aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py3/extern/agg24-svn/src/ctrl/agg_polygon_ctrl.cpp
blob: 40daee45e832681f399a292d12b5b68c10a841e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software 
// is granted provided this copyright notice appears in all copies. 
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes polygon_ctrl_impl
//
//----------------------------------------------------------------------------

#include "ctrl/agg_polygon_ctrl.h"

namespace agg
{

    polygon_ctrl_impl::polygon_ctrl_impl(unsigned np, double point_radius) :
        ctrl(0, 0, 1, 1, false),
        m_polygon(np * 2),
        m_num_points(np),
        m_node(-1),
        m_edge(-1),
        m_vs(&m_polygon[0], m_num_points, false),
        m_stroke(m_vs),
        m_point_radius(point_radius),
        m_status(0),
        m_dx(0.0),
        m_dy(0.0),
        m_in_polygon_check(true)
    {
        m_stroke.width(1.0);
    }


    void polygon_ctrl_impl::rewind(unsigned)
    {
        m_status = 0;
        m_stroke.rewind(0);
    }

    unsigned polygon_ctrl_impl::vertex(double* x, double* y)
    {
        unsigned cmd = path_cmd_stop;
        double r = m_point_radius;
        if(m_status == 0)
        {
            cmd = m_stroke.vertex(x, y);
            if(!is_stop(cmd)) 
            {
                transform_xy(x, y);
                return cmd;
            }
            if(m_node >= 0 && m_node == int(m_status)) r *= 1.2;
            m_ellipse.init(xn(m_status), yn(m_status), r, r, 32);
            ++m_status;
        }
        cmd = m_ellipse.vertex(x, y);
        if(!is_stop(cmd)) 
        {
            transform_xy(x, y);
            return cmd;
        }
        if(m_status >= m_num_points) return path_cmd_stop;
        if(m_node >= 0 && m_node == int(m_status)) r *= 1.2;
        m_ellipse.init(xn(m_status), yn(m_status), r, r, 32);
        ++m_status;
        cmd = m_ellipse.vertex(x, y);
        if(!is_stop(cmd)) 
        {
            transform_xy(x, y);
        }
        return cmd;
    }


    bool polygon_ctrl_impl::check_edge(unsigned i, double x, double y) const
    {
       bool ret = false;

       unsigned n1 = i;
       unsigned n2 = (i + m_num_points - 1) % m_num_points;
       double x1 = xn(n1);
       double y1 = yn(n1);
       double x2 = xn(n2);
       double y2 = yn(n2);

       double dx = x2 - x1;
       double dy = y2 - y1;

       if(sqrt(dx*dx + dy*dy) > 0.0000001)
       {
          double x3 = x;
          double y3 = y;
          double x4 = x3 - dy;
          double y4 = y3 + dx;

          double den = (y4-y3) * (x2-x1) - (x4-x3) * (y2-y1);
          double u1 = ((x4-x3) * (y1-y3) - (y4-y3) * (x1-x3)) / den;

          double xi = x1 + u1 * (x2 - x1);
          double yi = y1 + u1 * (y2 - y1);

          dx = xi - x;
          dy = yi - y;

          if (u1 > 0.0 && u1 < 1.0 && sqrt(dx*dx + dy*dy) <= m_point_radius)
          {
             ret = true;
          }
       }
       return ret;
    }



    bool polygon_ctrl_impl::in_rect(double x, double y) const
    {
        return false;
    }


    bool polygon_ctrl_impl::on_mouse_button_down(double x, double y)
    {
        unsigned i;
        bool ret = false;
        m_node = -1;
        m_edge = -1;
        inverse_transform_xy(&x, &y);
        for (i = 0; i < m_num_points; i++)
        {
            if(sqrt( (x-xn(i)) * (x-xn(i)) + (y-yn(i)) * (y-yn(i)) ) < m_point_radius)
            {
                m_dx = x - xn(i);
                m_dy = y - yn(i);
                m_node = int(i);
                ret = true;
                break;
            }
        }

        if(!ret)
        {
            for (i = 0; i < m_num_points; i++)
            {
                if(check_edge(i, x, y))
                {
                    m_dx = x;
                    m_dy = y;
                    m_edge = int(i);
                    ret = true;
                    break;
                }
            }
        }

        if(!ret)
        {
            if(point_in_polygon(x, y))
            {
                m_dx = x;
                m_dy = y;
                m_node = int(m_num_points);
                ret = true;
            }
        }
        return ret;
    }


