aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/axes3d.py
blob: a74c11f54e606ff6340b0826c5e999481175d5d9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
"""
axes3d.py, original mplot3d version by John Porter
Created: 23 Sep 2005

Parts fixed by Reinier Heeres <reinier@heeres.eu>
Minor additions by Ben Axelrod <baxelrod@coroware.com>
Significant updates and revisions by Ben Root <ben.v.root@gmail.com>

Module containing Axes3D, an object which can plot 3D objects on a
2D matplotlib figure.
"""

from collections import defaultdict
import functools
import itertools
import math
import textwrap

import numpy as np

import matplotlib as mpl
from matplotlib import _api, cbook, _docstring, _preprocess_data
import matplotlib.artist as martist
import matplotlib.axes as maxes
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.image as mimage
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.container as mcontainer
import matplotlib.transforms as mtransforms
from matplotlib.axes import Axes
from matplotlib.axes._base import _axis_method_wrapper, _process_plot_format
from matplotlib.transforms import Bbox
from matplotlib.tri._triangulation import Triangulation

from . import art3d
from . import proj3d
from . import axis3d


@_docstring.interpd
@_api.define_aliases({
    "xlim": ["xlim3d"], "ylim": ["ylim3d"], "zlim": ["zlim3d"]})
class Axes3D(Axes):
    """
    3D Axes object.

    .. note::

        As a user, you do not instantiate Axes directly, but use Axes creation
        methods instead; e.g. from `.pyplot` or `.Figure`:
        `~.pyplot.subplots`, `~.pyplot.subplot_mosaic` or `.Figure.add_axes`.
    """
    name = '3d'

    _axis_names = ("x", "y", "z")
    Axes._shared_axes["z"] = cbook.Grouper()
    Axes._shared_axes["view"] = cbook.Grouper()

    vvec = _api.deprecate_privatize_attribute("3.7")
    eye = _api.deprecate_privatize_attribute("3.7")
    sx = _api.deprecate_privatize_attribute("3.7")
    sy = _api.deprecate_privatize_attribute("3.7")

    def __init__(
            self, fig, rect=None, *args,
            elev=30, azim=-60, roll=0, sharez=None, proj_type='persp',
            box_aspect=None, computed_zorder=True, focal_length=None,
            shareview=None,
            **kwargs):
        """
        Parameters
        ----------
        fig : Figure
            The parent figure.
        rect : tuple (left, bottom, width, height), default: None.
            The ``(left, bottom, width, height)`` axes position.
        elev : float, default: 30
            The elevation angle in degrees rotates the camera above and below
            the x-y plane, with a positive angle corresponding to a location
            above the plane.
        azim : float, default: -60
            The azimuthal angle in degrees rotates the camera about the z axis,
            with a positive angle corresponding to a right-handed rotation. In
            other words, a positive azimuth rotates the camera about the origin
            from its location along the +x axis towards the +y axis.
        roll : float, default: 0
            The roll angle in degrees rotates the camera about the viewing
            axis. A positive angle spins the camera clockwise, causing the
            scene to rotate counter-clockwise.
        sharez : Axes3D, optional
            Other Axes to share z-limits with.
        proj_type : {'persp', 'ortho'}
            The projection type, default 'persp'.
        box_aspect : 3-tuple of floats, default: None
            Changes the physical dimensions of the Axes3D, such that the ratio
            of the axis lengths in display units is x:y:z.
            If None, defaults to 4:4:3
        computed_zorder : bool, default: True
            If True, the draw order is computed based on the average position
            of the `.Artist`\\s along the view direction.
            Set to False if you want to manually control the order in which
            Artists are drawn on top of each other using their *zorder*
            attribute. This can be used for fine-tuning if the automatic order
            does not produce the desired result. Note however, that a manual
            zorder will only be correct for a limited view angle. If the figure
            is rotated by the user, it will look wrong from certain angles.
        focal_length : float, default: None
            For a projection type of 'persp', the focal length of the virtual
            camera. Must be > 0. If None, defaults to 1.
            For a projection type of 'ortho', must be set to either None
            or infinity (numpy.inf). If None, defaults to infinity.
            The focal length can be computed from a desired Field Of View via
            the equation: focal_length = 1/tan(FOV/2)
        shareview : Axes3D, optional
            Other Axes to share view angles with.

        **kwargs
            Other optional keyword arguments:

            %(Axes3D:kwdoc)s
        """

        if rect is None:
            rect = [0.0, 0.0, 1.0, 1.0]

        self.initial_azim = azim
        self.initial_elev = elev
        self.initial_roll = roll
        self.set_proj_type(proj_type, focal_length)
        self.computed_zorder = computed_zorder

        self.xy_viewLim = Bbox.unit()
        self.zz_viewLim = Bbox.unit()
        self.xy_dataLim = Bbox.unit()
        # z-limits are encoded in the x-component of the Bbox, y is un-used
        self.zz_dataLim = Bbox.unit()

        # inhibit autoscale_view until the axes are defined
        # they can't be defined until Axes.__init__ has been called
        self.view_init(self.initial_elev, self.initial_azim, self.initial_roll)

        self._sharez = sharez
        if sharez is not None:
            self._shared_axes["z"].join(self, sharez)
            self._adjustable = 'datalim'

        self._shareview = shareview
        if shareview is not None:
            self._shared_axes["view"].join(self, shareview)

        if kwargs.pop('auto_add_to_figure', False):
            raise AttributeError(
                'auto_add_to_figure is no longer supported for Axes3D. '
                'Use fig.add_axes(ax) instead.'
            )

        super().__init__(
            fig, rect, frameon=True, box_aspect=box_aspect, *args, **kwargs
        )
        # Disable drawing of axes by base class
        super().set_axis_off()
        # Enable drawing of axes by Axes3D class
        self.set_axis_on()
        self.M = None
        self.invM = None

        # func used to format z -- fall back on major formatters
        self.fmt_zdata = None

        self.mouse_init()
        self.figure.canvas.callbacks._connect_picklable(
            'motion_notify_event', self._on_move)
        self.figure.canvas.callbacks._connect_picklable(
            'button_press_event', self._button_press)
        self.figure.canvas.callbacks._connect_picklable(
            'button_release_event', self._button_release)
        self.set_top_view()

        self.patch.set_linewidth(0)
        # Calculate the pseudo-data width and height
        pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)])
        self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0]

        # mplot3d currently manages its own spines and needs these turned off
        # for bounding box calculations
        self.spines[:].set_visible(False)

    def set_axis_off(self):
        self._axis3don = False
        self.stale = True

    def set_axis_on(self):
        self._axis3don = True
        self.stale = True

    def convert_zunits(self, z):
        """
        For artists in an Axes, if the zaxis has units support,
        convert *z* using zaxis unit type
        """
        return self.zaxis.convert_units(z)

    def set_top_view(self):
        # this happens to be the right view for the viewing coordinates
        # moved up and to the left slightly to fit labels and axes
        xdwl = 0.95 / self._dist
        xdw = 0.9 / self._dist
        ydwl = 0.95 / self._dist
        ydw = 0.9 / self._dist
        # Set the viewing pane.
        self.viewLim.intervalx = (-xdwl, xdw)
        self.viewLim.intervaly = (-ydwl, ydw)
        self.stale = True

    def _init_axis(self):
        """Init 3D axes; overrides creation of regular X/Y axes."""
        self.xaxis = axis3d.XAxis(self)
        self.yaxis = axis3d.YAxis(self)
        self.zaxis = axis3d.ZAxis(self)

    def get_zaxis(self):
        """Return the ``ZAxis`` (`~.axis3d.Axis`) instance."""
        return self.zaxis

    get_zgridlines = _axis_method_wrapper("zaxis", "get_gridlines")
    get_zticklines = _axis_method_wrapper("zaxis", "get_ticklines")

    @_api.deprecated("3.7")
    def unit_cube(self, vals=None):
        return self._unit_cube(vals)

    def _unit_cube(self, vals=None):
        minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims()
        return [(minx, miny, minz),
                (maxx, miny, minz),
                (maxx, maxy, minz),
                (minx, maxy, minz),
                (minx, miny, maxz),
                (maxx, miny, maxz),
                (maxx, maxy, maxz),
                (minx, maxy, maxz)]

    @_api.deprecated("3.7")
    def tunit_cube(self, vals=None, M=None):
        return self._tunit_cube(vals, M)

    def _tunit_cube(self, vals=None, M=None):
        if M is None:
            M = self.M
        xyzs = self._unit_cube(vals)
        tcube = proj3d._proj_points(xyzs, M)
        return tcube

    @_api.deprecated("3.7")
    def tunit_edges(self, vals=None, M=None):
        return self._tunit_edges(vals, M)

    def _tunit_edges(self, vals=None, M=None):
        tc = self._tunit_cube(vals, M)
        edges = [(tc[0], tc[1]),
                 (tc[1], tc[2]),
                 (tc[2], tc[3]),
                 (tc[3], tc[0]),

                 (tc[0], tc[4]),
                 (tc[1], tc[5]),
                 (tc[2], tc[6]),
                 (tc[3], tc[7]),

                 (tc[4], tc[5]),
                 (tc[5], tc[6]),
                 (tc[6], tc[7]),
                 (tc[7], tc[4])]
        return edges

    def set_aspect(self, aspect, adjustable=None, anchor=None, share=False):
        """
        Set the aspect ratios.

        Parameters
        ----------
        aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}
            Possible values:

            =========   ==================================================
            value       description
            =========   ==================================================
            'auto'      automatic; fill the position rectangle with data.
            'equal'     adapt all the axes to have equal aspect ratios.
            'equalxy'   adapt the x and y axes to have equal aspect ratios.
            'equalxz'   adapt the x and z axes to have equal aspect ratios.
            'equalyz'   adapt the y and z axes to have equal aspect ratios.
            =========   ==================================================

        adjustable : None or {'box', 'datalim'}, optional
            If not *None*, this defines which parameter will be adjusted to
            meet the required aspect. See `.set_adjustable` for further
            details.

        anchor : None or str or 2-tuple of float, optional
            If not *None*, this defines where the Axes will be drawn if there
            is extra space due to aspect constraints. The most common way to
            specify the anchor are abbreviations of cardinal directions:

            =====   =====================
            value   description
            =====   =====================
            'C'     centered
            'SW'    lower left corner
            'S'     middle of bottom edge
            'SE'    lower right corner
            etc.
            =====   =====================

            See `~.Axes.set_anchor` for further details.

        share : bool, default: False
            If ``True``, apply the settings to all shared Axes.

        See Also
        --------
        mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect
        """
        _api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'),
                           aspect=aspect)
        super().set_aspect(
            aspect='auto', adjustable=adjustable, anchor=anchor, share=share)
        self._aspect = aspect

        if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
            ax_indices = self._equal_aspect_axis_indices(aspect)

            view_intervals = np.array([self.xaxis.get_view_interval(),
                                       self.yaxis.get_view_interval(),
                                       self.zaxis.get_view_interval()])
            ptp = np.ptp(view_intervals, axis=1)
            if self._adjustable == 'datalim':
                mean = np.mean(view_intervals, axis=1)
                scale = max(ptp[ax_indices] / self._box_aspect[ax_indices])
                deltas = scale * self._box_aspect

                for i, set_lim in enumerate((self.set_xlim3d,
                                             self.set_ylim3d,
                                             self.set_zlim3d)):
                    if i in ax_indices:
                        set_lim(mean[i] - deltas[i]/2., mean[i] + deltas[i]/2.)
            else:  # 'box'
                # Change the box aspect such that the ratio of the length of
                # the unmodified axis to the length of the diagonal
                # perpendicular to it remains unchanged.
                box_aspect = np.array(self._box_aspect)
                box_aspect[ax_indices] = ptp[ax_indices]
                remaining_ax_indices = {0, 1, 2}.difference(ax_indices)
                if remaining_ax_indices:
                    remaining = remaining_ax_indices.pop()
                    old_diag = np.linalg.norm(self._box_aspect[ax_indices])
                    new_diag = np.linalg.norm(box_aspect[ax_indices])
                    box_aspect[remaining] *= new_diag / old_diag
                self.set_box_aspect(box_aspect)

    def _equal_aspect_axis_indices(self, aspect):
        """
        Get the indices for which of the x, y, z axes are constrained to have
        equal aspect ratios.

        Parameters
        ----------
        aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}
            See descriptions in docstring for `.set_aspect()`.
        """
        ax_indices = []  # aspect == 'auto'
        if aspect == 'equal':
            ax_indices = [0, 1, 2]
        elif aspect == 'equalxy':
            ax_indices = [0, 1]
        elif aspect == 'equalxz':
            ax_indices = [0, 2]
        elif aspect == 'equalyz':
            ax_indices = [1, 2]
        return ax_indices

    def set_box_aspect(self, aspect, *, zoom=1):
        """
        Set the Axes box aspect.

        The box aspect is the ratio of height to width in display
        units for each face of the box when viewed perpendicular to
        that face.  This is not to be confused with the data aspect (see
        `~.Axes3D.set_aspect`). The default ratios are 4:4:3 (x:y:z).

        To simulate having equal aspect in data space, set the box
        aspect to match your data range in each dimension.

        *zoom* controls the overall size of the Axes3D in the figure.

