boundary edge.
if (first_edge)
z_start = get_z(triang.get_triangle_point(tri_edge));
else
z_start = z_end;
z_end = get_z(triang.get_triangle_point(tri_edge.tri,
(tri_edge.edge+1)%3));
if (z_end > z_start) { // z increasing.
if (!(!on_upper && first_edge) &&
z_end >= lower_level && z_start < lower_level) {
stop = true;
on_upper = false;
} else if (z_end >= upper_level && z_start < upper_level) {
stop = true;
on_upper = true;
}
} else { // z decreasing.
if (!(on_upper && first_edge) &&
z_start >= upper_level && z_end < upper_level) {
stop = true;
on_upper = true;
} else if (z_start >= lower_level && z_end < lower_level) {
stop = true;
on_upper = false;
}
}
first_edge = false;
if (!stop) {
// Move to next boundary edge, adding point to contour line.
edge = (edge+1) % (int)boundaries[boundary].size();
tri_edge = boundaries[boundary][edge];
contour_line.push_back(triang.get_point_coords(
triang.get_triangle_point(tri_edge)));
}
}
return on_upper;
}
void TriContourGenerator::follow_interior(ContourLine& contour_line,
TriEdge& tri_edge,
bool end_on_boundary,
const double& level,
bool on_upper)
{
int& tri = tri_edge.tri;
int& edge = tri_edge.edge;
// Initial point.
contour_line.push_back(edge_interp(tri, edge, level));
while (true) {
int visited_index = tri;
if (on_upper)
visited_index += _triangulation.get_ntri();
// Check for end not on boundary.
if (!end_on_boundary && _interior_visited[visited_index])
break; // Reached start point, so return.
// Determine edge by which to leave this triangle.
edge = get_exit_edge(tri, level, on_upper);
assert(edge >= 0 && edge < 3 && "Invalid exit edge");
_interior_visited[visited_index] = true;
// Append new point to point set.
assert(edge >= 0 && edge < 3 && "Invalid triangle edge");
contour_line.push_back(edge_interp(tri, edge, level));
// Move to next triangle.
TriEdge next_tri_edge = _triangulation.get_neighbor_edge(tri,edge);
// Check if ending on a boundary.
if (end_on_boundary && next_tri_edge.tri == -1)
break;
tri_edge = next_tri_edge;
assert(tri_edge.tri != -1 && "Invalid triangle for internal loop");
}
}
const TriContourGenerator::Boundaries& TriContourGenerator::get_boundaries() const
{
return _triangulation.get_boundaries();
}
int TriContourGenerator::get_exit_edge(int tri,
const double& level,
bool on_upper) const
{
assert(tri >= 0 && tri < _triangulation.get_ntri() &&
"Triangle index out of bounds.");
unsigned int config =
(get_z(_triangulation.get_triangle_point(tri, 0)) >= level) |
(get_z(_triangulation.get_triangle_point(tri, 1)) >= level) << 1 |
(get_z(_triangulation.get_triangle_point(tri, 2)) >= level) << 2;
if (on_upper) config = 7-config;
switch (config) {
case 0: return -1;
case 1: return 2;
case 2: return 0;
case 3: return 2;
case 4: return 1;
case 5: return 1;
case 6: return 0;
case 7: return -1;
default: assert(0 && "Invalid config value"); return -1;
}
}
const double& TriContourGenerator::get_z(int point) const
{
assert(point >= 0 && point < _triangulation.get_npoints() &&
"Point index out of bounds.");
return _z.data()[point];
}
XY TriContourGenerator::interp(int point1,
int point2,
const double& level) const
{
assert(point1 >= 0 && point1 < _triangulation.get_npoints() &&
"Point index 1 out of bounds.");
assert(point2 >= 0 && point2 < _triangulation.get_npoints() &&
"Point index 2 out of bounds.");
assert(point1 != point2 && "Identical points");
double fraction = (get_z(point2) - level) / (get_z(point2) - get_z(point1));
return _triangulation.get_point_coords(point1)*fraction +
_triangulation.get_point_coords(point2)*(1.0 - fraction);
}
TrapezoidMapTriFinder::TrapezoidMapTriFinder(Triangulation& triangulation)
: _triangulation(triangulation),
_points(0),
_tree(0)
{}
TrapezoidMapTriFinder::~TrapezoidMapTriFinder()
{
clear();
}
bool
TrapezoidMapTriFinder::add_edge_to_tree(const Edge& edge)
{
std::vector<Trapezoid*> trapezoids;
if (!find_trapezoids_intersecting_edge(edge, trapezoids))
return false;
assert(!trapezoids.empty() && "No trapezoids intersect edge");
const Point* p = edge.left;
const Point* q = edge.right;
Trapezoid* left_old = 0; // old trapezoid to the left.
