1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
|
# art3d.py, original mplot3d version by John Porter
# Parts rewritten by Reinier Heeres <reinier@heeres.eu>
# Minor additions by Ben Axelrod <baxelrod@coroware.com>
"""
Module containing 3D artist code and functions to convert 2D
artists into 3D versions which can be added to an Axes3D.
"""
import math
import numpy as np
from contextlib import contextmanager
from matplotlib import (
artist, cbook, colors as mcolors, lines, text as mtext,
path as mpath)
from matplotlib.collections import (
Collection, LineCollection, PolyCollection, PatchCollection, PathCollection)
from matplotlib.colors import Normalize
from matplotlib.patches import Patch
from . import proj3d
def _norm_angle(a):
"""Return the given angle normalized to -180 < *a* <= 180 degrees."""
a = (a + 360) % 360
if a > 180:
a = a - 360
return a
def _norm_text_angle(a):
"""Return the given angle normalized to -90 < *a* <= 90 degrees."""
a = (a + 180) % 180
if a > 90:
a = a - 180
return a
def get_dir_vector(zdir):
"""
Return a direction vector.
Parameters
----------
zdir : {'x', 'y', 'z', None, 3-tuple}
The direction. Possible values are:
- 'x': equivalent to (1, 0, 0)
- 'y': equivalent to (0, 1, 0)
- 'z': equivalent to (0, 0, 1)
- *None*: equivalent to (0, 0, 0)
- an iterable (x, y, z) is converted to an array
Returns
-------
x, y, z : array
The direction vector.
"""
if zdir == 'x':
return np.array((1, 0, 0))
elif zdir == 'y':
return np.array((0, 1, 0))
elif zdir == 'z':
return np.array((0, 0, 1))
elif zdir is None:
return np.array((0, 0, 0))
elif np.iterable(zdir) and len(zdir) == 3:
return np.array(zdir)
else:
raise ValueError("'x', 'y', 'z', None or vector of length 3 expected")
class Text3D(mtext.Text):
"""
Text object with 3D position and direction.
Parameters
----------
x, y, z : float
The position of the text.
text : str
The text string to display.
zdir : {'x', 'y', 'z', None, 3-tuple}
The direction of the text. See `.get_dir_vector` for a description of
the values.
Other Parameters
----------------
**kwargs
All other parameters are passed on to `~matplotlib.text.Text`.
"""
def __init__(self, x=0, y=0, z=0, text='', zdir='z', **kwargs):
mtext.Text.__init__(self, x, y, text, **kwargs)
self.set_3d_properties(z, zdir)
def get_position_3d(self):
"""Return the (x, y, z) position of the text."""
return self._x, self._y, self._z
def set_position_3d(self, xyz, zdir=None):
"""
Set the (*x*, *y*, *z*) position of the text.
Parameters
----------
xyz : (float, float, float)
The position in 3D space.
zdir : {'x', 'y', 'z', None, 3-tuple}
The direction of the text. If unspecified, the *zdir* will not be
changed. See `.get_dir_vector` for a description of the values.
"""
super().set_position(xyz[:2])
self.set_z(xyz[2])
if zdir is not None:
self._dir_vec = get_dir_vector(zdir)
def set_z(self, z):
"""
Set the *z* position of the text.
Parameters
----------
z : float
"""
self._z = z
self.stale = True
def set_3d_properties(self, z=0, zdir='z'):
"""
Set the *z* position and direction of the text.
Parameters
----------
z : float
The z-position in 3D space.
zdir : {'x', 'y', 'z', 3-tuple}
The direction of the text. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
self._z = z
self._dir_vec = get_dir_vector(zdir)
self.stale = True
@artist.allow_rasterization
def draw(self, renderer):
position3d = np.array((self._x, self._y, self._z))
proj = proj3d._proj_trans_points(
[position3d, position3d + self._dir_vec], self.axes.M)
dx = proj[0][1] - proj[0][0]
dy = proj[1][1] - proj[1][0]
angle = math.degrees(math.atan2(dy, dx))
with cbook._setattr_cm(self, _x=proj[0][0], _y=proj[1][0],
_rotation=_norm_text_angle(angle)):
mtext.Text.draw(self, renderer)
self.stale = False
def get_tightbbox(self, renderer=None):
# Overwriting the 2d Text behavior which is not valid for 3d.
# For now, just return None to exclude from layout calculation.
return None
def text_2d_to_3d(obj, z=0, zdir='z'):
"""
Convert a `.Text` to a `.Text3D` object.
Parameters
----------
z : float
The z-position in 3D space.
zdir : {'x', 'y', 'z', 3-tuple}
The direction of the text. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
obj.__class__ = Text3D
obj.set_3d_properties(z, zdir)
class Line3D(lines.Line2D):
"""
3D line object.