        Parameters
        ----------
        aspect : 3-tuple of floats or None
            Changes the physical dimensions of the Axes3D, such that the ratio
            of the axis lengths in display units is x:y:z.
            If None, defaults to (4, 4, 3).

        zoom : float, default: 1
            Control overall size of the Axes3D in the figure. Must be > 0.
        """
        if zoom <= 0:
            raise ValueError(f'Argument zoom = {zoom} must be > 0')

        if aspect is None:
            aspect = np.asarray((4, 4, 3), dtype=float)
        else:
            aspect = np.asarray(aspect, dtype=float)
            _api.check_shape((3,), aspect=aspect)
        # default scale tuned to match the mpl32 appearance.
        aspect *= 1.8294640721620434 * zoom / np.linalg.norm(aspect)

        self._box_aspect = aspect
        self.stale = True

    def apply_aspect(self, position=None):
        if position is None:
            position = self.get_position(original=True)

        # in the superclass, we would go through and actually deal with axis
        # scales and box/datalim. Those are all irrelevant - all we need to do
        # is make sure our coordinate system is square.
        trans = self.get_figure().transSubfigure
        bb = mtransforms.Bbox.unit().transformed(trans)
        # this is the physical aspect of the panel (or figure):
        fig_aspect = bb.height / bb.width

        box_aspect = 1
        pb = position.frozen()
        pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
        self._set_position(pb1.anchored(self.get_anchor(), pb), 'active')

    @martist.allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        self._unstale_viewLim()

        # draw the background patch
        self.patch.draw(renderer)
        self._frameon = False

        # first, set the aspect
        # this is duplicated from `axes._base._AxesBase.draw`
        # but must be called before any of the artist are drawn as
        # it adjusts the view limits and the size of the bounding box
        # of the Axes
        locator = self.get_axes_locator()
        self.apply_aspect(locator(self, renderer) if locator else None)

        # add the projection matrix to the renderer
        self.M = self.get_proj()
        self.invM = np.linalg.inv(self.M)

        collections_and_patches = (
            artist for artist in self._children
            if isinstance(artist, (mcoll.Collection, mpatches.Patch))
            and artist.get_visible())
        if self.computed_zorder:
            # Calculate projection of collections and patches and zorder
            # them. Make sure they are drawn above the grids.
            zorder_offset = max(axis.get_zorder()
                                for axis in self._axis_map.values()) + 1
            collection_zorder = patch_zorder = zorder_offset

            for artist in sorted(collections_and_patches,
                                 key=lambda artist: artist.do_3d_projection(),
                                 reverse=True):
                if isinstance(artist, mcoll.Collection):
                    artist.zorder = collection_zorder
                    collection_zorder += 1
                elif isinstance(artist, mpatches.Patch):
                    artist.zorder = patch_zorder
                    patch_zorder += 1
        else:
            for artist in collections_and_patches:
                artist.do_3d_projection()

        if self._axis3don:
            # Draw panes first
            for axis in self._axis_map.values():
                axis.draw_pane(renderer)
            # Then gridlines
            for axis in self._axis_map.values():
                axis.draw_grid(renderer)
            # Then axes, labels, text, and ticks
            for axis in self._axis_map.values():
                axis.draw(renderer)

        # Then rest
        super().draw(renderer)

    def get_axis_position(self):
        vals = self.get_w_lims()
        tc = self._tunit_cube(vals, self.M)
        xhigh = tc[1][2] > tc[2][2]
        yhigh = tc[3][2] > tc[2][2]
        zhigh = tc[0][2] > tc[2][2]
        return xhigh, yhigh, zhigh

    def update_datalim(self, xys, **kwargs):
        """
        Not implemented in `~mpl_toolkits.mplot3d.axes3d.Axes3D`.
        """
        pass

    get_autoscalez_on = _axis_method_wrapper("zaxis", "_get_autoscale_on")
    set_autoscalez_on = _axis_method_wrapper("zaxis", "_set_autoscale_on")

    def set_zmargin(self, m):
        """
        Set padding of Z data limits prior to autoscaling.

        *m* times the data interval will be added to each end of that interval
        before it is used in autoscaling.  If *m* is negative, this will clip
        the data range instead of expanding it.

        For example, if your data is in the range [0, 2], a margin of 0.1 will
        result in a range [-0.2, 2.2]; a margin of -0.1 will result in a range
        of [0.2, 1.8].

        Parameters
        ----------
        m : float greater than -0.5
        """
        if m <= -0.5:
            raise ValueError("margin must be greater than -0.5")
        self._zmargin = m
        self._request_autoscale_view("z")
        self.stale = True

    def margins(self, *margins, x=None, y=None, z=None, tight=True):
        """
        Set or retrieve autoscaling margins.

        See `.Axes.margins` for full documentation.  Because this function
        applies to 3D Axes, it also takes a *z* argument, and returns
        ``(xmargin, ymargin, zmargin)``.
        """
        if margins and (x is not None or y is not None or z is not None):
            raise TypeError('Cannot pass both positional and keyword '
                            'arguments for x, y, and/or z.')
        elif len(margins) == 1:
            x = y = z = margins[0]
        elif len(margins) == 3:
            x, y, z = margins
        elif margins:
            raise TypeError('Must pass a single positional argument for all '
                            'margins, or one for each margin (x, y, z).')

        if x is None and y is None and z is None:
            if tight is not True:
                _api.warn_external(f'ignoring tight={tight!r} in get mode')
            return self._xmargin, self._ymargin, self._zmargin

        if x is not None:
            self.set_xmargin(x)
        if y is not None:
            self.set_ymargin(y)
        if z is not None:
            self.set_zmargin(z)

        self.autoscale_view(
            tight=tight, scalex=(x is not None), scaley=(y is not None),
            scalez=(z is not None)
        )

    def autoscale(self, enable=True, axis='both', tight=None):
        """
        Convenience method for simple axis view autoscaling.

        See `.Axes.autoscale` for full documentation.  Because this function
        applies to 3D Axes, *axis* can also be set to 'z', and setting *axis*
        to 'both' autoscales all three axes.
        """
        if enable is None:
            scalex = True
            scaley = True
            scalez = True
        else:
            if axis in ['x', 'both']:
                self.set_autoscalex_on(bool(enable))
                scalex = self.get_autoscalex_on()
            else:
                scalex = False
            if axis in ['y', 'both']:
                self.set_autoscaley_on(bool(enable))
                scaley = self.get_autoscaley_on()
            else:
                scaley = False
            if axis in ['z', 'both']:
                self.set_autoscalez_on(bool(enable))
                scalez = self.get_autoscalez_on()
            else:
                scalez = False
        if scalex:
            self._request_autoscale_view("x", tight=tight)
        if scaley:
            self._request_autoscale_view("y", tight=tight)
        if scalez:
            self._request_autoscale_view("z", tight=tight)

    def auto_scale_xyz(self, X, Y, Z=None, had_data=None):
        # This updates the bounding boxes as to keep a record as to what the
        # minimum sized rectangular volume holds the data.
        if np.shape(X) == np.shape(Y):
            self.xy_dataLim.update_from_data_xy(
                np.column_stack([np.ravel(X), np.ravel(Y)]), not had_data)
        else:
            self.xy_dataLim.update_from_data_x(X, not had_data)
            self.xy_dataLim.update_from_data_y(Y, not had_data)
        if Z is not None:
            self.zz_dataLim.update_from_data_x(Z, not had_data)
        # Let autoscale_view figure out how to use this data.
        self.autoscale_view()

    def autoscale_view(self, tight=None, scalex=True, scaley=True,
                       scalez=True):
        """
        Autoscale the view limits using the data limits.

        See `.Axes.autoscale_view` for full documentation.  Because this
        function applies to 3D Axes, it also takes a *scalez* argument.
        """
        # This method looks at the rectangular volume (see above)
        # of data and decides how to scale the view portal to fit it.
        if tight is None:
            _tight = self._tight
            if not _tight:
                # if image data only just use the datalim
                for artist in self._children:
                    if isinstance(artist, mimage.AxesImage):
                        _tight = True
                    elif isinstance(artist, (mlines.Line2D, mpatches.Patch)):
                        _tight = False
                        break
        else:
            _tight = self._tight = bool(tight)

        if scalex and self.get_autoscalex_on():
            x0, x1 = self.xy_dataLim.intervalx
            xlocator = self.xaxis.get_major_locator()
            x0, x1 = xlocator.nonsingular(x0, x1)
            if self._xmargin > 0:
                delta = (x1 - x0) * self._xmargin
                x0 -= delta
                x1 += delta
            if not _tight:
                x0, x1 = xlocator.view_limits(x0, x1)
            self.set_xbound(x0, x1)

        if scaley and self.get_autoscaley_on():
            y0, y1 = self.xy_dataLim.intervaly
            ylocator = self.yaxis.get_major_locator()
            y0, y1 = ylocator.nonsingular(y0, y1)
            if self._ymargin > 0:
                delta = (y1 - y0) * self._ymargin
                y0 -= delta
                y1 += delta
            if not _tight:
                y0, y1 = ylocator.view_limits(y0, y1)
            self.set_ybound(y0, y1)

        if scalez and self.get_autoscalez_on():
            z0, z1 = self.zz_dataLim.intervalx
            zlocator = self.zaxis.get_major_locator()
            z0, z1 = zlocator.nonsingular(z0, z1)
            if self._zmargin > 0:
                delta = (z1 - z0) * self._zmargin
                z0 -= delta
                z1 += delta
            if not _tight:
                z0, z1 = zlocator.view_limits(z0, z1)
            self.set_zbound(z0, z1)

    def get_w_lims(self):
        """Get 3D world limits."""
        minx, maxx = self.get_xlim3d()
        miny, maxy = self.get_ylim3d()
        minz, maxz = self.get_zlim3d()
        return minx, maxx, miny, maxy, minz, maxz

    # set_xlim, set_ylim are directly inherited from base Axes.
    def set_zlim(self, bottom=None, top=None, *, emit=True, auto=False,
                 zmin=None, zmax=None):
        """
        Set 3D z limits.

        See `.Axes.set_ylim` for full documentation
        """
        if top is None and np.iterable(bottom):
            bottom, top = bottom
        if zmin is not None:
            if bottom is not None:
                raise TypeError("Cannot pass both 'bottom' and 'zmin'")
            bottom = zmin
        if zmax is not None:
            if top is not None:
                raise TypeError("Cannot pass both 'top' and 'zmax'")
            top = zmax
        return self.zaxis._set_lim(bottom, top, emit=emit, auto=auto)

    set_xlim3d = maxes.Axes.set_xlim
    set_ylim3d = maxes.Axes.set_ylim
    set_zlim3d = set_zlim

    def get_xlim(self):
        # docstring inherited
        return tuple(self.xy_viewLim.intervalx)

    def get_ylim(self):
        # docstring inherited
        return tuple(self.xy_viewLim.intervaly)

    def get_zlim(self):
        """
        Return the 3D z-axis view limits.

        Returns
        -------
        left, right : (float, float)
            The current z-axis limits in data coordinates.

        See Also
        --------
        set_zlim
        set_zbound, get_zbound
        invert_zaxis, zaxis_inverted

        Notes
        -----
        The z-axis may be inverted, in which case the *left* value will
        be greater than the *right* value.
        """
        return tuple(self.zz_viewLim.intervalx)

    get_zscale = _axis_method_wrapper("zaxis", "get_scale")

    # Redefine all three methods to overwrite their docstrings.
    set_xscale = _axis_method_wrapper("xaxis", "_set_axes_scale")
    set_yscale = _axis_method_wrapper("yaxis", "_set_axes_scale")
    set_zscale = _axis_method_wrapper("zaxis", "_set_axes_scale")
    set_xscale.__doc__, set_yscale.__doc__, set_zscale.__doc__ = map(
        """
        Set the {}-axis scale.

        Parameters
        ----------
        value : {{"linear"}}
            The axis scale type to apply.  3D axes currently only support
            linear scales; other scales yield nonsensical results.

        **kwargs
            Keyword arguments are nominally forwarded to the scale class, but
            none of them is applicable for linear scales.
        """.format,
        ["x", "y", "z"])

    get_zticks = _axis_method_wrapper("zaxis", "get_ticklocs")
    set_zticks = _axis_method_wrapper("zaxis", "set_ticks")
    get_zmajorticklabels = _axis_method_wrapper("zaxis", "get_majorticklabels")
    get_zminorticklabels = _axis_method_wrapper("zaxis", "get_minorticklabels")
    get_zticklabels = _axis_method_wrapper("zaxis", "get_ticklabels")
    set_zticklabels = _axis_method_wrapper(
        "zaxis", "set_ticklabels",
        doc_sub={"Axis.set_ticks": "Axes3D.set_zticks"})

    zaxis_date = _axis_method_wrapper("zaxis", "axis_date")
    if zaxis_date.__doc__:
        zaxis_date.__doc__ += textwrap.dedent("""

        Notes
        -----
        This function is merely provided for completeness, but 3D axes do not
        support dates for ticks, and so this may not work as expected.
        """)

    def clabel(self, *args, **kwargs):
        """Currently not implemented for 3D axes, and returns *None*."""
        return None

    def view_init(self, elev=None, azim=None, roll=None, vertical_axis="z",
                  share=False):
        """
        Set the elevation and azimuth of the axes in degrees (not radians).

        This can be used to rotate the axes programmatically.

        To look normal to the primary planes, the following elevation and
        azimuth angles can be used. A roll angle of 0, 90, 180, or 270 deg
        will rotate these views while keeping the axes at right angles.

        ==========   ====  ====
        view plane   elev  azim
        ==========   ====  ====
        XY           90    -90
        XZ           0     -90
        YZ           0     0
        -XY          -90   90
        -XZ          0     90
        -YZ          0     180
        ==========   ====  ====

        Parameters
        ----------
        elev : float, default: None
            The elevation angle in degrees rotates the camera above the plane
            pierced by the vertical axis, with a positive angle corresponding
            to a location above that plane. For example, with the default
            vertical axis of 'z', the elevation defines the angle of the camera
            location above the x-y plane.
            If None, then the initial value as specified in the `Axes3D`
            constructor is used.
        azim : float, default: None
            The azimuthal angle in degrees rotates the camera about the
            vertical axis, with a positive angle corresponding to a
            right-handed rotation. For example, with the default vertical axis
            of 'z', a positive azimuth rotates the camera about the origin from
            its location along the +x axis towards the +y axis.
            If None, then the initial value as specified in the `Axes3D`
            constructor is used.
        roll : float, default: None
            The roll angle in degrees rotates the camera about the viewing
            axis. A positive angle spins the camera clockwise, causing the
            scene to rotate counter-clockwise.
            If None, then the initial value as specified in the `Axes3D`
            constructor is used.
        vertical_axis : {"z", "x", "y"}, default: "z"
            The axis to align vertically. *azim* rotates about this axis.
        share : bool, default: False
            If ``True``, apply the settings to all Axes with shared views.
        """

        self._dist = 10  # The camera distance from origin. Behaves like zoom

        if elev is None:
            elev = self.initial_elev
        if azim is None:
            azim = self.initial_azim
        if roll is None:
            roll = self.initial_roll
        vertical_axis = _api.check_getitem(
            dict(x=0, y=1, z=2), vertical_axis=vertical_axis
        )

        if share:
            axes = {sibling for sibling
                    in self._shared_axes['view'].get_siblings(self)}
        else:
            axes = [self]

        for ax in axes:
            ax.elev = elev
            ax.azim = azim
            ax.roll = roll
            ax._vertical_axis = vertical_axis

    def set_proj_type(self, proj_type, focal_length=None):
        """
        Set the projection type.