Trapezoid* left_below = 0; // below trapezoid to the left.
Trapezoid* left_above = 0; // above trapezoid to the left.
// Iterate through trapezoids intersecting edge from left to right.
// Replace each old trapezoid with 2+ new trapezoids, and replace its
// corresponding nodes in the search tree with new nodes.
size_t ntraps = trapezoids.size();
for (size_t i = 0; i < ntraps; ++i) {
Trapezoid* old = trapezoids[i]; // old trapezoid to replace.
bool start_trap = (i == 0);
bool end_trap = (i == ntraps-1);
bool have_left = (start_trap && edge.left != old->left);
bool have_right = (end_trap && edge.right != old->right);
// Old trapezoid is replaced by up to 4 new trapezoids: left is to the
// left of the start point p, below/above are below/above the edge
// inserted, and right is to the right of the end point q.
Trapezoid* left = 0;
Trapezoid* below = 0;
Trapezoid* above = 0;
Trapezoid* right = 0;
// There are 4 different cases here depending on whether the old
// trapezoid in question is the start and/or end trapezoid of those
// that intersect the edge inserted. There is some code duplication
// here but it is much easier to understand this way rather than
// interleave the 4 different cases with many more if-statements.
if (start_trap && end_trap) {
// Edge intersects a single trapezoid.
if (have_left)
left = new Trapezoid(old->left, p, old->below, old->above);
below = new Trapezoid(p, q, old->below, edge);
above = new Trapezoid(p, q, edge, old->above);
if (have_right)
right = new Trapezoid(q, old->right, old->below, old->above);
// Set pairs of trapezoid neighbours.
if (have_left) {
left->set_lower_left(old->lower_left);
left->set_upper_left(old->upper_left);
left->set_lower_right(below);
left->set_upper_right(above);
}
else {
below->set_lower_left(old->lower_left);
above->set_upper_left(old->upper_left);
}
if (have_right) {
right->set_lower_right(old->lower_right);
right->set_upper_right(old->upper_right);
below->set_lower_right(right);
above->set_upper_right(right);
}
else {
below->set_lower_right(old->lower_right);
above->set_upper_right(old->upper_right);
}
}
else if (start_trap) {
// Old trapezoid is the first of 2+ trapezoids that the edge
// intersects.
if (have_left)
left = new Trapezoid(old->left, p, old->below, old->above);
below = new Trapezoid(p, old->right, old->below, edge);
above = new Trapezoid(p, old->right, edge, old->above);
// Set pairs of trapezoid neighbours.
if (have_left) {
left->set_lower_left(old->lower_left);
left->set_upper_left(old->upper_left);
left->set_lower_right(below);
left->set_upper_right(above);
}
else {
below->set_lower_left(old->lower_left);
above->set_upper_left(old->upper_left);
}
below->set_lower_right(old->lower_right);
above->set_upper_right(old->upper_right);
}
else if (end_trap) {
// Old trapezoid is the last of 2+ trapezoids that the edge
// intersects.
if (left_below->below == old->below) {
below = left_below;
below->right = q;
}
else
below = new Trapezoid(old->left, q, old->below, edge);
if (left_above->above == old->above) {
above = left_above;
above->right = q;
}
else
above = new Trapezoid(old->left, q, edge, old->above);
if (have_right)
right = new Trapezoid(q, old->right, old->below, old->above);
// Set pairs of trapezoid neighbours.
if (have_right) {
right->set_lower_right(old->lower_right);
right->set_upper_right(old->upper_right);
below->set_lower_right(right);
above->set_upper_right(right);
}
else {
below->set_lower_right(old->lower_right);
above->set_upper_right(old->upper_right);
}
// Connect to new trapezoids replacing prevOld.
if (below != left_below) {
below->set_upper_left(left_below);
if (old->lower_left == left_old)
below->set_lower_left(left_below);
else
below->set_lower_left(old->lower_left);
}
if (above != left_above) {
above->set_lower_left(left_above);
if (old->upper_left == left_old)
above->set_upper_left(left_above);
else
above->set_upper_left(old->upper_left);
}
}
else { // Middle trapezoid.