.. note:: Use `get_data_3d` to obtain the data associated with the line.
`~.Line2D.get_data`, `~.Line2D.get_xdata`, and `~.Line2D.get_ydata` return
the x- and y-coordinates of the projected 2D-line, not the x- and y-data of
the 3D-line. Similarly, use `set_data_3d` to set the data, not
`~.Line2D.set_data`, `~.Line2D.set_xdata`, and `~.Line2D.set_ydata`.
"""
def __init__(self, xs, ys, zs, *args, **kwargs):
"""
Parameters
----------
xs : array-like
The x-data to be plotted.
ys : array-like
The y-data to be plotted.
zs : array-like
The z-data to be plotted.
*args, **kwargs
Additional arguments are passed to `~matplotlib.lines.Line2D`.
"""
super().__init__([], [], *args, **kwargs)
self.set_data_3d(xs, ys, zs)
def set_3d_properties(self, zs=0, zdir='z'):
"""
Set the *z* position and direction of the line.
Parameters
----------
zs : float or array of floats
The location along the *zdir* axis in 3D space to position the
line.
zdir : {'x', 'y', 'z'}
Plane to plot line orthogonal to. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
xs = self.get_xdata()
ys = self.get_ydata()
zs = cbook._to_unmasked_float_array(zs).ravel()
zs = np.broadcast_to(zs, len(xs))
self._verts3d = juggle_axes(xs, ys, zs, zdir)
self.stale = True
def set_data_3d(self, *args):
"""
Set the x, y and z data
Parameters
----------
x : array-like
The x-data to be plotted.
y : array-like
The y-data to be plotted.
z : array-like
The z-data to be plotted.
Notes
-----
Accepts x, y, z arguments or a single array-like (x, y, z)
"""
if len(args) == 1:
args = args[0]
for name, xyz in zip('xyz', args):
if not np.iterable(xyz):
raise RuntimeError(f'{name} must be a sequence')
self._verts3d = args
self.stale = True
def get_data_3d(self):
"""
Get the current data
Returns
-------
verts3d : length-3 tuple or array-like
The current data as a tuple or array-like.
"""
return self._verts3d
@artist.allow_rasterization
def draw(self, renderer):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M)
self.set_data(xs, ys)
super().draw(renderer)
self.stale = False
def line_2d_to_3d(line, zs=0, zdir='z'):
"""
Convert a `.Line2D` to a `.Line3D` object.
Parameters
----------
zs : float
The location along the *zdir* axis in 3D space to position the line.
zdir : {'x', 'y', 'z'}
Plane to plot line orthogonal to. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
line.__class__ = Line3D
line.set_3d_properties(zs, zdir)
def _path_to_3d_segment(path, zs=0, zdir='z'):
"""Convert a path to a 3D segment."""
zs = np.broadcast_to(zs, len(path))
pathsegs = path.iter_segments(simplify=False, curves=False)
seg = [(x, y, z) for (((x, y), code), z) in zip(pathsegs, zs)]
seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg]
return seg3d
def _paths_to_3d_segments(paths, zs=0, zdir='z'):
"""Convert paths from a collection object to 3D segments."""
if not np.iterable(zs):
zs = np.broadcast_to(zs, len(paths))
else:
if len(zs) != len(paths):
raise ValueError('Number of z-coordinates does not match paths.')
segs = [_path_to_3d_segment(path, pathz, zdir)
for path, pathz in zip(paths, zs)]
return segs
def _path_to_3d_segment_with_codes(path, zs=0, zdir='z'):
"""Convert a path to a 3D segment with path codes."""
zs = np.broadcast_to(zs, len(path))
pathsegs = path.iter_segments(simplify=False, curves=False)
seg_codes = [((x, y, z), code) for ((x, y), code), z in zip(pathsegs, zs)]
if seg_codes:
seg, codes = zip(*seg_codes)
seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg]
else:
seg3d = []
codes = []
return seg3d, list(codes)
def _paths_to_3d_segments_with_codes(paths, zs=0, zdir='z'):
"""
Convert paths from a collection object to 3D segments with path codes.