    bool polygon_ctrl_impl::on_mouse_move(double x, double y, bool button_flag)
    {
        bool ret = false;
        double dx;
        double dy;
        inverse_transform_xy(&x, &y);
        if(m_node == int(m_num_points))
        {
            dx = x - m_dx;
            dy = y - m_dy;
            unsigned i;
            for(i = 0; i < m_num_points; i++)
            {
                xn(i) += dx;
                yn(i) += dy;
            }
            m_dx = x;
            m_dy = y;
            ret = true;
        }
        else
        {
            if(m_edge >= 0)
            {
                unsigned n1 = m_edge;
                unsigned n2 = (n1 + m_num_points - 1) % m_num_points;
                dx = x - m_dx;
                dy = y - m_dy;
                xn(n1) += dx;
                yn(n1) += dy;
                xn(n2) += dx;
                yn(n2) += dy;
                m_dx = x;
                m_dy = y;
                ret = true;
            }
            else
            {
                if(m_node >= 0)
                {
                    xn(m_node) = x - m_dx;
                    yn(m_node) = y - m_dy;
                    ret = true;
                }
            }
        }
        return ret;
    }

    bool polygon_ctrl_impl::on_mouse_button_up(double x, double y)
    {
        bool ret = (m_node >= 0) || (m_edge >= 0);
        m_node = -1;
        m_edge = -1;
        return ret;
    }


    bool polygon_ctrl_impl::on_arrow_keys(bool left, bool right, bool down, bool up)
    {
        return false;
    }


    //======= Crossings Multiply algorithm of InsideTest ======================== 
    //
    // By Eric Haines, 3D/Eye Inc, erich@eye.com
    //
    // This version is usually somewhat faster than the original published in
    // Graphics Gems IV; by turning the division for testing the X axis crossing
    // into a tricky multiplication test this part of the test became faster,
    // which had the additional effect of making the test for "both to left or
    // both to right" a bit slower for triangles than simply computing the
    // intersection each time.  The main increase is in triangle testing speed,
    // which was about 15% faster; all other polygon complexities were pretty much
    // the same as before.  On machines where division is very expensive (not the
    // case on the HP 9000 series on which I tested) this test should be much
    // faster overall than the old code.  Your mileage may (in fact, will) vary,
    // depending on the machine and the test data, but in general I believe this
    // code is both shorter and faster.  This test was inspired by unpublished
    // Graphics Gems submitted by Joseph Samosky and Mark Haigh-Hutchinson.
    // Related work by Samosky is in:
    //
    // Samosky, Joseph, "SectionView: A system for interactively specifying and
    // visualizing sections through three-dimensional medical image data",
    // M.S. Thesis, Department of Electrical Engineering and Computer Science,
    // Massachusetts Institute of Technology, 1993.
    //
    // Shoot a test ray along +X axis.  The strategy is to compare vertex Y values
    // to the testing point's Y and quickly discard edges which are entirely to one
    // side of the test ray.  Note that CONVEX and WINDING code can be added as
    // for the CrossingsTest() code; it is left out here for clarity.
    //
    // Input 2D polygon _pgon_ with _numverts_ number of vertices and test point
    // _point_, returns 1 if inside, 0 if outside.
    bool polygon_ctrl_impl::point_in_polygon(double tx, double ty) const
    {
        if(m_num_points < 3) return false;
        if(!m_in_polygon_check) return false;

        unsigned j;
        int yflag0, yflag1, inside_flag;
        double  vtx0, vty0, vtx1, vty1;

        vtx0 = xn(m_num_points - 1);
        vty0 = yn(m_num_points - 1);

        // get test bit for above/below X axis
        yflag0 = (vty0 >= ty);

        vtx1 = xn(0);
        vty1 = yn(0);

        inside_flag = 0;
        for (j = 1; j <= m_num_points; ++j) 
        {
            yflag1 = (vty1 >= ty);
            // Check if endpoints straddle (are on opposite sides) of X axis
            // (i.e. the Y's differ); if so, +X ray could intersect this edge.
            // The old test also checked whether the endpoints are both to the
            // right or to the left of the test point.  However, given the faster
            // intersection point computation used below, this test was found to
            // be a break-even proposition for most polygons and a loser for
            // triangles (where 50% or more of the edges which survive this test
            // will cross quadrants and so have to have the X intersection computed
            // anyway).  I credit Joseph Samosky with inspiring me to try dropping
            // the "both left or both right" part of my code.
            if (yflag0 != yflag1) 
            {
                // Check intersection of pgon segment with +X ray.
                // Note if >= point's X; if so, the ray hits it.
                // The division operation is avoided for the ">=" test by checking
                // the sign of the first vertex wrto the test point; idea inspired
                // by Joseph Samosky's and Mark Haigh-Hutchinson's different
                // polygon inclusion tests.
                if ( ((vty1-ty) * (vtx0-vtx1) >=
                      (vtx1-tx) * (vty0-vty1)) == yflag1 ) 
                {
                    inside_flag ^= 1;
                }
            }

            // Move to the next pair of vertices, retaining info as possible.
            yflag0 = yflag1;
            vtx0 = vtx1;
            vty0 = vty1;

            unsigned k = (j >= m_num_points) ? j - m_num_points : j;
            vtx1 = xn(k);
            vty1 = yn(k);
        }
        return inside_flag != 0;
    }
}