        Parameters
        ----------
        proj_type : {'persp', 'ortho'}
            The projection type.
        focal_length : float, default: None
            For a projection type of 'persp', the focal length of the virtual
            camera. Must be > 0. If None, defaults to 1.
            The focal length can be computed from a desired Field Of View via
            the equation: focal_length = 1/tan(FOV/2)
        """
        _api.check_in_list(['persp', 'ortho'], proj_type=proj_type)
        if proj_type == 'persp':
            if focal_length is None:
                focal_length = 1
            elif focal_length <= 0:
                raise ValueError(f"focal_length = {focal_length} must be "
                                 "greater than 0")
            self._focal_length = focal_length
        else:  # 'ortho':
            if focal_length not in (None, np.inf):
                raise ValueError(f"focal_length = {focal_length} must be "
                                 f"None for proj_type = {proj_type}")
            self._focal_length = np.inf

    def _roll_to_vertical(self, arr):
        """Roll arrays to match the different vertical axis."""
        return np.roll(arr, self._vertical_axis - 2)

    def get_proj(self):
        """Create the projection matrix from the current viewing position."""

        # Transform to uniform world coordinates 0-1, 0-1, 0-1
        box_aspect = self._roll_to_vertical(self._box_aspect)
        worldM = proj3d.world_transformation(
            *self.get_xlim3d(),
            *self.get_ylim3d(),
            *self.get_zlim3d(),
            pb_aspect=box_aspect,
        )

        # Look into the middle of the world coordinates:
        R = 0.5 * box_aspect

        # elev: elevation angle in the z plane.
        # azim: azimuth angle in the xy plane.
        # Coordinates for a point that rotates around the box of data.
        # p0, p1 corresponds to rotating the box only around the vertical axis.
        # p2 corresponds to rotating the box only around the horizontal axis.
        elev_rad = np.deg2rad(self.elev)
        azim_rad = np.deg2rad(self.azim)
        p0 = np.cos(elev_rad) * np.cos(azim_rad)
        p1 = np.cos(elev_rad) * np.sin(azim_rad)
        p2 = np.sin(elev_rad)

        # When changing vertical axis the coordinates changes as well.
        # Roll the values to get the same behaviour as the default:
        ps = self._roll_to_vertical([p0, p1, p2])

        # The coordinates for the eye viewing point. The eye is looking
        # towards the middle of the box of data from a distance:
        eye = R + self._dist * ps

        # vvec, self._vvec and self._eye are unused, remove when deprecated
        vvec = R - eye
        self._eye = eye
        self._vvec = vvec / np.linalg.norm(vvec)

        # Calculate the viewing axes for the eye position
        u, v, w = self._calc_view_axes(eye)
        self._view_u = u  # _view_u is towards the right of the screen
        self._view_v = v  # _view_v is towards the top of the screen
        self._view_w = w  # _view_w is out of the screen

        # Generate the view and projection transformation matrices
        if self._focal_length == np.inf:
            # Orthographic projection
            viewM = proj3d._view_transformation_uvw(u, v, w, eye)
            projM = proj3d._ortho_transformation(-self._dist, self._dist)
        else:
            # Perspective projection
            # Scale the eye dist to compensate for the focal length zoom effect
            eye_focal = R + self._dist * ps * self._focal_length
            viewM = proj3d._view_transformation_uvw(u, v, w, eye_focal)
            projM = proj3d._persp_transformation(-self._dist,
                                                 self._dist,
                                                 self._focal_length)

        # Combine all the transformation matrices to get the final projection
        M0 = np.dot(viewM, worldM)
        M = np.dot(projM, M0)
        return M

    def mouse_init(self, rotate_btn=1, pan_btn=2, zoom_btn=3):
        """
        Set the mouse buttons for 3D rotation and zooming.

        Parameters
        ----------
        rotate_btn : int or list of int, default: 1
            The mouse button or buttons to use for 3D rotation of the axes.
        pan_btn : int or list of int, default: 2
            The mouse button or buttons to use to pan the 3D axes.
        zoom_btn : int or list of int, default: 3
            The mouse button or buttons to use to zoom the 3D axes.
        """
        self.button_pressed = None
        # coerce scalars into array-like, then convert into
        # a regular list to avoid comparisons against None
        # which breaks in recent versions of numpy.
        self._rotate_btn = np.atleast_1d(rotate_btn).tolist()
        self._pan_btn = np.atleast_1d(pan_btn).tolist()
        self._zoom_btn = np.atleast_1d(zoom_btn).tolist()

    def disable_mouse_rotation(self):
        """Disable mouse buttons for 3D rotation, panning, and zooming."""
        self.mouse_init(rotate_btn=[], pan_btn=[], zoom_btn=[])

    def can_zoom(self):
        # doc-string inherited
        return True

    def can_pan(self):
        # doc-string inherited
        return True

    def sharez(self, other):
        """
        Share the z-axis with *other*.

        This is equivalent to passing ``sharez=other`` when constructing the
        Axes, and cannot be used if the z-axis is already being shared with
        another Axes.
        """
        _api.check_isinstance(Axes3D, other=other)
        if self._sharez is not None and other is not self._sharez:
            raise ValueError("z-axis is already shared")
        self._shared_axes["z"].join(self, other)
        self._sharez = other
        self.zaxis.major = other.zaxis.major  # Ticker instances holding
        self.zaxis.minor = other.zaxis.minor  # locator and formatter.
        z0, z1 = other.get_zlim()
        self.set_zlim(z0, z1, emit=False, auto=other.get_autoscalez_on())
        self.zaxis._scale = other.zaxis._scale

    def shareview(self, other):
        """
        Share the view angles with *other*.

        This is equivalent to passing ``shareview=other`` when
        constructing the Axes, and cannot be used if the view angles are
        already being shared with another Axes.
        """
        _api.check_isinstance(Axes3D, other=other)
        if self._shareview is not None and other is not self._shareview:
            raise ValueError("view angles are already shared")
        self._shared_axes["view"].join(self, other)
        self._shareview = other
        vertical_axis = {0: "x", 1: "y", 2: "z"}[other._vertical_axis]
        self.view_init(elev=other.elev, azim=other.azim, roll=other.roll,
                       vertical_axis=vertical_axis, share=True)

    def clear(self):
        # docstring inherited.
        super().clear()
        if self._focal_length == np.inf:
            self._zmargin = mpl.rcParams['axes.zmargin']
        else:
            self._zmargin = 0.
        self.grid(mpl.rcParams['axes3d.grid'])

    def _button_press(self, event):
        if event.inaxes == self:
            self.button_pressed = event.button
            self._sx, self._sy = event.xdata, event.ydata
            toolbar = self.figure.canvas.toolbar
            if toolbar and toolbar._nav_stack() is None:
                toolbar.push_current()

    def _button_release(self, event):
        self.button_pressed = None
        toolbar = self.figure.canvas.toolbar
        # backend_bases.release_zoom and backend_bases.release_pan call
        # push_current, so check the navigation mode so we don't call it twice
        if toolbar and self.get_navigate_mode() is None:
            toolbar.push_current()

    def _get_view(self):
        # docstring inherited
        return {
            "xlim": self.get_xlim(), "autoscalex_on": self.get_autoscalex_on(),
            "ylim": self.get_ylim(), "autoscaley_on": self.get_autoscaley_on(),
            "zlim": self.get_zlim(), "autoscalez_on": self.get_autoscalez_on(),
        }, (self.elev, self.azim, self.roll)

    def _set_view(self, view):
        # docstring inherited
        props, (elev, azim, roll) = view
        self.set(**props)
        self.elev = elev
        self.azim = azim
        self.roll = roll

    def format_zdata(self, z):
        """
        Return *z* string formatted.  This function will use the
        :attr:`fmt_zdata` attribute if it is callable, else will fall
        back on the zaxis major formatter
        """
        try:
            return self.fmt_zdata(z)
        except (AttributeError, TypeError):
            func = self.zaxis.get_major_formatter().format_data_short
            val = func(z)
            return val

    def format_coord(self, xv, yv, renderer=None):
        """
        Return a string giving the current view rotation angles, or the x, y, z
        coordinates of the point on the nearest axis pane underneath the mouse
        cursor, depending on the mouse button pressed.
        """
        coords = ''

        if self.button_pressed in self._rotate_btn:
            # ignore xv and yv and display angles instead
            coords = self._rotation_coords()

        elif self.M is not None:
            coords = self._location_coords(xv, yv, renderer)

        return coords

    def _rotation_coords(self):
        """
        Return the rotation angles as a string.
        """
        norm_elev = art3d._norm_angle(self.elev)
        norm_azim = art3d._norm_angle(self.azim)
        norm_roll = art3d._norm_angle(self.roll)
        coords = (f"elevation={norm_elev:.0f}\N{DEGREE SIGN}, "
                  f"azimuth={norm_azim:.0f}\N{DEGREE SIGN}, "
                  f"roll={norm_roll:.0f}\N{DEGREE SIGN}"
                  ).replace("-", "\N{MINUS SIGN}")
        return coords

    def _location_coords(self, xv, yv, renderer):
        """
        Return the location on the axis pane underneath the cursor as a string.
        """
        p1, pane_idx = self._calc_coord(xv, yv, renderer)
        xs = self.format_xdata(p1[0])
        ys = self.format_ydata(p1[1])
        zs = self.format_zdata(p1[2])
        if pane_idx == 0:
            coords = f'x pane={xs}, y={ys}, z={zs}'
        elif pane_idx == 1:
            coords = f'x={xs}, y pane={ys}, z={zs}'
        elif pane_idx == 2:
            coords = f'x={xs}, y={ys}, z pane={zs}'
        return coords

    def _get_camera_loc(self):
        """
        Returns the current camera location in data coordinates.
        """
        cx, cy, cz, dx, dy, dz = self._get_w_centers_ranges()
        c = np.array([cx, cy, cz])
        r = np.array([dx, dy, dz])

        if self._focal_length == np.inf:  # orthographic projection
            focal_length = 1e9  # large enough to be effectively infinite
        else:  # perspective projection
            focal_length = self._focal_length
        eye = c + self._view_w * self._dist * r / self._box_aspect * focal_length
        return eye

    def _calc_coord(self, xv, yv, renderer=None):
        """
        Given the 2D view coordinates, find the point on the nearest axis pane
        that lies directly below those coordinates. Returns a 3D point in data
        coordinates.
        """
        if self._focal_length == np.inf:  # orthographic projection
            zv = 1
        else:  # perspective projection
            zv = -1 / self._focal_length

        # Convert point on view plane to data coordinates
        p1 = np.array(proj3d.inv_transform(xv, yv, zv, self.invM)).ravel()

        # Get the vector from the camera to the point on the view plane
        vec = self._get_camera_loc() - p1

        # Get the pane locations for each of the axes
        pane_locs = []
        for axis in self._axis_map.values():
            xys, loc = axis.active_pane(renderer)
            pane_locs.append(loc)

        # Find the distance to the nearest pane by projecting the view vector
        scales = np.zeros(3)
        for i in range(3):
            if vec[i] == 0:
                scales[i] = np.inf
            else:
                scales[i] = (p1[i] - pane_locs[i]) / vec[i]
        pane_idx = np.argmin(abs(scales))
        scale = scales[pane_idx]

        # Calculate the point on the closest pane
        p2 = p1 - scale*vec
        return p2, pane_idx

    def _on_move(self, event):
        """
        Mouse moving.