"""
zs = np.broadcast_to(zs, len(paths))
segments_codes = [_path_to_3d_segment_with_codes(path, pathz, zdir)
for path, pathz in zip(paths, zs)]
if segments_codes:
segments, codes = zip(*segments_codes)
else:
segments, codes = [], []
return list(segments), list(codes)
class Collection3D(Collection):
"""A collection of 3D paths."""
def do_3d_projection(self):
"""Project the points according to renderer matrix."""
xyzs_list = [proj3d.proj_transform(*vs.T, self.axes.M)
for vs, _ in self._3dverts_codes]
self._paths = [mpath.Path(np.column_stack([xs, ys]), cs)
for (xs, ys, _), (_, cs) in zip(xyzs_list, self._3dverts_codes)]
zs = np.concatenate([zs for _, _, zs in xyzs_list])
return zs.min() if len(zs) else 1e9
def collection_2d_to_3d(col, zs=0, zdir='z'):
"""Convert a `.Collection` to a `.Collection3D` object."""
zs = np.broadcast_to(zs, len(col.get_paths()))
col._3dverts_codes = [
(np.column_stack(juggle_axes(
*np.column_stack([p.vertices, np.broadcast_to(z, len(p.vertices))]).T,
zdir)),
p.codes)
for p, z in zip(col.get_paths(), zs)]
col.__class__ = cbook._make_class_factory(Collection3D, "{}3D")(type(col))
class Line3DCollection(LineCollection):
"""
A collection of 3D lines.
"""
def set_sort_zpos(self, val):
"""Set the position to use for z-sorting."""
self._sort_zpos = val
self.stale = True
def set_segments(self, segments):
"""
Set 3D segments.
"""
self._segments3d = segments
super().set_segments([])
def do_3d_projection(self):
"""
Project the points according to renderer matrix.
"""
xyslist = [proj3d._proj_trans_points(points, self.axes.M)
for points in self._segments3d]
segments_2d = [np.column_stack([xs, ys]) for xs, ys, zs in xyslist]
LineCollection.set_segments(self, segments_2d)
# FIXME
minz = 1e9
for xs, ys, zs in xyslist:
minz = min(minz, min(zs))
return minz
def line_collection_2d_to_3d(col, zs=0, zdir='z'):
"""Convert a `.LineCollection` to a `.Line3DCollection` object."""
segments3d = _paths_to_3d_segments(col.get_paths(), zs, zdir)
col.__class__ = Line3DCollection
col.set_segments(segments3d)
class Patch3D(Patch):
"""
3D patch object.
"""
def __init__(self, *args, zs=(), zdir='z', **kwargs):
"""
Parameters
----------
verts :
zs : float
The location along the *zdir* axis in 3D space to position the
patch.
zdir : {'x', 'y', 'z'}
Plane to plot patch orthogonal to. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
super().__init__(*args, **kwargs)
self.set_3d_properties(zs, zdir)
def set_3d_properties(self, verts, zs=0, zdir='z'):
"""
Set the *z* position and direction of the patch.
Parameters
----------
verts :
zs : float
The location along the *zdir* axis in 3D space to position the
patch.
zdir : {'x', 'y', 'z'}
Plane to plot patch orthogonal to. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
zs = np.broadcast_to(zs, len(verts))
self._segment3d = [juggle_axes(x, y, z, zdir)
for ((x, y), z) in zip(verts, zs)]
def get_path(self):
return self._path2d
def do_3d_projection(self):
s = self._segment3d
xs, ys, zs = zip(*s)
vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs,
self.axes.M)
self._path2d = mpath.Path(np.column_stack([vxs, vys]))
return min(vzs)
class PathPatch3D(Patch3D):
"""
3D PathPatch object.
"""
def __init__(self, path, *, zs=(), zdir='z', **kwargs):
"""
Parameters
----------
path :
zs : float
The location along the *zdir* axis in 3D space to position the
path patch.
zdir : {'x', 'y', 'z', 3-tuple}
Plane to plot path patch orthogonal to. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
# Not super().__init__!
Patch.__init__(self, **kwargs)
self.set_3d_properties(path, zs, zdir)
def set_3d_properties(self, path, zs=0, zdir='z'):
"""
Set the *z* position and direction of the path patch.
Parameters
----------
path :
zs : float
The location along the *zdir* axis in 3D space to position the
path patch.
zdir : {'x', 'y', 'z', 3-tuple}
Plane to plot path patch orthogonal to. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
Patch3D.set_3d_properties(self, path.vertices, zs=zs, zdir=zdir)
self._code3d = path.codes
def do_3d_projection(self):
s = self._segment3d
xs, ys, zs = zip(*s)
vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs,
self.axes.M)
self._path2d = mpath.Path(np.column_stack([vxs, vys]), self._code3d)
return min(vzs)
def _get_patch_verts(patch):
"""Return a list of vertices for the path of a patch."""
trans = patch.get_patch_transform()
path = patch.get_path()
polygons = path.to_polygons(trans)
return polygons[0] if len(polygons) else np.array([])
def patch_2d_to_3d(patch, z=0, zdir='z'):
"""Convert a `.Patch` to a `.Patch3D` object."""
verts = _get_patch_verts(patch)
patch.__class__ = Patch3D
patch.set_3d_properties(verts, z, zdir)
def pathpatch_2d_to_3d(pathpatch, z=0, zdir='z'):
"""Convert a `.PathPatch` to a `.PathPatch3D` object."""
path = pathpatch.get_path()
trans = pathpatch.get_patch_transform()
mpath = trans.transform_path(path)
pathpatch.__class__ = PathPatch3D
pathpatch.set_3d_properties(mpath, z, zdir)
class Patch3DCollection(PatchCollection):
"""
A collection of 3D patches.