// Old trapezoid is neither the first nor last of the 3+ trapezoids
// that the edge intersects.
if (left_below->below == old->below) {
below = left_below;
below->right = old->right;
}
else
below = new Trapezoid(old->left, old->right, old->below, edge);
if (left_above->above == old->above) {
above = left_above;
above->right = old->right;
}
else
above = new Trapezoid(old->left, old->right, edge, old->above);
// Connect to new trapezoids replacing prevOld.
if (below != left_below) { // below is new.
below->set_upper_left(left_below);
if (old->lower_left == left_old)
below->set_lower_left(left_below);
else
below->set_lower_left(old->lower_left);
}
if (above != left_above) { // above is new.
above->set_lower_left(left_above);
if (old->upper_left == left_old)
above->set_upper_left(left_above);
else
above->set_upper_left(old->upper_left);
}
below->set_lower_right(old->lower_right);
above->set_upper_right(old->upper_right);
}
// Create new nodes to add to search tree. Below and above trapezoids
// may already have owning trapezoid nodes, in which case reuse them.
Node* new_top_node = new Node(
&edge,
below == left_below ? below->trapezoid_node : new Node(below),
above == left_above ? above->trapezoid_node : new Node(above));
if (have_right)
new_top_node = new Node(q, new_top_node, new Node(right));
if (have_left)
new_top_node = new Node(p, new Node(left), new_top_node);
// Insert new_top_node in correct position or positions in search tree.
Node* old_node = old->trapezoid_node;
if (old_node == _tree)
_tree = new_top_node;
else
old_node->replace_with(new_top_node);
// old_node has been removed from all of its parents and is no longer
// needed.
assert(old_node->has_no_parents() && "Node should have no parents");
delete old_node;
// Clearing up.
if (!end_trap) {
// Prepare for next loop.
left_old = old;
left_above = above;
left_below = below;
}
}
return true;
}
void
TrapezoidMapTriFinder::clear()
{
delete [] _points;
_points = 0;
_edges.clear();
delete _tree;
_tree = 0;
}
TrapezoidMapTriFinder::TriIndexArray
TrapezoidMapTriFinder::find_many(const CoordinateArray& x,
const CoordinateArray& y)
{
if (x.ndim() != 1 || x.shape(0) != y.shape(0))
throw std::invalid_argument(
"x and y must be array-like with same shape");
// Create integer array to return.
auto n = x.shape(0);
TriIndexArray tri_indices_array(n);
auto tri_indices = tri_indices_array.mutable_unchecked<1>();
auto x_data = x.data();
auto y_data = y.data();
// Fill returned array.
for (py::ssize_t i = 0; i < n; ++i)
tri_indices(i) = find_one(XY(x_data[i], y_data[i]));
return tri_indices_array;
}
int
TrapezoidMapTriFinder::find_one(const XY& xy)
{
const Node* node = _tree->search(xy);
assert(node != 0 && "Search tree for point returned null node");
return node->get_tri();
}
bool
TrapezoidMapTriFinder::find_trapezoids_intersecting_edge(
const Edge& edge,
std::vector<Trapezoid*>& trapezoids)
{
// This is the FollowSegment algorithm of de Berg et al, with some extra
// checks to deal with simple colinear (i.e. invalid) triangles.