        By default, button-1 rotates, button-2 pans, and button-3 zooms;
        these buttons can be modified via `mouse_init`.
        """

        if not self.button_pressed:
            return

        if self.get_navigate_mode() is not None:
            # we don't want to rotate if we are zooming/panning
            # from the toolbar
            return

        if self.M is None:
            return

        x, y = event.xdata, event.ydata
        # In case the mouse is out of bounds.
        if x is None or event.inaxes != self:
            return

        dx, dy = x - self._sx, y - self._sy
        w = self._pseudo_w
        h = self._pseudo_h

        # Rotation
        if self.button_pressed in self._rotate_btn:
            # rotate viewing point
            # get the x and y pixel coords
            if dx == 0 and dy == 0:
                return

            roll = np.deg2rad(self.roll)
            delev = -(dy/h)*180*np.cos(roll) + (dx/w)*180*np.sin(roll)
            dazim = -(dy/h)*180*np.sin(roll) - (dx/w)*180*np.cos(roll)
            elev = self.elev + delev
            azim = self.azim + dazim
            self.view_init(elev=elev, azim=azim, roll=roll, share=True)
            self.stale = True

        # Pan
        elif self.button_pressed in self._pan_btn:
            # Start the pan event with pixel coordinates
            px, py = self.transData.transform([self._sx, self._sy])
            self.start_pan(px, py, 2)
            # pan view (takes pixel coordinate input)
            self.drag_pan(2, None, event.x, event.y)
            self.end_pan()

        # Zoom
        elif self.button_pressed in self._zoom_btn:
            # zoom view (dragging down zooms in)
            scale = h/(h - dy)
            self._scale_axis_limits(scale, scale, scale)

        # Store the event coordinates for the next time through.
        self._sx, self._sy = x, y
        # Always request a draw update at the end of interaction
        self.figure.canvas.draw_idle()

    def drag_pan(self, button, key, x, y):
        # docstring inherited

        # Get the coordinates from the move event
        p = self._pan_start
        (xdata, ydata), (xdata_start, ydata_start) = p.trans_inverse.transform(
            [(x, y), (p.x, p.y)])
        self._sx, self._sy = xdata, ydata
        # Calling start_pan() to set the x/y of this event as the starting
        # move location for the next event
        self.start_pan(x, y, button)
        du, dv = xdata - xdata_start, ydata - ydata_start
        dw = 0
        if key == 'x':
            dv = 0
        elif key == 'y':
            du = 0
        if du == 0 and dv == 0:
            return

        # Transform the pan from the view axes to the data axes
        R = np.array([self._view_u, self._view_v, self._view_w])
        R = -R / self._box_aspect * self._dist
        duvw_projected = R.T @ np.array([du, dv, dw])

        # Calculate pan distance
        minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
        dx = (maxx - minx) * duvw_projected[0]
        dy = (maxy - miny) * duvw_projected[1]
        dz = (maxz - minz) * duvw_projected[2]

        # Set the new axis limits
        self.set_xlim3d(minx + dx, maxx + dx)
        self.set_ylim3d(miny + dy, maxy + dy)
        self.set_zlim3d(minz + dz, maxz + dz)

    def _calc_view_axes(self, eye):
        """
        Get the unit vectors for the viewing axes in data coordinates.
        `u` is towards the right of the screen
        `v` is towards the top of the screen
        `w` is out of the screen
        """
        elev_rad = np.deg2rad(art3d._norm_angle(self.elev))
        roll_rad = np.deg2rad(art3d._norm_angle(self.roll))

        # Look into the middle of the world coordinates
        R = 0.5 * self._roll_to_vertical(self._box_aspect)

        # Define which axis should be vertical. A negative value
        # indicates the plot is upside down and therefore the values
        # have been reversed:
        V = np.zeros(3)
        V[self._vertical_axis] = -1 if abs(elev_rad) > np.pi/2 else 1

        u, v, w = proj3d._view_axes(eye, R, V, roll_rad)
        return u, v, w

    def _set_view_from_bbox(self, bbox, direction='in',
                            mode=None, twinx=False, twiny=False):
        """
        Zoom in or out of the bounding box.

        Will center the view in the center of the bounding box, and zoom by
        the ratio of the size of the bounding box to the size of the Axes3D.
        """
        (start_x, start_y, stop_x, stop_y) = bbox
        if mode == 'x':
            start_y = self.bbox.min[1]
            stop_y = self.bbox.max[1]
        elif mode == 'y':
            start_x = self.bbox.min[0]
            stop_x = self.bbox.max[0]

        # Clip to bounding box limits
        start_x, stop_x = np.clip(sorted([start_x, stop_x]),
                                  self.bbox.min[0], self.bbox.max[0])
        start_y, stop_y = np.clip(sorted([start_y, stop_y]),
                                  self.bbox.min[1], self.bbox.max[1])

        # Move the center of the view to the center of the bbox
        zoom_center_x = (start_x + stop_x)/2
        zoom_center_y = (start_y + stop_y)/2

        ax_center_x = (self.bbox.max[0] + self.bbox.min[0])/2
        ax_center_y = (self.bbox.max[1] + self.bbox.min[1])/2

        self.start_pan(zoom_center_x, zoom_center_y, 2)
        self.drag_pan(2, None, ax_center_x, ax_center_y)
        self.end_pan()

        # Calculate zoom level
        dx = abs(start_x - stop_x)
        dy = abs(start_y - stop_y)
        scale_u = dx / (self.bbox.max[0] - self.bbox.min[0])
        scale_v = dy / (self.bbox.max[1] - self.bbox.min[1])

        # Keep aspect ratios equal
        scale = max(scale_u, scale_v)

        # Zoom out
        if direction == 'out':
            scale = 1 / scale

        self._zoom_data_limits(scale, scale, scale)

    def _zoom_data_limits(self, scale_u, scale_v, scale_w):
        """
        Zoom in or out of a 3D plot.

        Will scale the data limits by the scale factors. These will be
        transformed to the x, y, z data axes based on the current view angles.
        A scale factor > 1 zooms out and a scale factor < 1 zooms in.

        For an axes that has had its aspect ratio set to 'equal', 'equalxy',
        'equalyz', or 'equalxz', the relevant axes are constrained to zoom
        equally.

        Parameters
        ----------
        scale_u : float
            Scale factor for the u view axis (view screen horizontal).
        scale_v : float
            Scale factor for the v view axis (view screen vertical).
        scale_w : float
            Scale factor for the w view axis (view screen depth).
        """
        scale = np.array([scale_u, scale_v, scale_w])

        # Only perform frame conversion if unequal scale factors
        if not np.allclose(scale, scale_u):
            # Convert the scale factors from the view frame to the data frame
            R = np.array([self._view_u, self._view_v, self._view_w])
            S = scale * np.eye(3)
            scale = np.linalg.norm(R.T @ S, axis=1)

            # Set the constrained scale factors to the factor closest to 1
            if self._aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
                ax_idxs = self._equal_aspect_axis_indices(self._aspect)
                min_ax_idxs = np.argmin(np.abs(scale[ax_idxs] - 1))
                scale[ax_idxs] = scale[ax_idxs][min_ax_idxs]

        self._scale_axis_limits(scale[0], scale[1], scale[2])

    def _scale_axis_limits(self, scale_x, scale_y, scale_z):
        """
        Keeping the center of the x, y, and z data axes fixed, scale their
        limits by scale factors. A scale factor > 1 zooms out and a scale
        factor < 1 zooms in.

        Parameters
        ----------
        scale_x : float
            Scale factor for the x data axis.
        scale_y : float
            Scale factor for the y data axis.
        scale_z : float
            Scale factor for the z data axis.
        """
        # Get the axis centers and ranges
        cx, cy, cz, dx, dy, dz = self._get_w_centers_ranges()

        # Set the scaled axis limits
        self.set_xlim3d(cx - dx*scale_x/2, cx + dx*scale_x/2)
        self.set_ylim3d(cy - dy*scale_y/2, cy + dy*scale_y/2)
        self.set_zlim3d(cz - dz*scale_z/2, cz + dz*scale_z/2)

    def _get_w_centers_ranges(self):
        """Get 3D world centers and axis ranges."""
        # Calculate center of axis limits
        minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
        cx = (maxx + minx)/2
        cy = (maxy + miny)/2
        cz = (maxz + minz)/2

        # Calculate range of axis limits
        dx = (maxx - minx)
        dy = (maxy - miny)
        dz = (maxz - minz)
        return cx, cy, cz, dx, dy, dz

    def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs):
        """
        Set zlabel.  See doc for `.set_ylabel` for description.
        """
        if labelpad is not None:
            self.zaxis.labelpad = labelpad
        return self.zaxis.set_label_text(zlabel, fontdict, **kwargs)

    def get_zlabel(self):
        """
        Get the z-label text string.
        """
        label = self.zaxis.get_label()
        return label.get_text()

    # Axes rectangle characteristics

    # The frame_on methods are not available for 3D axes.
    # Python will raise a TypeError if they are called.
    get_frame_on = None
    set_frame_on = None

    def grid(self, visible=True, **kwargs):
        """
        Set / unset 3D grid.

        .. note::

            Currently, this function does not behave the same as
            `.axes.Axes.grid`, but it is intended to eventually support that
            behavior.
        """
        # TODO: Operate on each axes separately
        if len(kwargs):
            visible = True
        self._draw_grid = visible
        self.stale = True

    def tick_params(self, axis='both', **kwargs):
        """
        Convenience method for changing the appearance of ticks and
        tick labels.

        See `.Axes.tick_params` for full documentation.  Because this function
        applies to 3D Axes, *axis* can also be set to 'z', and setting *axis*
        to 'both' autoscales all three axes.

        Also, because of how Axes3D objects are drawn very differently
        from regular 2D axes, some of these settings may have
        ambiguous meaning.  For simplicity, the 'z' axis will
        accept settings as if it was like the 'y' axis.

        .. note::
           Axes3D currently ignores some of these settings.
        """
        _api.check_in_list(['x', 'y', 'z', 'both'], axis=axis)
        if axis in ['x', 'y', 'both']:
            super().tick_params(axis, **kwargs)
        if axis in ['z', 'both']:
            zkw = dict(kwargs)
            zkw.pop('top', None)
            zkw.pop('bottom', None)
            zkw.pop('labeltop', None)
            zkw.pop('labelbottom', None)
            self.zaxis.set_tick_params(**zkw)

    # data limits, ticks, tick labels, and formatting

    def invert_zaxis(self):
        """
        Invert the z-axis.

        See Also
        --------
        zaxis_inverted
        get_zlim, set_zlim
        get_zbound, set_zbound
        """
        bottom, top = self.get_zlim()
        self.set_zlim(top, bottom, auto=None)

    zaxis_inverted = _axis_method_wrapper("zaxis", "get_inverted")

    def get_zbound(self):
        """
        Return the lower and upper z-axis bounds, in increasing order.

        See Also
        --------
        set_zbound
        get_zlim, set_zlim
        invert_zaxis, zaxis_inverted
        """
        bottom, top = self.get_zlim()
        if bottom < top:
            return bottom, top
        else:
            return top, bottom

    def set_zbound(self, lower=None, upper=None):
        """
        Set the lower and upper numerical bounds of the z-axis.

        This method will honor axes inversion regardless of parameter order.
        It will not change the autoscaling setting (`.get_autoscalez_on()`).

        Parameters
        ----------
        lower, upper : float or None
            The lower and upper bounds. If *None*, the respective axis bound
            is not modified.

        See Also
        --------
        get_zbound
        get_zlim, set_zlim
        invert_zaxis, zaxis_inverted
        """
        if upper is None and np.iterable(lower):
            lower, upper = lower

        old_lower, old_upper = self.get_zbound()
        if lower is None:
            lower = old_lower
        if upper is None:
            upper = old_upper

        self.set_zlim(sorted((lower, upper),
                             reverse=bool(self.zaxis_inverted())),
                      auto=None)

    def text(self, x, y, z, s, zdir=None, **kwargs):
        """
        Add the text *s* to the 3D Axes at location *x*, *y*, *z* in data coordinates.

        Parameters
        ----------
        x, y, z : float
            The position to place the text.
        s : str
            The text.
        zdir : {'x', 'y', 'z', 3-tuple}, optional
            The direction to be used as the z-direction. Default: 'z'.
            See `.get_dir_vector` for a description of the values.
        **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.text`.

        Returns
        -------
        `.Text3D`
            The created `.Text3D` instance.
        """
        text = super().text(x, y, s, **kwargs)
        art3d.text_2d_to_3d(text, z, zdir)
        return text

    text3D = text
    text2D = Axes.text

    def plot(self, xs, ys, *args, zdir='z', **kwargs):
        """
        Plot 2D or 3D data.

        Parameters
        ----------
        xs : 1D array-like
            x coordinates of vertices.
        ys : 1D array-like
            y coordinates of vertices.
        zs : float or 1D array-like
            z coordinates of vertices; either one for all points or one for
            each point.
        zdir : {'x', 'y', 'z'}, default: 'z'
            When plotting 2D data, the direction to use as z.
        **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.plot`.
        """
        had_data = self.has_data()

        # `zs` can be passed positionally or as keyword; checking whether
        # args[0] is a string matches the behavior of 2D `plot` (via
        # `_process_plot_var_args`).
        if args and not isinstance(args[0], str):
            zs, *args = args
            if 'zs' in kwargs:
                raise TypeError("plot() for multiple values for argument 'z'")
        else:
            zs = kwargs.pop('zs', 0)

        # Match length
        zs = np.broadcast_to(zs, np.shape(xs))

        lines = super().plot(xs, ys, *args, **kwargs)
        for line in lines:
            art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)

        xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir)
        self.auto_scale_xyz(xs, ys, zs, had_data)
        return lines

    plot3D = plot

    def plot_surface(self, X, Y, Z, *, norm=None, vmin=None,
                     vmax=None, lightsource=None, **kwargs):
        """
        Create a surface plot.

        By default, it will be colored in shades of a solid color, but it also
        supports colormapping by supplying the *cmap* argument.

        .. note::

           The *rcount* and *ccount* kwargs, which both default to 50,
           determine the maximum number of samples used in each direction.  If
           the input data is larger, it will be downsampled (by slicing) to
           these numbers of points.

        .. note::

           To maximize rendering speed consider setting *rstride* and *cstride*
           to divisors of the number of rows minus 1 and columns minus 1
           respectively. For example, given 51 rows rstride can be any of the
           divisors of 50.

           Similarly, a setting of *rstride* and *cstride* equal to 1 (or
           *rcount* and *ccount* equal the number of rows and columns) can use
           the optimized path.

        Parameters
        ----------
        X, Y, Z : 2D arrays
            Data values.

        rcount, ccount : int
            Maximum number of samples used in each direction.  If the input
            data is larger, it will be downsampled (by slicing) to these
            numbers of points.  Defaults to 50.

        rstride, cstride : int
            Downsampling stride in each direction.  These arguments are
            mutually exclusive with *rcount* and *ccount*.  If only one of
            *rstride* or *cstride* is set, the other defaults to 10.

            'classic' mode uses a default of ``rstride = cstride = 10`` instead
            of the new default of ``rcount = ccount = 50``.

        color : color-like
            Color of the surface patches.

        cmap : Colormap
            Colormap of the surface patches.

        facecolors : array-like of colors.
            Colors of each individual patch.

        norm : Normalize
            Normalization for the colormap.

        vmin, vmax : float
            Bounds for the normalization.

        shade : bool, default: True
            Whether to shade the facecolors.  Shading is always disabled when
            *cmap* is specified.

        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.

        **kwargs
            Other keyword arguments are forwarded to `.Poly3DCollection`.
        """

        had_data = self.has_data()

        if Z.ndim != 2:
            raise ValueError("Argument Z must be 2-dimensional.")