"""
def __init__(self, *args, zs=0, zdir='z', depthshade=True, **kwargs):
"""
Create a collection of flat 3D patches with its normal vector
pointed in *zdir* direction, and located at *zs* on the *zdir*
axis. 'zs' can be a scalar or an array-like of the same length as
the number of patches in the collection.
Constructor arguments are the same as for
:class:`~matplotlib.collections.PatchCollection`. In addition,
keywords *zs=0* and *zdir='z'* are available.
Also, the keyword argument *depthshade* is available to indicate
whether to shade the patches in order to give the appearance of depth
(default is *True*). This is typically desired in scatter plots.
"""
self._depthshade = depthshade
super().__init__(*args, **kwargs)
self.set_3d_properties(zs, zdir)
def get_depthshade(self):
return self._depthshade
def set_depthshade(self, depthshade):
"""
Set whether depth shading is performed on collection members.
Parameters
----------
depthshade : bool
Whether to shade the patches in order to give the appearance of
depth.
"""
self._depthshade = depthshade
self.stale = True
def set_sort_zpos(self, val):
"""Set the position to use for z-sorting."""
self._sort_zpos = val
self.stale = True
def set_3d_properties(self, zs, zdir):
"""
Set the *z* positions and direction of the patches.
Parameters
----------
zs : float or array of floats
The location or locations to place the patches in the collection
along the *zdir* axis.
zdir : {'x', 'y', 'z'}
Plane to plot patches orthogonal to.
All patches must have the same direction.
See `.get_dir_vector` for a description of the values.
"""
# Force the collection to initialize the face and edgecolors
# just in case it is a scalarmappable with a colormap.
self.update_scalarmappable()
offsets = self.get_offsets()
if len(offsets) > 0:
xs, ys = offsets.T
else:
xs = []
ys = []
self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir)
self._z_markers_idx = slice(-1)
self._vzs = None
self.stale = True
def do_3d_projection(self):
xs, ys, zs = self._offsets3d
vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs,
self.axes.M)
self._vzs = vzs
super().set_offsets(np.column_stack([vxs, vys]))
if vzs.size > 0:
return min(vzs)
else:
return np.nan
def _maybe_depth_shade_and_sort_colors(self, color_array):
color_array = (
_zalpha(color_array, self._vzs)
if self._vzs is not None and self._depthshade
else color_array
)
if len(color_array) > 1:
color_array = color_array[self._z_markers_idx]
return mcolors.to_rgba_array(color_array, self._alpha)
def get_facecolor(self):
return self._maybe_depth_shade_and_sort_colors(super().get_facecolor())
def get_edgecolor(self):
# We need this check here to make sure we do not double-apply the depth
# based alpha shading when the edge color is "face" which means the
# edge colour should be identical to the face colour.
if cbook._str_equal(self._edgecolors, 'face'):
return self.get_facecolor()
return self._maybe_depth_shade_and_sort_colors(super().get_edgecolor())
class Path3DCollection(PathCollection):
"""
A collection of 3D paths.
"""
def __init__(self, *args, zs=0, zdir='z', depthshade=True, **kwargs):
"""
Create a collection of flat 3D paths with its normal vector
pointed in *zdir* direction, and located at *zs* on the *zdir*
axis. 'zs' can be a scalar or an array-like of the same length as
the number of paths in the collection.
Constructor arguments are the same as for
:class:`~matplotlib.collections.PathCollection`. In addition,
keywords *zs=0* and *zdir='z'* are available.
Also, the keyword argument *depthshade* is available to indicate
whether to shade the patches in order to give the appearance of depth
(default is *True*). This is typically desired in scatter plots.
"""
self._depthshade = depthshade
self._in_draw = False
super().__init__(*args, **kwargs)
self.set_3d_properties(zs, zdir)
self._offset_zordered = None
def draw(self, renderer):
with self._use_zordered_offset():
with cbook._setattr_cm(self, _in_draw=True):
super().draw(renderer)
def set_sort_zpos(self, val):
"""Set the position to use for z-sorting."""
self._sort_zpos = val
self.stale = True
def set_3d_properties(self, zs, zdir):
"""
Set the *z* positions and direction of the paths.