trapezoids.clear();
Trapezoid* trapezoid = _tree->search(edge);
if (trapezoid == 0) {
assert(trapezoid != 0 && "search(edge) returns null trapezoid");
return false;
}
trapezoids.push_back(trapezoid);
while (edge.right->is_right_of(*trapezoid->right)) {
int orient = edge.get_point_orientation(*trapezoid->right);
if (orient == 0) {
if (edge.point_below == trapezoid->right)
orient = +1;
else if (edge.point_above == trapezoid->right)
orient = -1;
else {
assert(0 && "Unable to deal with point on edge");
return false;
}
}
if (orient == -1)
trapezoid = trapezoid->lower_right;
else if (orient == +1)
trapezoid = trapezoid->upper_right;
if (trapezoid == 0) {
assert(0 && "Expected trapezoid neighbor");
return false;
}
trapezoids.push_back(trapezoid);
}
return true;
}
py::list
TrapezoidMapTriFinder::get_tree_stats()
{
NodeStats stats;
_tree->get_stats(0, stats);
py::list ret(7);
ret[0] = stats.node_count;
ret[1] = stats.unique_nodes.size(),
ret[2] = stats.trapezoid_count,
ret[3] = stats.unique_trapezoid_nodes.size(),
ret[4] = stats.max_parent_count,
ret[5] = stats.max_depth,
ret[6] = stats.sum_trapezoid_depth / stats.trapezoid_count;
return ret;
}
void
TrapezoidMapTriFinder::initialize()
{
clear();
const Triangulation& triang = _triangulation;
// Set up points array, which contains all of the points in the
// triangulation plus the 4 corners of the enclosing rectangle.
int npoints = triang.get_npoints();
_points = new Point[npoints + 4];
BoundingBox bbox;
for (int i = 0; i < npoints; ++i) {
XY xy = triang.get_point_coords(i);
// Avoid problems with -0.0 values different from 0.0
if (xy.x == -0.0)
xy.x = 0.0;
if (xy.y == -0.0)
xy.y = 0.0;
_points[i] = Point(xy);
bbox.add(xy);
}
// Last 4 points are corner points of enclosing rectangle. Enclosing
// rectangle made slightly larger in case corner points are already in the
// triangulation.
if (bbox.empty) {
bbox.add(XY(0.0, 0.0));
bbox.add(XY(1.0, 1.0));
}
else {
const double small = 0.1; // Any value > 0.0
bbox.expand( (bbox.upper - bbox.lower)*small );
}
_points[npoints ] = Point(bbox.lower); // SW point.
_points[npoints+1] = Point(bbox.upper.x, bbox.lower.y); // SE point.
_points[npoints+2] = Point(bbox.lower.x, bbox.upper.y); // NW point.
_points[npoints+3] = Point(bbox.upper); // NE point.
// Set up edges array.
// First the bottom and top edges of the enclosing rectangle.
_edges.push_back(Edge(&_points[npoints], &_points[npoints+1],-1,-1,0,0));
_edges.push_back(Edge(&_points[npoints+2],&_points[npoints+3],-1,-1,0,0));
// Add all edges in the triangulation that point to the right. Do not
// explicitly include edges that point to the left as the neighboring
// triangle will supply that, unless there is no such neighbor.
int ntri = triang.get_ntri();
for (int tri = 0; tri < ntri; ++tri) {
if (!triang.is_masked(tri)) {
for (int edge = 0; edge < 3; ++edge) {
Point* start = _points + triang.get_triangle_point(tri,edge);
Point* end = _points +
triang.get_triangle_point(tri,(edge+1)%3);
Point* other = _points +
triang.get_triangle_point(tri,(edge+2)%3);
TriEdge neighbor = triang.get_neighbor_edge(tri,edge);
if (end->is_right_of(*start)) {
const Point* neighbor_point_below = (neighbor.tri == -1) ?
0 : _points + triang.get_triangle_point(
neighbor.tri, (neighbor.edge+2)%3);
_edges.push_back(Edge(start, end, neighbor.tri, tri,
neighbor_point_below, other));
}
else if (neighbor.tri == -1)
_edges.push_back(Edge(end, start, tri, -1, other, 0));
// Set triangle associated with start point if not already set.
if (start->tri == -1)
start->tri = tri;
}
}
}
// Initial trapezoid is enclosing rectangle.
_tree = new Node(new Trapezoid(&_points[npoints], &_points[npoints+1],
_edges[0], _edges[1]));
_tree->assert_valid(false);
// Randomly shuffle all edges other than first 2.
std::mt19937 rng(1234);
std::shuffle(_edges.begin()+2, _edges.end(), rng);
// Add edges, one at a time, to tree.
