aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py3/matplotlib/stackplot.py
blob: 2629593683e56b288f4b77625690f70f3a163eff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Stacked area plot for 1D arrays inspired by Douglas Y'barbo's stackoverflow
answer:
https://stackoverflow.com/q/2225995/

(https://stackoverflow.com/users/66549/doug)
"""

import itertools

import numpy as np

from matplotlib import _api

__all__ = ['stackplot']


def stackplot(axes, x, *args,
              labels=(), colors=None, baseline='zero',
              **kwargs):
    """
    Draw a stacked area plot.

    Parameters
    ----------
    x : (N,) array-like

    y : (M, N) array-like
        The data is assumed to be unstacked. Each of the following
        calls is legal::

            stackplot(x, y)           # where y has shape (M, N)
            stackplot(x, y1, y2, y3)  # where y1, y2, y3, y4 have length N

    baseline : {'zero', 'sym', 'wiggle', 'weighted_wiggle'}
        Method used to calculate the baseline:

        - ``'zero'``: Constant zero baseline, i.e. a simple stacked plot.
        - ``'sym'``:  Symmetric around zero and is sometimes called
          'ThemeRiver'.
        - ``'wiggle'``: Minimizes the sum of the squared slopes.
        - ``'weighted_wiggle'``: Does the same but weights to account for
          size of each layer. It is also called 'Streamgraph'-layout. More
          details can be found at http://leebyron.com/streamgraph/.

    labels : list of str, optional
        A sequence of labels to assign to each data series. If unspecified,
        then no labels will be applied to artists.

    colors : list of color, optional
        A sequence of colors to be cycled through and used to color the stacked
        areas. The sequence need not be exactly the same length as the number
        of provided *y*, in which case the colors will repeat from the
        beginning.

        If not specified, the colors from the Axes property cycle will be used.

    data : indexable object, optional
        DATA_PARAMETER_PLACEHOLDER

    **kwargs
        All other keyword arguments are passed to `.Axes.fill_between`.

    Returns
    -------
    list of `.PolyCollection`
        A list of `.PolyCollection` instances, one for each element in the
        stacked area plot.
    """

    y = np.vstack(args)

    labels = iter(labels)
    if colors is not None:
        colors = itertools.cycle(colors)
    else:
        colors = (axes._get_lines.get_next_color() for _ in y)

    # Assume data passed has not been 'stacked', so stack it here.
    # We'll need a float buffer for the upcoming calculations.
    stack = np.cumsum(y, axis=0, dtype=np.promote_types(y.dtype, np.float32))

    _api.check_in_list(['zero', 'sym', 'wiggle', 'weighted_wiggle'],
                       baseline=baseline)
    if baseline == 'zero':
        first_line = 0.

    elif baseline == 'sym':
        first_line = -np.sum(y, 0) * 0.5
        stack += first_line[None, :]

    elif baseline == 'wiggle':
        m = y.shape[0]
        first_line = (y * (m - 0.5 - np.arange(m)[:, None])).sum(0)
        first_line /= -m
        stack += first_line

    elif baseline == 'weighted_wiggle':
        total = np.sum(y, 0)
        # multiply by 1/total (or zero) to avoid infinities in the division:
        inv_total = np.zeros_like(total)
        mask = total > 0
        inv_total[mask] = 1.0 / total[mask]
        increase = np.hstack((y[:, 0:1], np.diff(y)))
        below_size = total - stack
        below_size += 0.5 * y
        move_up = below_size * inv_total
        move_up[:, 0] = 0.5
        center = (move_up - 0.5) * increase
        center = np.cumsum(center.sum(0))
        first_line = center - 0.5 * total
        stack += first_line

    # Color between x = 0 and the first array.
    coll = axes.fill_between(x, first_line, stack[0, :],
                             facecolor=next(colors), label=next(labels, None),
                             **kwargs)
    coll.sticky_edges.y[:] = [0]
    r = [coll]

    # Color between array i-1 and array i
    for i in range(len(y) - 1):
        r.append(axes.fill_between(x, stack[i, :], stack[i + 1, :],
                                   facecolor=next(colors),
                                   label=next(labels, None),
                                   **kwargs))
    return r