Parameters
----------
zs : float or array of floats
The location or locations to place the paths in the collection
along the *zdir* axis.
zdir : {'x', 'y', 'z'}
Plane to plot paths orthogonal to.
All paths must have the same direction.
See `.get_dir_vector` for a description of the values.
"""
# Force the collection to initialize the face and edgecolors
# just in case it is a scalarmappable with a colormap.
self.update_scalarmappable()
offsets = self.get_offsets()
if len(offsets) > 0:
xs, ys = offsets.T
else:
xs = []
ys = []
self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir)
# In the base draw methods we access the attributes directly which
# means we cannot resolve the shuffling in the getter methods like
# we do for the edge and face colors.
#
# This means we need to carry around a cache of the unsorted sizes and
# widths (postfixed with 3d) and in `do_3d_projection` set the
# depth-sorted version of that data into the private state used by the
# base collection class in its draw method.
#
# Grab the current sizes and linewidths to preserve them.
self._sizes3d = self._sizes
self._linewidths3d = np.array(self._linewidths)
xs, ys, zs = self._offsets3d
# Sort the points based on z coordinates
# Performance optimization: Create a sorted index array and reorder
# points and point properties according to the index array
self._z_markers_idx = slice(-1)
self._vzs = None
self.stale = True
def set_sizes(self, sizes, dpi=72.0):
super().set_sizes(sizes, dpi)
if not self._in_draw:
self._sizes3d = sizes
def set_linewidth(self, lw):
super().set_linewidth(lw)
if not self._in_draw:
self._linewidths3d = np.array(self._linewidths)
def get_depthshade(self):
return self._depthshade
def set_depthshade(self, depthshade):
"""
Set whether depth shading is performed on collection members.
Parameters
----------
depthshade : bool
Whether to shade the patches in order to give the appearance of
depth.
"""
self._depthshade = depthshade
self.stale = True
def do_3d_projection(self):
xs, ys, zs = self._offsets3d
vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs,
self.axes.M)
# Sort the points based on z coordinates
# Performance optimization: Create a sorted index array and reorder
# points and point properties according to the index array
z_markers_idx = self._z_markers_idx = np.argsort(vzs)[::-1]
self._vzs = vzs
# we have to special case the sizes because of code in collections.py
# as the draw method does
# self.set_sizes(self._sizes, self.figure.dpi)
# so we cannot rely on doing the sorting on the way out via get_*
if len(self._sizes3d) > 1:
self._sizes = self._sizes3d[z_markers_idx]
if len(self._linewidths3d) > 1:
self._linewidths = self._linewidths3d[z_markers_idx]
PathCollection.set_offsets(self, np.column_stack((vxs, vys)))
# Re-order items
vzs = vzs[z_markers_idx]
vxs = vxs[z_markers_idx]
vys = vys[z_markers_idx]
# Store ordered offset for drawing purpose
self._offset_zordered = np.column_stack((vxs, vys))
return np.min(vzs) if vzs.size else np.nan
@contextmanager
def _use_zordered_offset(self):
if self._offset_zordered is None:
# Do nothing
yield
else:
# Swap offset with z-ordered offset
old_offset = self._offsets
super().set_offsets(self._offset_zordered)
try:
yield
finally:
self._offsets = old_offset
def _maybe_depth_shade_and_sort_colors(self, color_array):
color_array = (
_zalpha(color_array, self._vzs)
if self._vzs is not None and self._depthshade
else color_array
)
if len(color_array) > 1:
color_array = color_array[self._z_markers_idx]
return mcolors.to_rgba_array(color_array, self._alpha)
def get_facecolor(self):
return self._maybe_depth_shade_and_sort_colors(super().get_facecolor())
def get_edgecolor(self):
# We need this check here to make sure we do not double-apply the depth
# based alpha shading when the edge color is "face" which means the
# edge colour should be identical to the face colour.
if cbook._str_equal(self._edgecolors, 'face'):
return self.get_facecolor()
return self._maybe_depth_shade_and_sort_colors(super().get_edgecolor())
def patch_collection_2d_to_3d(col, zs=0, zdir='z', depthshade=True):
"""
Convert a `.PatchCollection` into a `.Patch3DCollection` object
(or a `.PathCollection` into a `.Path3DCollection` object).
Parameters
----------
zs : float or array of floats
The location or locations to place the patches in the collection along
the *zdir* axis. Default: 0.
zdir : {'x', 'y', 'z'}
The axis in which to place the patches. Default: "z".
