aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py3/mpl_toolkits/axisartist/angle_helper.py
blob: 1786cd70bcdb297de6c17374353cc2a49dfd0ae1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import numpy as np
import math

from mpl_toolkits.axisartist.grid_finder import ExtremeFinderSimple


def select_step_degree(dv):

    degree_limits_ = [1.5, 3, 7, 13, 20, 40, 70, 120, 270, 520]
    degree_steps_  = [1,   2, 5, 10, 15, 30, 45,  90, 180, 360]
    degree_factors = [1.] * len(degree_steps_)

    minsec_limits_ = [1.5, 2.5, 3.5, 8, 11, 18, 25, 45]
    minsec_steps_  = [1,   2,   3,   5, 10, 15, 20, 30]

    minute_limits_ = np.array(minsec_limits_) / 60
    minute_factors = [60.] * len(minute_limits_)

    second_limits_ = np.array(minsec_limits_) / 3600
    second_factors = [3600.] * len(second_limits_)

    degree_limits = [*second_limits_, *minute_limits_, *degree_limits_]
    degree_steps = [*minsec_steps_, *minsec_steps_, *degree_steps_]
    degree_factors = [*second_factors, *minute_factors, *degree_factors]

    n = np.searchsorted(degree_limits, dv)
    step = degree_steps[n]
    factor = degree_factors[n]

    return step, factor


def select_step_hour(dv):

    hour_limits_ = [1.5, 2.5, 3.5, 5, 7, 10, 15, 21, 36]
    hour_steps_  = [1,   2,   3,   4, 6,  8, 12, 18, 24]
    hour_factors = [1.] * len(hour_steps_)

    minsec_limits_ = [1.5, 2.5, 3.5, 4.5, 5.5, 8, 11, 14, 18, 25, 45]
    minsec_steps_  = [1,   2,   3,   4,   5,   6, 10, 12, 15, 20, 30]

    minute_limits_ = np.array(minsec_limits_) / 60
    minute_factors = [60.] * len(minute_limits_)

    second_limits_ = np.array(minsec_limits_) / 3600
    second_factors = [3600.] * len(second_limits_)

    hour_limits = [*second_limits_, *minute_limits_, *hour_limits_]
    hour_steps = [*minsec_steps_, *minsec_steps_, *hour_steps_]
    hour_factors = [*second_factors, *minute_factors, *hour_factors]

    n = np.searchsorted(hour_limits, dv)
    step = hour_steps[n]
    factor = hour_factors[n]

    return step, factor


def select_step_sub(dv):

    # subarcsec or degree
    tmp = 10.**(int(math.log10(dv))-1.)

    factor = 1./tmp

    if 1.5*tmp >= dv:
        step = 1
    elif 3.*tmp >= dv:
        step = 2
    elif 7.*tmp >= dv:
        step = 5
    else:
        step = 1
        factor = 0.1*factor

    return step, factor


def select_step(v1, v2, nv, hour=False, include_last=True,
                threshold_factor=3600.):

    if v1 > v2:
        v1, v2 = v2, v1

    dv = (v2 - v1) / nv

    if hour:
        _select_step = select_step_hour
        cycle = 24.
    else:
        _select_step = select_step_degree
        cycle = 360.

    # for degree
    if dv > 1 / threshold_factor:
        step, factor = _select_step(dv)
    else:
        step, factor = select_step_sub(dv*threshold_factor)

        factor = factor * threshold_factor

    levs = np.arange(np.floor(v1 * factor / step),
                     np.ceil(v2 * factor / step) + 0.5,
                     dtype=int) * step

    # n : number of valid levels. If there is a cycle, e.g., [0, 90, 180,
    # 270, 360], the grid line needs to be extended from 0 to 360, so
    # we need to return the whole array. However, the last level (360)
    # needs to be ignored often. In this case, so we return n=4.

    n = len(levs)