        Z = cbook._to_unmasked_float_array(Z)
        X, Y, Z = np.broadcast_arrays(X, Y, Z)
        rows, cols = Z.shape

        has_stride = 'rstride' in kwargs or 'cstride' in kwargs
        has_count = 'rcount' in kwargs or 'ccount' in kwargs

        if has_stride and has_count:
            raise ValueError("Cannot specify both stride and count arguments")

        rstride = kwargs.pop('rstride', 10)
        cstride = kwargs.pop('cstride', 10)
        rcount = kwargs.pop('rcount', 50)
        ccount = kwargs.pop('ccount', 50)

        if mpl.rcParams['_internal.classic_mode']:
            # Strides have priority over counts in classic mode.
            # So, only compute strides from counts
            # if counts were explicitly given
            compute_strides = has_count
        else:
            # If the strides are provided then it has priority.
            # Otherwise, compute the strides from the counts.
            compute_strides = not has_stride

        if compute_strides:
            rstride = int(max(np.ceil(rows / rcount), 1))
            cstride = int(max(np.ceil(cols / ccount), 1))

        fcolors = kwargs.pop('facecolors', None)

        cmap = kwargs.get('cmap', None)
        shade = kwargs.pop('shade', cmap is None)
        if shade is None:
            raise ValueError("shade cannot be None.")

        colset = []  # the sampled facecolor
        if (rows - 1) % rstride == 0 and \
           (cols - 1) % cstride == 0 and \
           fcolors is None:
            polys = np.stack(
                [cbook._array_patch_perimeters(a, rstride, cstride)
                 for a in (X, Y, Z)],
                axis=-1)
        else:
            # evenly spaced, and including both endpoints
            row_inds = list(range(0, rows-1, rstride)) + [rows-1]
            col_inds = list(range(0, cols-1, cstride)) + [cols-1]

            polys = []
            for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
                for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
                    ps = [
                        # +1 ensures we share edges between polygons
                        cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1])
                        for a in (X, Y, Z)
                    ]
                    # ps = np.stack(ps, axis=-1)
                    ps = np.array(ps).T
                    polys.append(ps)

                    if fcolors is not None:
                        colset.append(fcolors[rs][cs])

        # In cases where there are non-finite values in the data (possibly NaNs from
        # masked arrays), artifacts can be introduced. Here check whether such values
        # are present and remove them.
        if not isinstance(polys, np.ndarray) or not np.isfinite(polys).all():
            new_polys = []
            new_colset = []

            # Depending on fcolors, colset is either an empty list or has as
            # many elements as polys. In the former case new_colset results in
            # a list with None entries, that is discarded later.
            for p, col in itertools.zip_longest(polys, colset):
                new_poly = np.array(p)[np.isfinite(p).all(axis=1)]
                if len(new_poly):
                    new_polys.append(new_poly)
                    new_colset.append(col)

            # Replace previous polys and, if fcolors is not None, colset
            polys = new_polys
            if fcolors is not None:
                colset = new_colset

        # note that the striding causes some polygons to have more coordinates
        # than others

        if fcolors is not None:
            polyc = art3d.Poly3DCollection(
                polys, edgecolors=colset, facecolors=colset, shade=shade,
                lightsource=lightsource, **kwargs)
        elif cmap:
            polyc = art3d.Poly3DCollection(polys, **kwargs)
            # can't always vectorize, because polys might be jagged
            if isinstance(polys, np.ndarray):
                avg_z = polys[..., 2].mean(axis=-1)
            else:
                avg_z = np.array([ps[:, 2].mean() for ps in polys])
            polyc.set_array(avg_z)
            if vmin is not None or vmax is not None:
                polyc.set_clim(vmin, vmax)
            if norm is not None:
                polyc.set_norm(norm)
        else:
            color = kwargs.pop('color', None)
            if color is None:
                color = self._get_lines.get_next_color()
            color = np.array(mcolors.to_rgba(color))

            polyc = art3d.Poly3DCollection(
                polys, facecolors=color, shade=shade,
                lightsource=lightsource, **kwargs)

        self.add_collection(polyc)
        self.auto_scale_xyz(X, Y, Z, had_data)

        return polyc

    def plot_wireframe(self, X, Y, Z, **kwargs):
        """
        Plot a 3D wireframe.

        .. note::

           The *rcount* and *ccount* kwargs, which both default to 50,
           determine the maximum number of samples used in each direction.  If
           the input data is larger, it will be downsampled (by slicing) to
           these numbers of points.

        Parameters
        ----------
        X, Y, Z : 2D arrays
            Data values.

        rcount, ccount : int
            Maximum number of samples used in each direction.  If the input
            data is larger, it will be downsampled (by slicing) to these
            numbers of points.  Setting a count to zero causes the data to be
            not sampled in the corresponding direction, producing a 3D line
            plot rather than a wireframe plot.  Defaults to 50.

        rstride, cstride : int
            Downsampling stride in each direction.  These arguments are
            mutually exclusive with *rcount* and *ccount*.  If only one of
            *rstride* or *cstride* is set, the other defaults to 1.  Setting a
            stride to zero causes the data to be not sampled in the
            corresponding direction, producing a 3D line plot rather than a
            wireframe plot.

            'classic' mode uses a default of ``rstride = cstride = 1`` instead
            of the new default of ``rcount = ccount = 50``.

        **kwargs
            Other keyword arguments are forwarded to `.Line3DCollection`.
        """

        had_data = self.has_data()
        if Z.ndim != 2:
            raise ValueError("Argument Z must be 2-dimensional.")
        # FIXME: Support masked arrays
        X, Y, Z = np.broadcast_arrays(X, Y, Z)
        rows, cols = Z.shape

        has_stride = 'rstride' in kwargs or 'cstride' in kwargs
        has_count = 'rcount' in kwargs or 'ccount' in kwargs

        if has_stride and has_count:
            raise ValueError("Cannot specify both stride and count arguments")

        rstride = kwargs.pop('rstride', 1)
        cstride = kwargs.pop('cstride', 1)
        rcount = kwargs.pop('rcount', 50)
        ccount = kwargs.pop('ccount', 50)

        if mpl.rcParams['_internal.classic_mode']:
            # Strides have priority over counts in classic mode.
            # So, only compute strides from counts
            # if counts were explicitly given
            if has_count:
                rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
                cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
        else:
            # If the strides are provided then it has priority.
            # Otherwise, compute the strides from the counts.
            if not has_stride:
                rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
                cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0

        # We want two sets of lines, one running along the "rows" of
        # Z and another set of lines running along the "columns" of Z.
        # This transpose will make it easy to obtain the columns.
        tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z)

        if rstride:
            rii = list(range(0, rows, rstride))
            # Add the last index only if needed
            if rows > 0 and rii[-1] != (rows - 1):
                rii += [rows-1]
        else:
            rii = []
        if cstride:
            cii = list(range(0, cols, cstride))
            # Add the last index only if needed
            if cols > 0 and cii[-1] != (cols - 1):
                cii += [cols-1]
        else:
            cii = []

        if rstride == 0 and cstride == 0:
            raise ValueError("Either rstride or cstride must be non zero")

        # If the inputs were empty, then just
        # reset everything.
        if Z.size == 0:
            rii = []
            cii = []

        xlines = [X[i] for i in rii]
        ylines = [Y[i] for i in rii]
        zlines = [Z[i] for i in rii]

        txlines = [tX[i] for i in cii]
        tylines = [tY[i] for i in cii]
        tzlines = [tZ[i] for i in cii]

        lines = ([list(zip(xl, yl, zl))
                 for xl, yl, zl in zip(xlines, ylines, zlines)]
                 + [list(zip(xl, yl, zl))
                 for xl, yl, zl in zip(txlines, tylines, tzlines)])

        linec = art3d.Line3DCollection(lines, **kwargs)
        self.add_collection(linec)
        self.auto_scale_xyz(X, Y, Z, had_data)

        return linec

    def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None,
                     lightsource=None, **kwargs):
        """
        Plot a triangulated surface.

        The (optional) triangulation can be specified in one of two ways;
        either::

          plot_trisurf(triangulation, ...)

        where triangulation is a `~matplotlib.tri.Triangulation` object, or::

          plot_trisurf(X, Y, ...)
          plot_trisurf(X, Y, triangles, ...)
          plot_trisurf(X, Y, triangles=triangles, ...)

        in which case a Triangulation object will be created.  See
        `.Triangulation` for an explanation of these possibilities.

        The remaining arguments are::

          plot_trisurf(..., Z)

        where *Z* is the array of values to contour, one per point
        in the triangulation.

        Parameters
        ----------
        X, Y, Z : array-like
            Data values as 1D arrays.
        color
            Color of the surface patches.
        cmap
            A colormap for the surface patches.
        norm : Normalize
            An instance of Normalize to map values to colors.
        vmin, vmax : float, default: None
            Minimum and maximum value to map.
        shade : bool, default: True
            Whether to shade the facecolors.  Shading is always disabled when
            *cmap* is specified.
        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.
        **kwargs
            All other keyword arguments are passed on to
            :class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`

        Examples
        --------
        .. plot:: gallery/mplot3d/trisurf3d.py
        .. plot:: gallery/mplot3d/trisurf3d_2.py
        """

        had_data = self.has_data()

        # TODO: Support custom face colours
        if color is None:
            color = self._get_lines.get_next_color()
        color = np.array(mcolors.to_rgba(color))

        cmap = kwargs.get('cmap', None)
        shade = kwargs.pop('shade', cmap is None)

        tri, args, kwargs = \
            Triangulation.get_from_args_and_kwargs(*args, **kwargs)
        try:
            z = kwargs.pop('Z')
        except KeyError:
            # We do this so Z doesn't get passed as an arg to PolyCollection
            z, *args = args
        z = np.asarray(z)

        triangles = tri.get_masked_triangles()
        xt = tri.x[triangles]
        yt = tri.y[triangles]
        zt = z[triangles]
        verts = np.stack((xt, yt, zt), axis=-1)

        if cmap:
            polyc = art3d.Poly3DCollection(verts, *args, **kwargs)
            # average over the three points of each triangle
            avg_z = verts[:, :, 2].mean(axis=1)
            polyc.set_array(avg_z)
            if vmin is not None or vmax is not None:
                polyc.set_clim(vmin, vmax)
            if norm is not None:
                polyc.set_norm(norm)
        else:
            polyc = art3d.Poly3DCollection(
                verts, *args, shade=shade, lightsource=lightsource,
                facecolors=color, **kwargs)

        self.add_collection(polyc)
        self.auto_scale_xyz(tri.x, tri.y, z, had_data)

        return polyc

    def _3d_extend_contour(self, cset, stride=5):
        """
        Extend a contour in 3D by creating
        """

        dz = (cset.levels[1] - cset.levels[0]) / 2
        polyverts = []
        colors = []
        for idx, level in enumerate(cset.levels):
            path = cset.get_paths()[idx]
            subpaths = [*path._iter_connected_components()]
            color = cset.get_edgecolor()[idx]
            top = art3d._paths_to_3d_segments(subpaths, level - dz)
            bot = art3d._paths_to_3d_segments(subpaths, level + dz)
            if not len(top[0]):
                continue
            nsteps = max(round(len(top[0]) / stride), 2)
            stepsize = (len(top[0]) - 1) / (nsteps - 1)
            polyverts.extend([
                (top[0][round(i * stepsize)], top[0][round((i + 1) * stepsize)],
                 bot[0][round((i + 1) * stepsize)], bot[0][round(i * stepsize)])
                for i in range(round(nsteps) - 1)])
            colors.extend([color] * (round(nsteps) - 1))
        self.add_collection3d(art3d.Poly3DCollection(
            np.array(polyverts),  # All polygons have 4 vertices, so vectorize.
            facecolors=colors, edgecolors=colors, shade=True))
        cset.remove()

    def add_contour_set(
            self, cset, extend3d=False, stride=5, zdir='z', offset=None):
        zdir = '-' + zdir
        if extend3d:
            self._3d_extend_contour(cset, stride)
        else:
            art3d.collection_2d_to_3d(
                cset, zs=offset if offset is not None else cset.levels, zdir=zdir)

    def add_contourf_set(self, cset, zdir='z', offset=None):
        self._add_contourf_set(cset, zdir=zdir, offset=offset)

    def _add_contourf_set(self, cset, zdir='z', offset=None):
        """
        Returns
        -------
        levels : `numpy.ndarray`
            Levels at which the filled contours are added.
        """
        zdir = '-' + zdir

        midpoints = cset.levels[:-1] + np.diff(cset.levels) / 2
        # Linearly interpolate to get levels for any extensions
        if cset._extend_min:
            min_level = cset.levels[0] - np.diff(cset.levels[:2]) / 2
            midpoints = np.insert(midpoints, 0, min_level)
        if cset._extend_max:
            max_level = cset.levels[-1] + np.diff(cset.levels[-2:]) / 2
            midpoints = np.append(midpoints, max_level)

        art3d.collection_2d_to_3d(
            cset, zs=offset if offset is not None else midpoints, zdir=zdir)
        return midpoints

    @_preprocess_data()
    def contour(self, X, Y, Z, *args,
                extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
        """
        Create a 3D contour plot.

        Parameters
        ----------
        X, Y, Z : array-like,
            Input data. See `.Axes.contour` for supported data shapes.
        extend3d : bool, default: False
            Whether to extend contour in 3D.
        stride : int
            Step size for extending contour.
        zdir : {'x', 'y', 'z'}, default: 'z'
            The direction to use.
        offset : float, optional
            If specified, plot a projection of the contour lines at this
            position in a plane normal to *zdir*.
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER

        *args, **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.contour`.

        Returns
        -------
        matplotlib.contour.QuadContourSet
        """
        had_data = self.has_data()

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        cset = super().contour(jX, jY, jZ, *args, **kwargs)
        self.add_contour_set(cset, extend3d, stride, zdir, offset)

        self.auto_scale_xyz(X, Y, Z, had_data)
        return cset

    contour3D = contour

    @_preprocess_data()
    def tricontour(self, *args,
                   extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
        """
        Create a 3D contour plot.

        .. note::
            This method currently produces incorrect output due to a
            longstanding bug in 3D PolyCollection rendering.