See `.get_dir_vector` for a description of the values.
depthshade
Whether to shade the patches to give a sense of depth. Default: *True*.
"""
if isinstance(col, PathCollection):
col.__class__ = Path3DCollection
col._offset_zordered = None
elif isinstance(col, PatchCollection):
col.__class__ = Patch3DCollection
col._depthshade = depthshade
col._in_draw = False
col.set_3d_properties(zs, zdir)
class Poly3DCollection(PolyCollection):
"""
A collection of 3D polygons.
.. note::
**Filling of 3D polygons**
There is no simple definition of the enclosed surface of a 3D polygon
unless the polygon is planar.
In practice, Matplotlib fills the 2D projection of the polygon. This
gives a correct filling appearance only for planar polygons. For all
other polygons, you'll find orientations in which the edges of the
polygon intersect in the projection. This will lead to an incorrect
visualization of the 3D area.
If you need filled areas, it is recommended to create them via
`~mpl_toolkits.mplot3d.axes3d.Axes3D.plot_trisurf`, which creates a
triangulation and thus generates consistent surfaces.
"""
def __init__(self, verts, *args, zsort='average', shade=False,
lightsource=None, **kwargs):
"""
Parameters
----------
verts : list of (N, 3) array-like
The sequence of polygons [*verts0*, *verts1*, ...] where each
element *verts_i* defines the vertices of polygon *i* as a 2D
array-like of shape (N, 3).
zsort : {'average', 'min', 'max'}, default: 'average'
The calculation method for the z-order.
See `~.Poly3DCollection.set_zsort` for details.
shade : bool, default: False
Whether to shade *facecolors* and *edgecolors*. When activating
*shade*, *facecolors* and/or *edgecolors* must be provided.
.. versionadded:: 3.7
lightsource : `~matplotlib.colors.LightSource`, optional
The lightsource to use when *shade* is True.
.. versionadded:: 3.7
*args, **kwargs
All other parameters are forwarded to `.PolyCollection`.
Notes
-----
Note that this class does a bit of magic with the _facecolors
and _edgecolors properties.
"""
if shade:
normals = _generate_normals(verts)
facecolors = kwargs.get('facecolors', None)
if facecolors is not None:
kwargs['facecolors'] = _shade_colors(
facecolors, normals, lightsource
)
edgecolors = kwargs.get('edgecolors', None)
if edgecolors is not None:
kwargs['edgecolors'] = _shade_colors(
edgecolors, normals, lightsource
)
if facecolors is None and edgecolors is None:
raise ValueError(
"You must provide facecolors, edgecolors, or both for "
"shade to work.")
super().__init__(verts, *args, **kwargs)
if isinstance(verts, np.ndarray):
if verts.ndim != 3:
raise ValueError('verts must be a list of (N, 3) array-like')
else:
if any(len(np.shape(vert)) != 2 for vert in verts):
raise ValueError('verts must be a list of (N, 3) array-like')
self.set_zsort(zsort)
self._codes3d = None
_zsort_functions = {
'average': np.average,
'min': np.min,
'max': np.max,
}
def set_zsort(self, zsort):
"""
Set the calculation method for the z-order.
Parameters
----------
zsort : {'average', 'min', 'max'}
The function applied on the z-coordinates of the vertices in the
viewer's coordinate system, to determine the z-order.
"""
self._zsortfunc = self._zsort_functions[zsort]
self._sort_zpos = None
self.stale = True
def get_vector(self, segments3d):
"""Optimize points for projection."""
if len(segments3d):
xs, ys, zs = np.vstack(segments3d).T
else: # vstack can't stack zero arrays.
xs, ys, zs = [], [], []
ones = np.ones(len(xs))
self._vec = np.array([xs, ys, zs, ones])
indices = [0, *np.cumsum([len(segment) for segment in segments3d])]
self._segslices = [*map(slice, indices[:-1], indices[1:])]
def set_verts(self, verts, closed=True):
"""
Set 3D vertices.
Parameters
----------
verts : list of (N, 3) array-like
The sequence of polygons [*verts0*, *verts1*, ...] where each
element *verts_i* defines the vertices of polygon *i* as a 2D
array-like of shape (N, 3).
closed : bool, default: True
Whether the polygon should be closed by adding a CLOSEPOLY
connection at the end.
"""
self.get_vector(verts)
# 2D verts will be updated at draw time
super().set_verts([], False)
self._closed = closed
def set_verts_and_codes(self, verts, codes):
"""Set 3D vertices with path codes."""