    # we need to check the range of values
    # for example, -90 to 90, 0 to 360,

    if factor == 1. and levs[-1] >= levs[0] + cycle:  # check for cycle
        nv = int(cycle / step)
        if include_last:
            levs = levs[0] + np.arange(0, nv+1, 1) * step
        else:
            levs = levs[0] + np.arange(0, nv, 1) * step

        n = len(levs)

    return np.array(levs), n, factor


def select_step24(v1, v2, nv, include_last=True, threshold_factor=3600):
    v1, v2 = v1 / 15, v2 / 15
    levs, n, factor = select_step(v1, v2, nv, hour=True,
                                  include_last=include_last,
                                  threshold_factor=threshold_factor)
    return levs * 15, n, factor


def select_step360(v1, v2, nv, include_last=True, threshold_factor=3600):
    return select_step(v1, v2, nv, hour=False,
                       include_last=include_last,
                       threshold_factor=threshold_factor)


class LocatorBase:
    def __init__(self, nbins, include_last=True):
        self.nbins = nbins
        self._include_last = include_last

    def set_params(self, nbins=None):
        if nbins is not None:
            self.nbins = int(nbins)


class LocatorHMS(LocatorBase):
    def __call__(self, v1, v2):
        return select_step24(v1, v2, self.nbins, self._include_last)


class LocatorHM(LocatorBase):
    def __call__(self, v1, v2):
        return select_step24(v1, v2, self.nbins, self._include_last,
                             threshold_factor=60)


class LocatorH(LocatorBase):
    def __call__(self, v1, v2):
        return select_step24(v1, v2, self.nbins, self._include_last,
                             threshold_factor=1)


class LocatorDMS(LocatorBase):
    def __call__(self, v1, v2):
        return select_step360(v1, v2, self.nbins, self._include_last)


class LocatorDM(LocatorBase):
    def __call__(self, v1, v2):
        return select_step360(v1, v2, self.nbins, self._include_last,
                              threshold_factor=60)


class LocatorD(LocatorBase):
    def __call__(self, v1, v2):
        return select_step360(v1, v2, self.nbins, self._include_last,
                              threshold_factor=1)


class FormatterDMS:
    deg_mark = r"^{\circ}"
    min_mark = r"^{\prime}"
    sec_mark = r"^{\prime\prime}"

    fmt_d = "$%d" + deg_mark + "$"
    fmt_ds = r"$%d.%s" + deg_mark + "$"

    # %s for sign
    fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark + "$"
    fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark + "$"

    fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
    fmt_s_partial = "%02d" + sec_mark + "$"
    fmt_ss_partial = "%02d.%s" + sec_mark + "$"

    def _get_number_fraction(self, factor):
        ## check for fractional numbers
        number_fraction = None
        # check for 60

        for threshold in [1, 60, 3600]:
            if factor <= threshold:
                break

            d = factor // threshold
            int_log_d = int(np.floor(np.log10(d)))
            if 10**int_log_d == d and d != 1:
                number_fraction = int_log_d
                factor = factor // 10**int_log_d
                return factor, number_fraction

        return factor, number_fraction

    def __call__(self, direction, factor, values):
        if len(values) == 0:
            return []

        ss = np.sign(values)
        signs = ["-" if v < 0 else "" for v in values]

        factor, number_fraction = self._get_number_fraction(factor)

        values = np.abs(values)

        if number_fraction is not None:
            values, frac_part = divmod(values, 10 ** number_fraction)
            frac_fmt = "%%0%dd" % (number_fraction,)
            frac_str = [frac_fmt % (f1,) for f1 in frac_part]

        if factor == 1:
            if number_fraction is None:
                return [self.fmt_d % (s * int(v),) for s, v in zip(ss, values)]
            else:
                return [self.fmt_ds % (s * int(v), f1)
                        for s, v, f1 in zip(ss, values, frac_str)]
        elif factor == 60:
            deg_part, min_part = divmod(values, 60)
            if number_fraction is None:
                return [self.fmt_d_m % (s1, d1, m1)
                        for s1, d1, m1 in zip(signs, deg_part, min_part)]
            else:
                return [self.fmt_d_ms % (s, d1, m1, f1)
                        for s, d1, m1, f1
                        in zip(signs, deg_part, min_part, frac_str)]

        elif factor == 3600:
            if ss[-1] == -1:
                inverse_order = True
                values = values[::-1]
                signs = signs[::-1]
            else:
                inverse_order = False

            l_hm_old = ""
            r = []

            deg_part, min_part_ = divmod(values, 3600)
            min_part, sec_part = divmod(min_part_, 60)

            if number_fraction is None:
                sec_str = [self.fmt_s_partial % (s1,) for s1 in sec_part]
            else:
                sec_str = [self.fmt_ss_partial % (s1, f1)
                           for s1, f1 in zip(sec_part, frac_str)]