        Parameters
        ----------
        X, Y, Z : array-like
            Input data. See `.Axes.tricontour` for supported data shapes.
        extend3d : bool, default: False
            Whether to extend contour in 3D.
        stride : int
            Step size for extending contour.
        zdir : {'x', 'y', 'z'}, default: 'z'
            The direction to use.
        offset : float, optional
            If specified, plot a projection of the contour lines at this
            position in a plane normal to *zdir*.
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER
        *args, **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.tricontour`.

        Returns
        -------
        matplotlib.tri._tricontour.TriContourSet
        """
        had_data = self.has_data()

        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
                *args, **kwargs)
        X = tri.x
        Y = tri.y
        if 'Z' in kwargs:
            Z = kwargs.pop('Z')
        else:
            # We do this so Z doesn't get passed as an arg to Axes.tricontour
            Z, *args = args

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        tri = Triangulation(jX, jY, tri.triangles, tri.mask)

        cset = super().tricontour(tri, jZ, *args, **kwargs)
        self.add_contour_set(cset, extend3d, stride, zdir, offset)

        self.auto_scale_xyz(X, Y, Z, had_data)
        return cset

    def _auto_scale_contourf(self, X, Y, Z, zdir, levels, had_data):
        # Autoscale in the zdir based on the levels added, which are
        # different from data range if any contour extensions are present
        dim_vals = {'x': X, 'y': Y, 'z': Z, zdir: levels}
        # Input data and levels have different sizes, but auto_scale_xyz
        # expected same-size input, so manually take min/max limits
        limits = [(np.nanmin(dim_vals[dim]), np.nanmax(dim_vals[dim]))
                  for dim in ['x', 'y', 'z']]
        self.auto_scale_xyz(*limits, had_data)

    @_preprocess_data()
    def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs):
        """
        Create a 3D filled contour plot.

        Parameters
        ----------
        X, Y, Z : array-like
            Input data. See `.Axes.contourf` for supported data shapes.
        zdir : {'x', 'y', 'z'}, default: 'z'
            The direction to use.
        offset : float, optional
            If specified, plot a projection of the contour lines at this
            position in a plane normal to *zdir*.
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER
        *args, **kwargs
            Other arguments are forwarded to `matplotlib.axes.Axes.contourf`.

        Returns
        -------
        matplotlib.contour.QuadContourSet
        """
        had_data = self.has_data()

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        cset = super().contourf(jX, jY, jZ, *args, **kwargs)
        levels = self._add_contourf_set(cset, zdir, offset)

        self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data)
        return cset

    contourf3D = contourf

    @_preprocess_data()
    def tricontourf(self, *args, zdir='z', offset=None, **kwargs):
        """
        Create a 3D filled contour plot.

        .. note::
            This method currently produces incorrect output due to a
            longstanding bug in 3D PolyCollection rendering.

        Parameters
        ----------
        X, Y, Z : array-like
            Input data. See `.Axes.tricontourf` for supported data shapes.
        zdir : {'x', 'y', 'z'}, default: 'z'
            The direction to use.
        offset : float, optional
            If specified, plot a projection of the contour lines at this
            position in a plane normal to zdir.
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER
        *args, **kwargs
            Other arguments are forwarded to
            `matplotlib.axes.Axes.tricontourf`.

        Returns
        -------
        matplotlib.tri._tricontour.TriContourSet
        """
        had_data = self.has_data()

        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
                *args, **kwargs)
        X = tri.x
        Y = tri.y
        if 'Z' in kwargs:
            Z = kwargs.pop('Z')
        else:
            # We do this so Z doesn't get passed as an arg to Axes.tricontourf
            Z, *args = args

        jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
        tri = Triangulation(jX, jY, tri.triangles, tri.mask)

        cset = super().tricontourf(tri, jZ, *args, **kwargs)
        levels = self._add_contourf_set(cset, zdir, offset)

        self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data)
        return cset

    def add_collection3d(self, col, zs=0, zdir='z'):
        """
        Add a 3D collection object to the plot.

        2D collection types are converted to a 3D version by
        modifying the object and adding z coordinate information.

        Supported are:

        - PolyCollection
        - LineCollection
        - PatchCollection
        """
        zvals = np.atleast_1d(zs)
        zsortval = (np.min(zvals) if zvals.size
                    else 0)  # FIXME: arbitrary default

        # FIXME: use issubclass() (although, then a 3D collection
        #       object would also pass.)  Maybe have a collection3d
        #       abstract class to test for and exclude?
        if type(col) is mcoll.PolyCollection:
            art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir)
            col.set_sort_zpos(zsortval)
        elif type(col) is mcoll.LineCollection:
            art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir)
            col.set_sort_zpos(zsortval)
        elif type(col) is mcoll.PatchCollection:
            art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir)
            col.set_sort_zpos(zsortval)

        collection = super().add_collection(col)
        return collection

    @_preprocess_data(replace_names=["xs", "ys", "zs", "s",
                                     "edgecolors", "c", "facecolor",
                                     "facecolors", "color"])
    def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True,
                *args, **kwargs):
        """
        Create a scatter plot.

        Parameters
        ----------
        xs, ys : array-like
            The data positions.
        zs : float or array-like, default: 0
            The z-positions. Either an array of the same length as *xs* and
            *ys* or a single value to place all points in the same plane.
        zdir : {'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z'
            The axis direction for the *zs*. This is useful when plotting 2D
            data on a 3D Axes. The data must be passed as *xs*, *ys*. Setting
            *zdir* to 'y' then plots the data to the x-z-plane.

            See also :doc:`/gallery/mplot3d/2dcollections3d`.

        s : float or array-like, default: 20
            The marker size in points**2. Either an array of the same length
            as *xs* and *ys* or a single value to make all markers the same
            size.
        c : color, sequence, or sequence of colors, optional
            The marker color. Possible values:

            - A single color format string.
            - A sequence of colors of length n.
            - A sequence of n numbers to be mapped to colors using *cmap* and
              *norm*.
            - A 2D array in which the rows are RGB or RGBA.

            For more details see the *c* argument of `~.axes.Axes.scatter`.
        depthshade : bool, default: True
            Whether to shade the scatter markers to give the appearance of
            depth. Each call to ``scatter()`` will perform its depthshading
            independently.
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER
        **kwargs
            All other keyword arguments are passed on to `~.axes.Axes.scatter`.

        Returns
        -------
        paths : `~matplotlib.collections.PathCollection`
        """

        had_data = self.has_data()
        zs_orig = zs

        xs, ys, zs = np.broadcast_arrays(
            *[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]])
        s = np.ma.ravel(s)  # This doesn't have to match x, y in size.

        xs, ys, zs, s, c, color = cbook.delete_masked_points(
            xs, ys, zs, s, c, kwargs.get('color', None)
            )
        if kwargs.get("color") is not None:
            kwargs['color'] = color

        # For xs and ys, 2D scatter() will do the copying.
        if np.may_share_memory(zs_orig, zs):  # Avoid unnecessary copies.
            zs = zs.copy()

        patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs)
        art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,
                                        depthshade=depthshade)

        if self._zmargin < 0.05 and xs.size > 0:
            self.set_zmargin(0.05)

        self.auto_scale_xyz(xs, ys, zs, had_data)

        return patches

    scatter3D = scatter

    @_preprocess_data()
    def bar(self, left, height, zs=0, zdir='z', *args, **kwargs):
        """
        Add 2D bar(s).

        Parameters
        ----------
        left : 1D array-like
            The x coordinates of the left sides of the bars.
        height : 1D array-like
            The height of the bars.
        zs : float or 1D array-like
            Z coordinate of bars; if a single value is specified, it will be
            used for all bars.
        zdir : {'x', 'y', 'z'}, default: 'z'
            When plotting 2D data, the direction to use as z ('x', 'y' or 'z').
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER
        **kwargs
            Other keyword arguments are forwarded to
            `matplotlib.axes.Axes.bar`.

        Returns
        -------
        mpl_toolkits.mplot3d.art3d.Patch3DCollection
        """
        had_data = self.has_data()

        patches = super().bar(left, height, *args, **kwargs)

        zs = np.broadcast_to(zs, len(left))

        verts = []
        verts_zs = []
        for p, z in zip(patches, zs):
            vs = art3d._get_patch_verts(p)
            verts += vs.tolist()
            verts_zs += [z] * len(vs)
            art3d.patch_2d_to_3d(p, z, zdir)
            if 'alpha' in kwargs:
                p.set_alpha(kwargs['alpha'])

        if len(verts) > 0:
            # the following has to be skipped if verts is empty
            # NOTE: Bugs could still occur if len(verts) > 0,
            #       but the "2nd dimension" is empty.
            xs, ys = zip(*verts)
        else:
            xs, ys = [], []

        xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir)
        self.auto_scale_xyz(xs, ys, verts_zs, had_data)

        return patches

    @_preprocess_data()
    def bar3d(self, x, y, z, dx, dy, dz, color=None,
              zsort='average', shade=True, lightsource=None, *args, **kwargs):
        """
        Generate a 3D barplot.

        This method creates three-dimensional barplot where the width,
        depth, height, and color of the bars can all be uniquely set.

        Parameters
        ----------
        x, y, z : array-like
            The coordinates of the anchor point of the bars.

        dx, dy, dz : float or array-like
            The width, depth, and height of the bars, respectively.

        color : sequence of colors, optional
            The color of the bars can be specified globally or
            individually. This parameter can be:

            - A single color, to color all bars the same color.
            - An array of colors of length N bars, to color each bar
              independently.
            - An array of colors of length 6, to color the faces of the
              bars similarly.
            - An array of colors of length 6 * N bars, to color each face
              independently.

            When coloring the faces of the boxes specifically, this is
            the order of the coloring:

            1. -Z (bottom of box)
            2. +Z (top of box)
            3. -Y
            4. +Y
            5. -X
            6. +X

        zsort : str, optional
            The z-axis sorting scheme passed onto `~.art3d.Poly3DCollection`

        shade : bool, default: True
            When true, this shades the dark sides of the bars (relative
            to the plot's source of light).

        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.

        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER

        **kwargs
            Any additional keyword arguments are passed onto
            `~.art3d.Poly3DCollection`.

        Returns
        -------
        collection : `~.art3d.Poly3DCollection`
            A collection of three-dimensional polygons representing the bars.
        """

        had_data = self.has_data()

        x, y, z, dx, dy, dz = np.broadcast_arrays(
            np.atleast_1d(x), y, z, dx, dy, dz)
        minx = np.min(x)
        maxx = np.max(x + dx)
        miny = np.min(y)
        maxy = np.max(y + dy)
        minz = np.min(z)
        maxz = np.max(z + dz)

        # shape (6, 4, 3)
        # All faces are oriented facing outwards - when viewed from the
        # outside, their vertices are in a counterclockwise ordering.
        cuboid = np.array([
            # -z
            (
                (0, 0, 0),
                (0, 1, 0),
                (1, 1, 0),
                (1, 0, 0),
            ),
            # +z
            (
                (0, 0, 1),
                (1, 0, 1),
                (1, 1, 1),
                (0, 1, 1),
            ),
            # -y
            (
                (0, 0, 0),
                (1, 0, 0),
                (1, 0, 1),
                (0, 0, 1),
            ),
            # +y
            (
                (0, 1, 0),
                (0, 1, 1),
                (1, 1, 1),
                (1, 1, 0),
            ),
            # -x
            (
                (0, 0, 0),
                (0, 0, 1),
                (0, 1, 1),
                (0, 1, 0),
            ),
            # +x
            (
                (1, 0, 0),
                (1, 1, 0),
                (1, 1, 1),
                (1, 0, 1),
            ),
        ])

        # indexed by [bar, face, vertex, coord]
        polys = np.empty(x.shape + cuboid.shape)

        # handle each coordinate separately
        for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]:
            p = p[..., np.newaxis, np.newaxis]
            dp = dp[..., np.newaxis, np.newaxis]
            polys[..., i] = p + dp * cuboid[..., i]

        # collapse the first two axes
        polys = polys.reshape((-1,) + polys.shape[2:])

        facecolors = []
        if color is None:
            color = [self._get_patches_for_fill.get_next_color()]

        color = list(mcolors.to_rgba_array(color))

        if len(color) == len(x):
            # bar colors specified, need to expand to number of faces
            for c in color:
                facecolors.extend([c] * 6)
        else:
            # a single color specified, or face colors specified explicitly
            facecolors = color
            if len(facecolors) < len(x):
                facecolors *= (6 * len(x))

        col = art3d.Poly3DCollection(polys,
                                     zsort=zsort,
                                     facecolors=facecolors,
                                     shade=shade,
                                     lightsource=lightsource,
                                     *args, **kwargs)
        self.add_collection(col)

        self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)

        return col

    def set_title(self, label, fontdict=None, loc='center', **kwargs):
        # docstring inherited
        ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs)
        (x, y) = self.title.get_position()
        self.title.set_y(0.92 * y)
        return ret

    @_preprocess_data()
    def quiver(self, X, Y, Z, U, V, W, *,
               length=1, arrow_length_ratio=.3, pivot='tail', normalize=False,
               **kwargs):
        """
        Plot a 3D field of arrows.

        The arguments can be array-like or scalars, so long as they can be
        broadcast together. The arguments can also be masked arrays. If an
        element in any of argument is masked, then that corresponding quiver
        element will not be plotted.

        Parameters
        ----------
        X, Y, Z : array-like
            The x, y and z coordinates of the arrow locations (default is
            tail of arrow; see *pivot* kwarg).

        U, V, W : array-like
            The x, y and z components of the arrow vectors.

        length : float, default: 1
            The length of each quiver.

        arrow_length_ratio : float, default: 0.3
            The ratio of the arrow head with respect to the quiver.

        pivot : {'tail', 'middle', 'tip'}, default: 'tail'
            The part of the arrow that is at the grid point; the arrow
            rotates about this point, hence the name *pivot*.

        normalize : bool, default: False
            Whether all arrows are normalized to have the same length, or keep
            the lengths defined by *u*, *v*, and *w*.