# set vertices with closed=False to prevent PolyCollection from
# setting path codes
self.set_verts(verts, closed=False)
# and set our own codes instead.
self._codes3d = codes
def set_3d_properties(self):
# Force the collection to initialize the face and edgecolors
# just in case it is a scalarmappable with a colormap.
self.update_scalarmappable()
self._sort_zpos = None
self.set_zsort('average')
self._facecolor3d = PolyCollection.get_facecolor(self)
self._edgecolor3d = PolyCollection.get_edgecolor(self)
self._alpha3d = PolyCollection.get_alpha(self)
self.stale = True
def set_sort_zpos(self, val):
"""Set the position to use for z-sorting."""
self._sort_zpos = val
self.stale = True
def do_3d_projection(self):
"""
Perform the 3D projection for this object.
"""
if self._A is not None:
# force update of color mapping because we re-order them
# below. If we do not do this here, the 2D draw will call
# this, but we will never port the color mapped values back
# to the 3D versions.
#
# We hold the 3D versions in a fixed order (the order the user
# passed in) and sort the 2D version by view depth.
self.update_scalarmappable()
if self._face_is_mapped:
self._facecolor3d = self._facecolors
if self._edge_is_mapped:
self._edgecolor3d = self._edgecolors
txs, tys, tzs = proj3d._proj_transform_vec(self._vec, self.axes.M)
xyzlist = [(txs[sl], tys[sl], tzs[sl]) for sl in self._segslices]
# This extra fuss is to re-order face / edge colors
cface = self._facecolor3d
cedge = self._edgecolor3d
if len(cface) != len(xyzlist):
cface = cface.repeat(len(xyzlist), axis=0)
if len(cedge) != len(xyzlist):
if len(cedge) == 0:
cedge = cface
else:
cedge = cedge.repeat(len(xyzlist), axis=0)
if xyzlist:
# sort by depth (furthest drawn first)
z_segments_2d = sorted(
((self._zsortfunc(zs), np.column_stack([xs, ys]), fc, ec, idx)
for idx, ((xs, ys, zs), fc, ec)
in enumerate(zip(xyzlist, cface, cedge))),
key=lambda x: x[0], reverse=True)
_, segments_2d, self._facecolors2d, self._edgecolors2d, idxs = \
zip(*z_segments_2d)
else:
segments_2d = []
self._facecolors2d = np.empty((0, 4))
self._edgecolors2d = np.empty((0, 4))
idxs = []
if self._codes3d is not None:
codes = [self._codes3d[idx] for idx in idxs]
PolyCollection.set_verts_and_codes(self, segments_2d, codes)
else:
PolyCollection.set_verts(self, segments_2d, self._closed)
if len(self._edgecolor3d) != len(cface):
self._edgecolors2d = self._edgecolor3d
# Return zorder value
if self._sort_zpos is not None:
zvec = np.array([[0], [0], [self._sort_zpos], [1]])
ztrans = proj3d._proj_transform_vec(zvec, self.axes.M)
return ztrans[2][0]
elif tzs.size > 0:
# FIXME: Some results still don't look quite right.
# In particular, examine contourf3d_demo2.py
# with az = -54 and elev = -45.
return np.min(tzs)
else:
return np.nan
def set_facecolor(self, colors):
# docstring inherited
super().set_facecolor(colors)
self._facecolor3d = PolyCollection.get_facecolor(self)
def set_edgecolor(self, colors):
# docstring inherited
super().set_edgecolor(colors)
self._edgecolor3d = PolyCollection.get_edgecolor(self)
def set_alpha(self, alpha):
# docstring inherited
artist.Artist.set_alpha(self, alpha)
try:
self._facecolor3d = mcolors.to_rgba_array(
self._facecolor3d, self._alpha)
except (AttributeError, TypeError, IndexError):
pass
try:
self._edgecolors = mcolors.to_rgba_array(
self._edgecolor3d, self._alpha)
except (AttributeError, TypeError, IndexError):
pass
self.stale = True
def get_facecolor(self):
# docstring inherited
# self._facecolors2d is not initialized until do_3d_projection
if not hasattr(self, '_facecolors2d'):
self.axes.M = self.axes.get_proj()
self.do_3d_projection()
return np.asarray(self._facecolors2d)
def get_edgecolor(self):
# docstring inherited
# self._edgecolors2d is not initialized until do_3d_projection
if not hasattr(self, '_edgecolors2d'):
self.axes.M = self.axes.get_proj()
self.do_3d_projection()
return np.asarray(self._edgecolors2d)
def poly_collection_2d_to_3d(col, zs=0, zdir='z'):
"""
Convert a `.PolyCollection` into a `.Poly3DCollection` object.
Parameters
----------
zs : float or array of floats
The location or locations to place the polygons in the collection along
the *zdir* axis. Default: 0.
zdir : {'x', 'y', 'z'}
The axis in which to place the patches. Default: 'z'.