size_t nedges = _edges.size();
for (size_t index = 2; index < nedges; ++index) {
if (!add_edge_to_tree(_edges[index]))
throw std::runtime_error("Triangulation is invalid");
_tree->assert_valid(index == nedges-1);
}
}
void
TrapezoidMapTriFinder::print_tree()
{
assert(_tree != 0 && "Null Node tree");
_tree->print();
}
TrapezoidMapTriFinder::Edge::Edge(const Point* left_,
const Point* right_,
int triangle_below_,
int triangle_above_,
const Point* point_below_,
const Point* point_above_)
: left(left_),
right(right_),
triangle_below(triangle_below_),
triangle_above(triangle_above_),
point_below(point_below_),
point_above(point_above_)
{
assert(left != 0 && "Null left point");
assert(right != 0 && "Null right point");
assert(right->is_right_of(*left) && "Incorrect point order");
assert(triangle_below >= -1 && "Invalid triangle below index");
assert(triangle_above >= -1 && "Invalid triangle above index");
}
int
TrapezoidMapTriFinder::Edge::get_point_orientation(const XY& xy) const
{
double cross_z = (xy - *left).cross_z(*right - *left);
return (cross_z > 0.0) ? +1 : ((cross_z < 0.0) ? -1 : 0);
}
double
TrapezoidMapTriFinder::Edge::get_slope() const
{
// Divide by zero is acceptable here.
XY diff = *right - *left;
return diff.y / diff.x;
}
double
TrapezoidMapTriFinder::Edge::get_y_at_x(const double& x) const
{
if (left->x == right->x) {
// If edge is vertical, return lowest y from left point.
assert(x == left->x && "x outside of edge");
return left->y;
}
else {
// Equation of line: left + lambda*(right - left) = xy.
// i.e. left.x + lambda(right.x - left.x) = x and similar for y.
double lambda = (x - left->x) / (right->x - left->x);
assert(lambda >= 0 && lambda <= 1.0 && "Lambda out of bounds");
return left->y + lambda*(right->y - left->y);
}
}
bool
TrapezoidMapTriFinder::Edge::has_point(const Point* point) const
{
assert(point != 0 && "Null point");
return (left == point || right == point);
}
bool
TrapezoidMapTriFinder::Edge::operator==(const Edge& other) const
{
return this == &other;
}
void
TrapezoidMapTriFinder::Edge::print_debug() const
{
std::cout << "Edge " << *this << " tri_below=" << triangle_below
<< " tri_above=" << triangle_above << std::endl;
}
TrapezoidMapTriFinder::Node::Node(const Point* point, Node* left, Node* right)
: _type(Type_XNode)
{
assert(point != 0 && "Invalid point");
assert(left != 0 && "Invalid left node");
assert(right != 0 && "Invalid right node");
_union.xnode.point = point;
_union.xnode.left = left;
_union.xnode.right = right;
left->add_parent(this);
right->add_parent(this);
}
TrapezoidMapTriFinder::Node::Node(const Edge* edge, Node* below, Node* above)
: _type(Type_YNode)
{
assert(edge != 0 && "Invalid edge");
assert(below != 0 && "Invalid below node");
assert(above != 0 && "Invalid above node");
_union.ynode.edge = edge;
_union.ynode.below = below;
_union.ynode.above = above;
below->add_parent(this);
above->add_parent(this);
}
TrapezoidMapTriFinder::Node::Node(Trapezoid* trapezoid)
: _type(Type_TrapezoidNode)
{
assert(trapezoid != 0 && "Null Trapezoid");
_union.trapezoid = trapezoid;
trapezoid->trapezoid_node = this;
}
TrapezoidMapTriFinder::Node::~Node()
{
switch (_type) {
case Type_XNode:
if (_union.xnode.left->remove_parent(this))
delete _union.xnode.left;
if (_union.xnode.right->remove_parent(this))
delete _union.xnode.right;
break;
case Type_YNode:
if (_union.ynode.below->remove_parent(this))
delete _union.ynode.below;
if (_union.ynode.above->remove_parent(this))
delete _union.ynode.above;
break;
case Type_TrapezoidNode:
delete _union.trapezoid;
break;
}
}
void
TrapezoidMapTriFinder::Node::add_parent(Node* parent)
{
assert(parent != 0 && "Null parent");
assert(parent != this && "Cannot be parent of self");
assert(!has_parent(parent) && "Parent already in collection");
_parents.push_back(parent);
}
void
TrapezoidMapTriFinder::Node::assert_valid(bool tree_complete) const
{
#ifndef NDEBUG
// Check parents.
for (Parents::const_iterator it = _parents.begin();
it != _parents.end(); ++it) {
Node* parent = *it;
assert(parent != this && "Cannot be parent of self");
assert(parent->has_child(this) && "Parent missing child");
}
// Check children, and recurse.