        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER

        **kwargs
            Any additional keyword arguments are delegated to
            :class:`.Line3DCollection`
        """

        def calc_arrows(UVW):
            # get unit direction vector perpendicular to (u, v, w)
            x = UVW[:, 0]
            y = UVW[:, 1]
            norm = np.linalg.norm(UVW[:, :2], axis=1)
            x_p = np.divide(y, norm, where=norm != 0, out=np.zeros_like(x))
            y_p = np.divide(-x,  norm, where=norm != 0, out=np.ones_like(x))
            # compute the two arrowhead direction unit vectors
            rangle = math.radians(15)
            c = math.cos(rangle)
            s = math.sin(rangle)
            # construct the rotation matrices of shape (3, 3, n)
            r13 = y_p * s
            r32 = x_p * s
            r12 = x_p * y_p * (1 - c)
            Rpos = np.array(
                [[c + (x_p ** 2) * (1 - c), r12, r13],
                 [r12, c + (y_p ** 2) * (1 - c), -r32],
                 [-r13, r32, np.full_like(x_p, c)]])
            # opposite rotation negates all the sin terms
            Rneg = Rpos.copy()
            Rneg[[0, 1, 2, 2], [2, 2, 0, 1]] *= -1
            # Batch n (3, 3) x (3) matrix multiplications ((3, 3, n) x (n, 3)).
            Rpos_vecs = np.einsum("ij...,...j->...i", Rpos, UVW)
            Rneg_vecs = np.einsum("ij...,...j->...i", Rneg, UVW)
            # Stack into (n, 2, 3) result.
            return np.stack([Rpos_vecs, Rneg_vecs], axis=1)

        had_data = self.has_data()

        input_args = [X, Y, Z, U, V, W]

        # extract the masks, if any
        masks = [k.mask for k in input_args
                 if isinstance(k, np.ma.MaskedArray)]
        # broadcast to match the shape
        bcast = np.broadcast_arrays(*input_args, *masks)
        input_args = bcast[:6]
        masks = bcast[6:]
        if masks:
            # combine the masks into one
            mask = functools.reduce(np.logical_or, masks)
            # put mask on and compress
            input_args = [np.ma.array(k, mask=mask).compressed()
                          for k in input_args]
        else:
            input_args = [np.ravel(k) for k in input_args]

        if any(len(v) == 0 for v in input_args):
            # No quivers, so just make an empty collection and return early
            linec = art3d.Line3DCollection([], **kwargs)
            self.add_collection(linec)
            return linec

        shaft_dt = np.array([0., length], dtype=float)
        arrow_dt = shaft_dt * arrow_length_ratio

        _api.check_in_list(['tail', 'middle', 'tip'], pivot=pivot)
        if pivot == 'tail':
            shaft_dt -= length
        elif pivot == 'middle':
            shaft_dt -= length / 2

        XYZ = np.column_stack(input_args[:3])
        UVW = np.column_stack(input_args[3:]).astype(float)

        # Normalize rows of UVW
        norm = np.linalg.norm(UVW, axis=1)

        # If any row of UVW is all zeros, don't make a quiver for it
        mask = norm > 0
        XYZ = XYZ[mask]
        if normalize:
            UVW = UVW[mask] / norm[mask].reshape((-1, 1))
        else:
            UVW = UVW[mask]

        if len(XYZ) > 0:
            # compute the shaft lines all at once with an outer product
            shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1)
            # compute head direction vectors, n heads x 2 sides x 3 dimensions
            head_dirs = calc_arrows(UVW)
            # compute all head lines at once, starting from the shaft ends
            heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs)
            # stack left and right head lines together
            heads = heads.reshape((len(arrow_dt), -1, 3))
            # transpose to get a list of lines
            heads = heads.swapaxes(0, 1)

            lines = [*shafts, *heads]
        else:
            lines = []

        linec = art3d.Line3DCollection(lines, **kwargs)
        self.add_collection(linec)

        self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data)

        return linec

    quiver3D = quiver

    def voxels(self, *args, facecolors=None, edgecolors=None, shade=True,
               lightsource=None, **kwargs):
        """
        ax.voxels([x, y, z,] /, filled, facecolors=None, edgecolors=None, \
**kwargs)

        Plot a set of filled voxels

        All voxels are plotted as 1x1x1 cubes on the axis, with
        ``filled[0, 0, 0]`` placed with its lower corner at the origin.
        Occluded faces are not plotted.

        Parameters
        ----------
        filled : 3D np.array of bool
            A 3D array of values, with truthy values indicating which voxels
            to fill

        x, y, z : 3D np.array, optional
            The coordinates of the corners of the voxels. This should broadcast
            to a shape one larger in every dimension than the shape of
            *filled*.  These can be used to plot non-cubic voxels.

            If not specified, defaults to increasing integers along each axis,
            like those returned by :func:`~numpy.indices`.
            As indicated by the ``/`` in the function signature, these
            arguments can only be passed positionally.

        facecolors, edgecolors : array-like, optional
            The color to draw the faces and edges of the voxels. Can only be
            passed as keyword arguments.
            These parameters can be:

            - A single color value, to color all voxels the same color. This
              can be either a string, or a 1D RGB/RGBA array
            - ``None``, the default, to use a single color for the faces, and
              the style default for the edges.
            - A 3D `~numpy.ndarray` of color names, with each item the color
              for the corresponding voxel. The size must match the voxels.
            - A 4D `~numpy.ndarray` of RGB/RGBA data, with the components
              along the last axis.

        shade : bool, default: True
            Whether to shade the facecolors.

        lightsource : `~matplotlib.colors.LightSource`
            The lightsource to use when *shade* is True.

        **kwargs
            Additional keyword arguments to pass onto
            `~mpl_toolkits.mplot3d.art3d.Poly3DCollection`.

        Returns
        -------
        faces : dict
            A dictionary indexed by coordinate, where ``faces[i, j, k]`` is a
            `.Poly3DCollection` of the faces drawn for the voxel
            ``filled[i, j, k]``. If no faces were drawn for a given voxel,
            either because it was not asked to be drawn, or it is fully
            occluded, then ``(i, j, k) not in faces``.

        Examples
        --------
        .. plot:: gallery/mplot3d/voxels.py
        .. plot:: gallery/mplot3d/voxels_rgb.py
        .. plot:: gallery/mplot3d/voxels_torus.py
        .. plot:: gallery/mplot3d/voxels_numpy_logo.py
        """

        # work out which signature we should be using, and use it to parse
        # the arguments. Name must be voxels for the correct error message
        if len(args) >= 3:
            # underscores indicate position only
            def voxels(__x, __y, __z, filled, **kwargs):
                return (__x, __y, __z), filled, kwargs
        else:
            def voxels(filled, **kwargs):
                return None, filled, kwargs

        xyz, filled, kwargs = voxels(*args, **kwargs)

        # check dimensions
        if filled.ndim != 3:
            raise ValueError("Argument filled must be 3-dimensional")
        size = np.array(filled.shape, dtype=np.intp)

        # check xyz coordinates, which are one larger than the filled shape
        coord_shape = tuple(size + 1)
        if xyz is None:
            x, y, z = np.indices(coord_shape)
        else:
            x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz)

        def _broadcast_color_arg(color, name):
            if np.ndim(color) in (0, 1):
                # single color, like "red" or [1, 0, 0]
                return np.broadcast_to(color, filled.shape + np.shape(color))
            elif np.ndim(color) in (3, 4):
                # 3D array of strings, or 4D array with last axis rgb
                if np.shape(color)[:3] != filled.shape:
                    raise ValueError(
                        f"When multidimensional, {name} must match the shape "
                        "of filled")
                return color
            else:
                raise ValueError(f"Invalid {name} argument")

        # broadcast and default on facecolors
        if facecolors is None:
            facecolors = self._get_patches_for_fill.get_next_color()
        facecolors = _broadcast_color_arg(facecolors, 'facecolors')

        # broadcast but no default on edgecolors
        edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')

        # scale to the full array, even if the data is only in the center
        self.auto_scale_xyz(x, y, z)

        # points lying on corners of a square
        square = np.array([
            [0, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [0, 1, 0],
        ], dtype=np.intp)

        voxel_faces = defaultdict(list)

        def permutation_matrices(n):
            """Generate cyclic permutation matrices."""
            mat = np.eye(n, dtype=np.intp)
            for i in range(n):
                yield mat
                mat = np.roll(mat, 1, axis=0)

        # iterate over each of the YZ, ZX, and XY orientations, finding faces
        # to render
        for permute in permutation_matrices(3):
            # find the set of ranges to iterate over
            pc, qc, rc = permute.T.dot(size)
            pinds = np.arange(pc)
            qinds = np.arange(qc)
            rinds = np.arange(rc)

            square_rot_pos = square.dot(permute.T)
            square_rot_neg = square_rot_pos[::-1]

            # iterate within the current plane
            for p in pinds:
                for q in qinds:
                    # iterate perpendicularly to the current plane, handling
                    # boundaries. We only draw faces between a voxel and an
                    # empty space, to avoid drawing internal faces.

                    # draw lower faces
                    p0 = permute.dot([p, q, 0])
                    i0 = tuple(p0)
                    if filled[i0]:
                        voxel_faces[i0].append(p0 + square_rot_neg)

                    # draw middle faces
                    for r1, r2 in zip(rinds[:-1], rinds[1:]):
                        p1 = permute.dot([p, q, r1])
                        p2 = permute.dot([p, q, r2])

                        i1 = tuple(p1)
                        i2 = tuple(p2)

                        if filled[i1] and not filled[i2]:
                            voxel_faces[i1].append(p2 + square_rot_pos)
                        elif not filled[i1] and filled[i2]:
                            voxel_faces[i2].append(p2 + square_rot_neg)

                    # draw upper faces
                    pk = permute.dot([p, q, rc-1])
                    pk2 = permute.dot([p, q, rc])
                    ik = tuple(pk)
                    if filled[ik]:
                        voxel_faces[ik].append(pk2 + square_rot_pos)

        # iterate over the faces, and generate a Poly3DCollection for each
        # voxel
        polygons = {}
        for coord, faces_inds in voxel_faces.items():
            # convert indices into 3D positions
            if xyz is None:
                faces = faces_inds
            else:
                faces = []
                for face_inds in faces_inds:
                    ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]
                    face = np.empty(face_inds.shape)
                    face[:, 0] = x[ind]
                    face[:, 1] = y[ind]
                    face[:, 2] = z[ind]
                    faces.append(face)

            # shade the faces
            facecolor = facecolors[coord]
            edgecolor = edgecolors[coord]

            poly = art3d.Poly3DCollection(
                faces, facecolors=facecolor, edgecolors=edgecolor,
                shade=shade, lightsource=lightsource, **kwargs)
            self.add_collection3d(poly)
            polygons[coord] = poly

        return polygons

    @_preprocess_data(replace_names=["x", "y", "z", "xerr", "yerr", "zerr"])
    def errorbar(self, x, y, z, zerr=None, yerr=None, xerr=None, fmt='',
                 barsabove=False, errorevery=1, ecolor=None, elinewidth=None,
                 capsize=None, capthick=None, xlolims=False, xuplims=False,
                 ylolims=False, yuplims=False, zlolims=False, zuplims=False,
                 **kwargs):
        """
        Plot lines and/or markers with errorbars around them.

        *x*/*y*/*z* define the data locations, and *xerr*/*yerr*/*zerr* define
        the errorbar sizes. By default, this draws the data markers/lines as
        well the errorbars. Use fmt='none' to draw errorbars only.

        Parameters
        ----------
        x, y, z : float or array-like
            The data positions.

        xerr, yerr, zerr : float or array-like, shape (N,) or (2, N), optional
            The errorbar sizes:

            - scalar: Symmetric +/- values for all data points.
            - shape(N,): Symmetric +/-values for each data point.
            - shape(2, N): Separate - and + values for each bar. First row
              contains the lower errors, the second row contains the upper
              errors.
            - *None*: No errorbar.

            Note that all error arrays should have *positive* values.

        fmt : str, default: ''
            The format for the data points / data lines. See `.plot` for
            details.

            Use 'none' (case-insensitive) to plot errorbars without any data
            markers.

        ecolor : color, default: None
            The color of the errorbar lines.  If None, use the color of the
            line connecting the markers.

        elinewidth : float, default: None
            The linewidth of the errorbar lines. If None, the linewidth of
            the current style is used.

        capsize : float, default: :rc:`errorbar.capsize`
            The length of the error bar caps in points.

        capthick : float, default: None
            An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
            This setting is a more sensible name for the property that
            controls the thickness of the error bar cap in points. For
            backwards compatibility, if *mew* or *markeredgewidth* are given,
            then they will over-ride *capthick*. This may change in future
            releases.

        barsabove : bool, default: False
            If True, will plot the errorbars above the plot
            symbols. Default is below.

        xlolims, ylolims, zlolims : bool, default: False
            These arguments can be used to indicate that a value gives only
            lower limits. In that case a caret symbol is used to indicate
            this. *lims*-arguments may be scalars, or array-likes of the same
            length as the errors. To use limits with inverted axes,
            `~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before
            `errorbar`. Note the tricky parameter names: setting e.g.
            *ylolims* to True means that the y-value is a *lower* limit of the
            True value, so, only an *upward*-pointing arrow will be drawn!

        xuplims, yuplims, zuplims : bool, default: False
            Same as above, but for controlling the upper limits.

        errorevery : int or (int, int), default: 1
            draws error bars on a subset of the data. *errorevery* =N draws
            error bars on the points (x[::N], y[::N], z[::N]).
            *errorevery* =(start, N) draws error bars on the points
            (x[start::N], y[start::N], z[start::N]). e.g. *errorevery* =(6, 3)
            adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
            Used to avoid overlapping error bars when two series share x-axis
            values.

        Returns
        -------
        errlines : list
            List of `~mpl_toolkits.mplot3d.art3d.Line3DCollection` instances
            each containing an errorbar line.
        caplines : list
            List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each
            containing a capline object.
        limmarks : list
            List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each
            containing a marker with an upper or lower limit.

        Other Parameters
        ----------------
        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER

        **kwargs
            All other keyword arguments for styling errorbar lines are passed
            `~mpl_toolkits.mplot3d.art3d.Line3DCollection`.