See `.get_dir_vector` for a description of the values.
"""
segments_3d, codes = _paths_to_3d_segments_with_codes(
col.get_paths(), zs, zdir)
col.__class__ = Poly3DCollection
col.set_verts_and_codes(segments_3d, codes)
col.set_3d_properties()
def juggle_axes(xs, ys, zs, zdir):
"""
Reorder coordinates so that 2D *xs*, *ys* can be plotted in the plane
orthogonal to *zdir*. *zdir* is normally 'x', 'y' or 'z'. However, if
*zdir* starts with a '-' it is interpreted as a compensation for
`rotate_axes`.
"""
if zdir == 'x':
return zs, xs, ys
elif zdir == 'y':
return xs, zs, ys
elif zdir[0] == '-':
return rotate_axes(xs, ys, zs, zdir)
else:
return xs, ys, zs
def rotate_axes(xs, ys, zs, zdir):
"""
Reorder coordinates so that the axes are rotated with *zdir* along
the original z axis. Prepending the axis with a '-' does the
inverse transform, so *zdir* can be 'x', '-x', 'y', '-y', 'z' or '-z'.
"""
if zdir in ('x', '-y'):
return ys, zs, xs
elif zdir in ('-x', 'y'):
return zs, xs, ys
else:
return xs, ys, zs
def _zalpha(colors, zs):
"""Modify the alphas of the color list according to depth."""
# FIXME: This only works well if the points for *zs* are well-spaced
# in all three dimensions. Otherwise, at certain orientations,
# the min and max zs are very close together.
# Should really normalize against the viewing depth.
if len(colors) == 0 or len(zs) == 0:
return np.zeros((0, 4))
norm = Normalize(min(zs), max(zs))
sats = 1 - norm(zs) * 0.7
rgba = np.broadcast_to(mcolors.to_rgba_array(colors), (len(zs), 4))
return np.column_stack([rgba[:, :3], rgba[:, 3] * sats])
def _generate_normals(polygons):
"""
Compute the normals of a list of polygons, one normal per polygon.
Normals point towards the viewer for a face with its vertices in
counterclockwise order, following the right hand rule.
Uses three points equally spaced around the polygon. This method assumes
that the points are in a plane. Otherwise, more than one shade is required,
which is not supported.
Parameters
----------
polygons : list of (M_i, 3) array-like, or (..., M, 3) array-like
A sequence of polygons to compute normals for, which can have
varying numbers of vertices. If the polygons all have the same
number of vertices and array is passed, then the operation will
be vectorized.
Returns
-------
normals : (..., 3) array
A normal vector estimated for the polygon.
"""
if isinstance(polygons, np.ndarray):
# optimization: polygons all have the same number of points, so can
# vectorize
n = polygons.shape[-2]
i1, i2, i3 = 0, n//3, 2*n//3
v1 = polygons[..., i1, :] - polygons[..., i2, :]
v2 = polygons[..., i2, :] - polygons[..., i3, :]
else:
# The subtraction doesn't vectorize because polygons is jagged.
v1 = np.empty((len(polygons), 3))
v2 = np.empty((len(polygons), 3))
for poly_i, ps in enumerate(polygons):
n = len(ps)
i1, i2, i3 = 0, n//3, 2*n//3
v1[poly_i, :] = ps[i1, :] - ps[i2, :]
v2[poly_i, :] = ps[i2, :] - ps[i3, :]
return np.cross(v1, v2)
def _shade_colors(color, normals, lightsource=None):
"""
Shade *color* using normal vectors given by *normals*,
assuming a *lightsource* (using default position if not given).
*color* can also be an array of the same length as *normals*.
"""
if lightsource is None:
# chosen for backwards-compatibility
lightsource = mcolors.LightSource(azdeg=225, altdeg=19.4712)
with np.errstate(invalid="ignore"):
shade = ((normals / np.linalg.norm(normals, axis=1, keepdims=True))
@ lightsource.direction)
mask = ~np.isnan(shade)
if mask.any():
# convert dot product to allowed shading fractions
in_norm = mcolors.Normalize(-1, 1)
out_norm = mcolors.Normalize(0.3, 1).inverse
def norm(x):
return out_norm(in_norm(x))
shade[~mask] = 0
color = mcolors.to_rgba_array(color)
# shape of color should be (M, 4) (where M is number of faces)
# shape of shade should be (M,)
# colors should have final shape of (M, 4)
alpha = color[:, 3]
colors = norm(shade)[:, np.newaxis] * color
colors[:, 3] = alpha
else:
colors = np.asanyarray(color).copy()
return colors
|