switch (_type) {
case Type_XNode:
assert(_union.xnode.left != 0 && "Null left child");
assert(_union.xnode.left->has_parent(this) && "Incorrect parent");
assert(_union.xnode.right != 0 && "Null right child");
assert(_union.xnode.right->has_parent(this) && "Incorrect parent");
_union.xnode.left->assert_valid(tree_complete);
_union.xnode.right->assert_valid(tree_complete);
break;
case Type_YNode:
assert(_union.ynode.below != 0 && "Null below child");
assert(_union.ynode.below->has_parent(this) && "Incorrect parent");
assert(_union.ynode.above != 0 && "Null above child");
assert(_union.ynode.above->has_parent(this) && "Incorrect parent");
_union.ynode.below->assert_valid(tree_complete);
_union.ynode.above->assert_valid(tree_complete);
break;
case Type_TrapezoidNode:
assert(_union.trapezoid != 0 && "Null trapezoid");
assert(_union.trapezoid->trapezoid_node == this &&
"Incorrect trapezoid node");
_union.trapezoid->assert_valid(tree_complete);
break;
}
#endif
}
void
TrapezoidMapTriFinder::Node::get_stats(int depth,
NodeStats& stats) const
{
stats.node_count++;
if (depth > stats.max_depth)
stats.max_depth = depth;
bool new_node = stats.unique_nodes.insert(this).second;
if (new_node)
stats.max_parent_count = std::max(stats.max_parent_count,
static_cast<long>(_parents.size()));
switch (_type) {
case Type_XNode:
_union.xnode.left->get_stats(depth+1, stats);
_union.xnode.right->get_stats(depth+1, stats);
break;
case Type_YNode:
_union.ynode.below->get_stats(depth+1, stats);
_union.ynode.above->get_stats(depth+1, stats);
break;
default: // Type_TrapezoidNode:
stats.unique_trapezoid_nodes.insert(this);
stats.trapezoid_count++;
stats.sum_trapezoid_depth += depth;
break;
}
}
int
TrapezoidMapTriFinder::Node::get_tri() const
{
switch (_type) {
case Type_XNode:
return _union.xnode.point->tri;
case Type_YNode:
if (_union.ynode.edge->triangle_above != -1)
return _union.ynode.edge->triangle_above;
else
return _union.ynode.edge->triangle_below;
default: // Type_TrapezoidNode:
assert(_union.trapezoid->below.triangle_above ==
_union.trapezoid->above.triangle_below &&
"Inconsistent triangle indices from trapezoid edges");
return _union.trapezoid->below.triangle_above;
}
}
bool
TrapezoidMapTriFinder::Node::has_child(const Node* child) const
{
assert(child != 0 && "Null child node");
switch (_type) {
case Type_XNode:
return (_union.xnode.left == child || _union.xnode.right == child);
case Type_YNode:
return (_union.ynode.below == child ||
_union.ynode.above == child);
default: // Type_TrapezoidNode:
return false;
}
}
bool
TrapezoidMapTriFinder::Node::has_no_parents() const
{
return _parents.empty();
}
bool
TrapezoidMapTriFinder::Node::has_parent(const Node* parent) const
{
return (std::find(_parents.begin(), _parents.end(), parent) !=
_parents.end());
}
void
TrapezoidMapTriFinder::Node::print(int depth /* = 0 */) const
{
for (int i = 0; i < depth; ++i) std::cout << " ";
switch (_type) {
case Type_XNode:
std::cout << "XNode " << *_union.xnode.point << std::endl;
_union.xnode.left->print(depth + 1);
_union.xnode.right->print(depth + 1);
break;
case Type_YNode:
std::cout << "YNode " << *_union.ynode.edge << std::endl;
_union.ynode.below->print(depth + 1);
_union.ynode.above->print(depth + 1);
break;
case Type_TrapezoidNode:
std::cout << "Trapezoid ll="