        Examples
        --------
        .. plot:: gallery/mplot3d/errorbar3d.py
        """
        had_data = self.has_data()

        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
        # Drop anything that comes in as None to use the default instead.
        kwargs = {k: v for k, v in kwargs.items() if v is not None}
        kwargs.setdefault('zorder', 2)

        self._process_unit_info([("x", x), ("y", y), ("z", z)], kwargs,
                                convert=False)

        # make sure all the args are iterable; use lists not arrays to
        # preserve units
        x = x if np.iterable(x) else [x]
        y = y if np.iterable(y) else [y]
        z = z if np.iterable(z) else [z]

        if not len(x) == len(y) == len(z):
            raise ValueError("'x', 'y', and 'z' must have the same size")

        everymask = self._errorevery_to_mask(x, errorevery)

        label = kwargs.pop("label", None)
        kwargs['label'] = '_nolegend_'

        # Create the main line and determine overall kwargs for child artists.
        # We avoid calling self.plot() directly, or self._get_lines(), because
        # that would call self._process_unit_info again, and do other indirect
        # data processing.
        (data_line, base_style), = self._get_lines._plot_args(
            self, (x, y) if fmt == '' else (x, y, fmt), kwargs, return_kwargs=True)
        art3d.line_2d_to_3d(data_line, zs=z)

        # Do this after creating `data_line` to avoid modifying `base_style`.
        if barsabove:
            data_line.set_zorder(kwargs['zorder'] - .1)
        else:
            data_line.set_zorder(kwargs['zorder'] + .1)

        # Add line to plot, or throw it away and use it to determine kwargs.
        if fmt.lower() != 'none':
            self.add_line(data_line)
        else:
            data_line = None
            # Remove alpha=0 color that _process_plot_format returns.
            base_style.pop('color')

        if 'color' not in base_style:
            base_style['color'] = 'C0'
        if ecolor is None:
            ecolor = base_style['color']

        # Eject any line-specific information from format string, as it's not
        # needed for bars or caps.
        for key in ['marker', 'markersize', 'markerfacecolor',
                    'markeredgewidth', 'markeredgecolor', 'markevery',
                    'linestyle', 'fillstyle', 'drawstyle', 'dash_capstyle',
                    'dash_joinstyle', 'solid_capstyle', 'solid_joinstyle']:
            base_style.pop(key, None)

        # Make the style dict for the line collections (the bars).
        eb_lines_style = {**base_style, 'color': ecolor}

        if elinewidth:
            eb_lines_style['linewidth'] = elinewidth
        elif 'linewidth' in kwargs:
            eb_lines_style['linewidth'] = kwargs['linewidth']

        for key in ('transform', 'alpha', 'zorder', 'rasterized'):
            if key in kwargs:
                eb_lines_style[key] = kwargs[key]

        # Make the style dict for caps (the "hats").
        eb_cap_style = {**base_style, 'linestyle': 'None'}
        if capsize is None:
            capsize = mpl.rcParams["errorbar.capsize"]
        if capsize > 0:
            eb_cap_style['markersize'] = 2. * capsize
        if capthick is not None:
            eb_cap_style['markeredgewidth'] = capthick
        eb_cap_style['color'] = ecolor

        def _apply_mask(arrays, mask):
            # Return, for each array in *arrays*, the elements for which *mask*
            # is True, without using fancy indexing.
            return [[*itertools.compress(array, mask)] for array in arrays]

        def _extract_errs(err, data, lomask, himask):
            # For separate +/- error values we need to unpack err
            if len(err.shape) == 2:
                low_err, high_err = err
            else:
                low_err, high_err = err, err

            lows = np.where(lomask | ~everymask, data, data - low_err)
            highs = np.where(himask | ~everymask, data, data + high_err)

            return lows, highs

        # collect drawn items while looping over the three coordinates
        errlines, caplines, limmarks = [], [], []

        # list of endpoint coordinates, used for auto-scaling
        coorderrs = []

        # define the markers used for errorbar caps and limits below
        # the dictionary key is mapped by the `i_xyz` helper dictionary
        capmarker = {0: '|', 1: '|', 2: '_'}
        i_xyz = {'x': 0, 'y': 1, 'z': 2}

        # Calculate marker size from points to quiver length. Because these are
        # not markers, and 3D Axes do not use the normal transform stack, this
        # is a bit involved. Since the quiver arrows will change size as the
        # scene is rotated, they are given a standard size based on viewing
        # them directly in planar form.
        quiversize = eb_cap_style.get('markersize',
                                      mpl.rcParams['lines.markersize']) ** 2
        quiversize *= self.figure.dpi / 72
        quiversize = self.transAxes.inverted().transform([
            (0, 0), (quiversize, quiversize)])
        quiversize = np.mean(np.diff(quiversize, axis=0))
        # quiversize is now in Axes coordinates, and to convert back to data
        # coordinates, we need to run it through the inverse 3D transform. For
        # consistency, this uses a fixed elevation, azimuth, and roll.
        with cbook._setattr_cm(self, elev=0, azim=0, roll=0):
            invM = np.linalg.inv(self.get_proj())
        # elev=azim=roll=0 produces the Y-Z plane, so quiversize in 2D 'x' is
        # 'y' in 3D, hence the 1 index.
        quiversize = np.dot(invM, [quiversize, 0, 0, 0])[1]
        # Quivers use a fixed 15-degree arrow head, so scale up the length so
        # that the size corresponds to the base. In other words, this constant
        # corresponds to the equation tan(15) = (base / 2) / (arrow length).
        quiversize *= 1.8660254037844388
        eb_quiver_style = {**eb_cap_style,
                           'length': quiversize, 'arrow_length_ratio': 1}
        eb_quiver_style.pop('markersize', None)

        # loop over x-, y-, and z-direction and draw relevant elements
        for zdir, data, err, lolims, uplims in zip(
                ['x', 'y', 'z'], [x, y, z], [xerr, yerr, zerr],
                [xlolims, ylolims, zlolims], [xuplims, yuplims, zuplims]):

            dir_vector = art3d.get_dir_vector(zdir)
            i_zdir = i_xyz[zdir]

            if err is None:
                continue

            if not np.iterable(err):
                err = [err] * len(data)

            err = np.atleast_1d(err)

            # arrays fine here, they are booleans and hence not units
            lolims = np.broadcast_to(lolims, len(data)).astype(bool)
            uplims = np.broadcast_to(uplims, len(data)).astype(bool)

            # a nested list structure that expands to (xl,xh),(yl,yh),(zl,zh),
            # where x/y/z and l/h correspond to dimensions and low/high
            # positions of errorbars in a dimension we're looping over
            coorderr = [
                _extract_errs(err * dir_vector[i], coord, lolims, uplims)
                for i, coord in enumerate([x, y, z])]
            (xl, xh), (yl, yh), (zl, zh) = coorderr

            # draws capmarkers - flat caps orthogonal to the error bars
            nolims = ~(lolims | uplims)
            if nolims.any() and capsize > 0:
                lo_caps_xyz = _apply_mask([xl, yl, zl], nolims & everymask)
                hi_caps_xyz = _apply_mask([xh, yh, zh], nolims & everymask)

                # setting '_' for z-caps and '|' for x- and y-caps;
                # these markers will rotate as the viewing angle changes
                cap_lo = art3d.Line3D(*lo_caps_xyz, ls='',
                                      marker=capmarker[i_zdir],
                                      **eb_cap_style)
                cap_hi = art3d.Line3D(*hi_caps_xyz, ls='',
                                      marker=capmarker[i_zdir],
                                      **eb_cap_style)
                self.add_line(cap_lo)
                self.add_line(cap_hi)
                caplines.append(cap_lo)
                caplines.append(cap_hi)

            if lolims.any():
                xh0, yh0, zh0 = _apply_mask([xh, yh, zh], lolims & everymask)
                self.quiver(xh0, yh0, zh0, *dir_vector, **eb_quiver_style)
            if uplims.any():
                xl0, yl0, zl0 = _apply_mask([xl, yl, zl], uplims & everymask)
                self.quiver(xl0, yl0, zl0, *-dir_vector, **eb_quiver_style)

            errline = art3d.Line3DCollection(np.array(coorderr).T,
                                             **eb_lines_style)
            self.add_collection(errline)
            errlines.append(errline)
            coorderrs.append(coorderr)

        coorderrs = np.array(coorderrs)

        def _digout_minmax(err_arr, coord_label):
            return (np.nanmin(err_arr[:, i_xyz[coord_label], :, :]),
                    np.nanmax(err_arr[:, i_xyz[coord_label], :, :]))

        minx, maxx = _digout_minmax(coorderrs, 'x')
        miny, maxy = _digout_minmax(coorderrs, 'y')
        minz, maxz = _digout_minmax(coorderrs, 'z')
        self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)

        # Adapting errorbar containers for 3d case, assuming z-axis points "up"
        errorbar_container = mcontainer.ErrorbarContainer(
            (data_line, tuple(caplines), tuple(errlines)),
            has_xerr=(xerr is not None or yerr is not None),
            has_yerr=(zerr is not None),
            label=label)
        self.containers.append(errorbar_container)

        return errlines, caplines, limmarks

    @_api.make_keyword_only("3.8", "call_axes_locator")
    def get_tightbbox(self, renderer=None, call_axes_locator=True,
                      bbox_extra_artists=None, *, for_layout_only=False):
        ret = super().get_tightbbox(renderer,
                                    call_axes_locator=call_axes_locator,
                                    bbox_extra_artists=bbox_extra_artists,
                                    for_layout_only=for_layout_only)
        batch = [ret]
        if self._axis3don:
            for axis in self._axis_map.values():
                if axis.get_visible():
                    axis_bb = martist._get_tightbbox_for_layout_only(
                        axis, renderer)
                    if axis_bb:
                        batch.append(axis_bb)
        return mtransforms.Bbox.union(batch)

    @_preprocess_data()
    def stem(self, x, y, z, *, linefmt='C0-', markerfmt='C0o', basefmt='C3-',
             bottom=0, label=None, orientation='z'):
        """
        Create a 3D stem plot.

        A stem plot draws lines perpendicular to a baseline, and places markers
        at the heads. By default, the baseline is defined by *x* and *y*, and
        stems are drawn vertically from *bottom* to *z*.

        Parameters
        ----------
        x, y, z : array-like
            The positions of the heads of the stems. The stems are drawn along
            the *orientation*-direction from the baseline at *bottom* (in the
            *orientation*-coordinate) to the heads. By default, the *x* and *y*
            positions are used for the baseline and *z* for the head position,
            but this can be changed by *orientation*.

        linefmt : str, default: 'C0-'
            A string defining the properties of the vertical lines. Usually,
            this will be a color or a color and a linestyle:

            =========  =============
            Character  Line Style
            =========  =============
            ``'-'``    solid line
            ``'--'``   dashed line
            ``'-.'``   dash-dot line
            ``':'``    dotted line
            =========  =============

            Note: While it is technically possible to specify valid formats
            other than color or color and linestyle (e.g. 'rx' or '-.'), this
            is beyond the intention of the method and will most likely not
            result in a reasonable plot.

        markerfmt : str, default: 'C0o'
            A string defining the properties of the markers at the stem heads.

        basefmt : str, default: 'C3-'
            A format string defining the properties of the baseline.

        bottom : float, default: 0
            The position of the baseline, in *orientation*-coordinates.

        label : str, default: None
            The label to use for the stems in legends.

        orientation : {'x', 'y', 'z'}, default: 'z'
            The direction along which stems are drawn.

        data : indexable object, optional
            DATA_PARAMETER_PLACEHOLDER

        Returns
        -------
        `.StemContainer`
            The container may be treated like a tuple
            (*markerline*, *stemlines*, *baseline*)

        Examples
        --------
        .. plot:: gallery/mplot3d/stem3d_demo.py
        """

        from matplotlib.container import StemContainer

        had_data = self.has_data()

        _api.check_in_list(['x', 'y', 'z'], orientation=orientation)

        xlim = (np.min(x), np.max(x))
        ylim = (np.min(y), np.max(y))
        zlim = (np.min(z), np.max(z))

        # Determine the appropriate plane for the baseline and the direction of
        # stemlines based on the value of orientation.
        if orientation == 'x':
            basex, basexlim = y, ylim
            basey, baseylim = z, zlim
            lines = [[(bottom, thisy, thisz), (thisx, thisy, thisz)]
                     for thisx, thisy, thisz in zip(x, y, z)]
        elif orientation == 'y':
            basex, basexlim = x, xlim
            basey, baseylim = z, zlim
            lines = [[(thisx, bottom, thisz), (thisx, thisy, thisz)]
                     for thisx, thisy, thisz in zip(x, y, z)]
        else:
            basex, basexlim = x, xlim
            basey, baseylim = y, ylim
            lines = [[(thisx, thisy, bottom), (thisx, thisy, thisz)]
                     for thisx, thisy, thisz in zip(x, y, z)]

        # Determine style for stem lines.
        linestyle, linemarker, linecolor = _process_plot_format(linefmt)
        if linestyle is None:
            linestyle = mpl.rcParams['lines.linestyle']

        # Plot everything in required order.
        baseline, = self.plot(basex, basey, basefmt, zs=bottom,
                              zdir=orientation, label='_nolegend_')
        stemlines = art3d.Line3DCollection(
            lines, linestyles=linestyle, colors=linecolor, label='_nolegend_')
        self.add_collection(stemlines)
        markerline, = self.plot(x, y, z, markerfmt, label='_nolegend_')

        stem_container = StemContainer((markerline, stemlines, baseline),
                                       label=label)
        self.add_container(stem_container)

        jx, jy, jz = art3d.juggle_axes(basexlim, baseylim, [bottom, bottom],
                                       orientation)
        self.auto_scale_xyz([*jx, *xlim], [*jy, *ylim], [*jz, *zlim], had_data)

        return stem_container

    stem3D = stem


def get_test_data(delta=0.05):
    """Return a tuple X, Y, Z with a test data set."""
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)

    Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
    Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
          (2 * np.pi * 0.5 * 1.5))
    Z = Z2 - Z1

    X = X * 10
    Y = Y * 10
    Z = Z * 500
    return X, Y, Z