            for s, d1, m1, s1 in zip(signs, deg_part, min_part, sec_str):
                l_hm = self.fmt_d_m_partial % (s, d1, m1)
                if l_hm != l_hm_old:
                    l_hm_old = l_hm
                    l = l_hm + s1
                else:
                    l = "$" + s + s1
                r.append(l)

            if inverse_order:
                return r[::-1]
            else:
                return r

        else:  # factor > 3600.
            return [r"$%s^{\circ}$" % v for v in ss*values]


class FormatterHMS(FormatterDMS):
    deg_mark = r"^\mathrm{h}"
    min_mark = r"^\mathrm{m}"
    sec_mark = r"^\mathrm{s}"

    fmt_d = "$%d" + deg_mark + "$"
    fmt_ds = r"$%d.%s" + deg_mark + "$"

    # %s for sign
    fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark+"$"
    fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark+"$"

    fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
    fmt_s_partial = "%02d" + sec_mark + "$"
    fmt_ss_partial = "%02d.%s" + sec_mark + "$"

    def __call__(self, direction, factor, values):  # hour
        return super().__call__(direction, factor, np.asarray(values) / 15)


class ExtremeFinderCycle(ExtremeFinderSimple):
    # docstring inherited

    def __init__(self, nx, ny,
                 lon_cycle=360., lat_cycle=None,
                 lon_minmax=None, lat_minmax=(-90, 90)):
        """
        This subclass handles the case where one or both coordinates should be
        taken modulo 360, or be restricted to not exceed a specific range.

        Parameters
        ----------
        nx, ny : int
            The number of samples in each direction.

        lon_cycle, lat_cycle : 360 or None
            If not None, values in the corresponding direction are taken modulo
            *lon_cycle* or *lat_cycle*; in theory this can be any number but
            the implementation actually assumes that it is 360 (if not None);
            other values give nonsensical results.

            This is done by "unwrapping" the transformed grid coordinates so
            that jumps are less than a half-cycle; then normalizing the span to
            no more than a full cycle.

            For example, if values are in the union of the [0, 2] and
            [358, 360] intervals (typically, angles measured modulo 360), the
            values in the second interval are normalized to [-2, 0] instead so
            that the values now cover [-2, 2].  If values are in a range of
            [5, 1000], this gets normalized to [5, 365].

        lon_minmax, lat_minmax : (float, float) or None
            If not None, the computed bounding box is clipped to the given
            range in the corresponding direction.
        """
        self.nx, self.ny = nx, ny
        self.lon_cycle, self.lat_cycle = lon_cycle, lat_cycle
        self.lon_minmax = lon_minmax
        self.lat_minmax = lat_minmax

    def __call__(self, transform_xy, x1, y1, x2, y2):
        # docstring inherited
        x, y = np.meshgrid(
            np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny))
        lon, lat = transform_xy(np.ravel(x), np.ravel(y))

        # iron out jumps, but algorithm should be improved.
        # This is just naive way of doing and my fail for some cases.
        # Consider replacing this with numpy.unwrap
        # We are ignoring invalid warnings. They are triggered when
        # comparing arrays with NaNs using > We are already handling
        # that correctly using np.nanmin and np.nanmax
        with np.errstate(invalid='ignore'):
            if self.lon_cycle is not None:
                lon0 = np.nanmin(lon)
                lon -= 360. * ((lon - lon0) > 180.)
            if self.lat_cycle is not None:
                lat0 = np.nanmin(lat)
                lat -= 360. * ((lat - lat0) > 180.)

        lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
        lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)

        lon_min, lon_max, lat_min, lat_max = \
            self._add_pad(lon_min, lon_max, lat_min, lat_max)

        # check cycle
        if self.lon_cycle:
            lon_max = min(lon_max, lon_min + self.lon_cycle)
        if self.lat_cycle:
            lat_max = min(lat_max, lat_min + self.lat_cycle)

        if self.lon_minmax is not None:
            min0 = self.lon_minmax[0]
            lon_min = max(min0, lon_min)
            max0 = self.lon_minmax[1]
            lon_max = min(max0, lon_max)

        if self.lat_minmax is not None:
            min0 = self.lat_minmax[0]
            lat_min = max(min0, lat_min)
            max0 = self.lat_minmax[1]
            lat_max = min(max0, lat_max)

        return lon_min, lon_max, lat_min, lat_max