<< _union.trapezoid->get_lower_left_point() << " lr="
<< _union.trapezoid->get_lower_right_point() << " ul="
<< _union.trapezoid->get_upper_left_point() << " ur="
<< _union.trapezoid->get_upper_right_point() << std::endl;
break;
}
}
bool
TrapezoidMapTriFinder::Node::remove_parent(Node* parent)
{
assert(parent != 0 && "Null parent");
assert(parent != this && "Cannot be parent of self");
Parents::iterator it = std::find(_parents.begin(), _parents.end(), parent);
assert(it != _parents.end() && "Parent not in collection");
_parents.erase(it);
return _parents.empty();
}
void
TrapezoidMapTriFinder::Node::replace_child(Node* old_child, Node* new_child)
{
switch (_type) {
case Type_XNode:
assert((_union.xnode.left == old_child ||
_union.xnode.right == old_child) && "Not a child Node");
assert(new_child != 0 && "Null child node");
if (_union.xnode.left == old_child)
_union.xnode.left = new_child;
else
_union.xnode.right = new_child;
break;
case Type_YNode:
assert((_union.ynode.below == old_child ||
_union.ynode.above == old_child) && "Not a child node");
assert(new_child != 0 && "Null child node");
if (_union.ynode.below == old_child)
_union.ynode.below = new_child;
else
_union.ynode.above = new_child;
break;
case Type_TrapezoidNode:
assert(0 && "Invalid type for this operation");
break;
}
old_child->remove_parent(this);
new_child->add_parent(this);
}
void
TrapezoidMapTriFinder::Node::replace_with(Node* new_node)
{
assert(new_node != 0 && "Null replacement node");
// Replace child of each parent with new_node. As each has parent has its
// child replaced it is removed from the _parents collection.
while (!_parents.empty())
_parents.front()->replace_child(this, new_node);
}
const TrapezoidMapTriFinder::Node*
TrapezoidMapTriFinder::Node::search(const XY& xy)
{
switch (_type) {
case Type_XNode:
if (xy == *_union.xnode.point)
return this;
else if (xy.is_right_of(*_union.xnode.point))
return _union.xnode.right->search(xy);
else
return _union.xnode.left->search(xy);
case Type_YNode: {
int orient = _union.ynode.edge->get_point_orientation(xy);
if (orient == 0)
return this;
else if (orient < 0)
return _union.ynode.above->search(xy);
else
return _union.ynode.below->search(xy);
}
default: // Type_TrapezoidNode:
return this;
}
}
TrapezoidMapTriFinder::Trapezoid*
TrapezoidMapTriFinder::Node::search(const Edge& edge)
{
switch (_type) {
case Type_XNode:
if (edge.left == _union.xnode.point)
return _union.xnode.right->search(edge);
else {
if (edge.left->is_right_of(*_union.xnode.point))
return _union.xnode.right->search(edge);
else
return _union.xnode.left->search(edge);
}
case Type_YNode:
if (edge.left == _union.ynode.edge->left) {
// Coinciding left edge points.
if (edge.get_slope() == _union.ynode.edge->get_slope()) {
if (_union.ynode.edge->triangle_above ==
edge.triangle_below)
return _union.ynode.above->search(edge);
else if (_union.ynode.edge->triangle_below ==
edge.triangle_above)
return _union.ynode.below->search(edge);
else {
assert(0 &&
"Invalid triangulation, common left points");
return 0;
}
}
if (edge.get_slope() > _union.ynode.edge->get_slope())
return _union.ynode.above->search(edge);
else
return _union.ynode.below->search(edge);
}
else if (edge.right == _union.ynode.edge->right) {
// Coinciding right edge points.
if (edge.get_slope() == _union.ynode.edge->get_slope()) {
if (_union.ynode.edge->triangle_above ==
edge.triangle_below)
return _union.ynode.above->search(edge);
else if (_union.ynode.edge->triangle_below ==
edge.triangle_above)
return _union.ynode.below->search(edge);
else {
assert(0 &&
"Invalid triangulation, common right points");
return 0;
}
}
if (edge.get_slope() > _union.ynode.edge->get_slope())
return _union.ynode.below->search(edge);
else
return _union.ynode.above->search(edge);
}
else {
int orient =
_union.ynode.edge->get_point_orientation(*edge.left);
if (orient == 0) {
// edge.left lies on _union.ynode.edge
if (_union.ynode.edge->point_above != 0 &&
edge.has_point(_union.ynode.edge->point_above))
orient = -1;
else if (_union.ynode.edge->point_below != 0 &&
edge.has_point(_union.ynode.edge->point_below))
orient = +1;
else {
assert(0 && "Invalid triangulation, point on edge");
return 0;
}
}
if (orient < 0)
return _union.ynode.above->search(edge);
else
return _union.ynode.below->search(edge);
}
default: // Type_TrapezoidNode:
return _union.trapezoid;
}
}
TrapezoidMapTriFinder::Trapezoid::Trapezoid(const Point* left_,
const Point* right_,
const Edge& below_,
const Edge& above_)
: left(left_), right(right_), below(below_), above(above_),
lower_left(0), lower_right(0), upper_left(0), upper_right(0),
trapezoid_node(0)
{
assert(left != 0 && "Null left point");
assert(right != 0 && "Null right point");
assert(right->is_right_of(*left) && "Incorrect point order");
}
void
TrapezoidMapTriFinder::Trapezoid::assert_valid(bool tree_complete) const
{
#ifndef NDEBUG
assert(left != 0 && "Null left point");
assert(right != 0 && "Null right point");
if (lower_left != 0) {
assert(lower_left->below == below &&
lower_left->lower_right == this &&
"Incorrect lower_left trapezoid");
assert(get_lower_left_point() == lower_left->get_lower_right_point() &&
"Incorrect lower left point");
}
if (lower_right != 0) {
assert(lower_right->below == below &&
lower_right->lower_left == this &&
"Incorrect lower_right trapezoid");
assert(get_lower_right_point() == lower_right->get_lower_left_point() &&
"Incorrect lower right point");
}
if (upper_left != 0) {
assert(upper_left->above == above &&
upper_left->upper_right == this &&
"Incorrect upper_left trapezoid");
assert(get_upper_left_point() == upper_left->get_upper_right_point() &&
"Incorrect upper left point");
}
if (upper_right != 0) {
assert(upper_right->above == above &&
upper_right->upper_left == this &&
"Incorrect upper_right trapezoid");
assert(get_upper_right_point() == upper_right->get_upper_left_point() &&
"Incorrect upper right point");
}
assert(trapezoid_node != 0 && "Null trapezoid_node");
if (tree_complete) {
assert(below.triangle_above == above.triangle_below &&
"Inconsistent triangle indices from trapezoid edges");
}
#endif
}
XY
TrapezoidMapTriFinder::Trapezoid::get_lower_left_point() const
{
double x = left->x;
return XY(x, below.get_y_at_x(x));
}
XY
TrapezoidMapTriFinder::Trapezoid::get_lower_right_point() const
{
double x = right->x;
return XY(x, below.get_y_at_x(x));
}
XY
TrapezoidMapTriFinder::Trapezoid::get_upper_left_point() const
{
double x = left->x;
return XY(x, above.get_y_at_x(x));
}
XY
TrapezoidMapTriFinder::Trapezoid::get_upper_right_point() const
{
double x = right->x;
return XY(x, above.get_y_at_x(x));
}
void
TrapezoidMapTriFinder::Trapezoid::print_debug() const
{
std::cout << "Trapezoid " << this
<< " left=" << *left
<< " right=" << *right
<< " below=" << below
<< " above=" << above
<< " ll=" << lower_left
<< " lr=" << lower_right
<< " ul=" << upper_left
<< " ur=" << upper_right
<< " node=" << trapezoid_node
<< " llp=" << get_lower_left_point()
<< " lrp=" << get_lower_right_point()
<< " ulp=" << get_upper_left_point()
<< " urp=" << get_upper_right_point() << std::endl;
}
void
TrapezoidMapTriFinder::Trapezoid::set_lower_left(Trapezoid* lower_left_)
{
lower_left = lower_left_;
if (lower_left != 0)
lower_left->lower_right = this;
}
void
TrapezoidMapTriFinder::Trapezoid::set_lower_right(Trapezoid* lower_right_)
{
lower_right = lower_right_;
if (lower_right != 0)
lower_right->lower_left = this;
}
void
TrapezoidMapTriFinder::Trapezoid::set_upper_left(Trapezoid* upper_left_)
{
upper_left = upper_left_;
if (upper_left != 0)
upper_left->upper_right = this;
}
void
TrapezoidMapTriFinder::Trapezoid::set_upper_right(Trapezoid* upper_right_)
{
upper_right = upper_right_;
if (upper_right != 0)
upper_right->upper_left = this;
}
|