1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/* -*- mode: c++; c-basic-offset: 4 -*- */
/* image.h
*
*/
#ifndef _IMAGE_H
#define _IMAGE_H
#include <vector>
// utilities for irregular grids
void _bin_indices_middle(
unsigned int *irows, int nrows, const float *ys1, unsigned long ny, float dy, float y_min);
void _bin_indices_middle_linear(float *arows,
unsigned int *irows,
int nrows,
const float *y,
unsigned long ny,
float dy,
float y_min);
void _bin_indices(int *irows, int nrows, const double *y, unsigned long ny, double sc, double offs);
void _bin_indices_linear(
float *arows, int *irows, int nrows, double *y, unsigned long ny, double sc, double offs);
template <class CoordinateArray, class ColorArray, class OutputArray>
void pcolor(CoordinateArray &x,
CoordinateArray &y,
ColorArray &d,
unsigned int rows,
unsigned int cols,
float bounds[4],
int interpolation,
OutputArray &out)
{
if (rows >= 32768 || cols >= 32768) {
throw std::runtime_error("rows and cols must both be less than 32768");
}
float x_min = bounds[0];
float x_max = bounds[1];
float y_min = bounds[2];
float y_max = bounds[3];
float width = x_max - x_min;
float height = y_max - y_min;
float dx = width / ((float)cols);
float dy = height / ((float)rows);
// Check we have something to output to
if (rows == 0 || cols == 0) {
throw std::runtime_error("Cannot scale to zero size");
}
if (d.dim(2) != 4) {
throw std::runtime_error("data must be in RGBA format");
}
// Check dimensions match
unsigned long nx = x.dim(0);
unsigned long ny = y.dim(0);
if (nx != (unsigned long)d.dim(1) || ny != (unsigned long)d.dim(0)) {
throw std::runtime_error("data and axis dimensions do not match");
}
// Allocate memory for pointer arrays
std::vector<unsigned int> rowstarts(rows);
std::vector<unsigned int> colstarts(cols);
// Calculate the pointer arrays to map input x to output x
unsigned int i, j;
unsigned int *colstart = &colstarts[0];
unsigned int *rowstart = &rowstarts[0];
const float *xs1 = x.data();
const float *ys1 = y.data();
// Copy data to output buffer
const unsigned char *start;
const unsigned char *inposition;
size_t inrowsize = nx * 4;
size_t rowsize = cols * 4;
unsigned char *position = (unsigned char *)out.data();
unsigned char *oldposition = NULL;
start = d.data();
if (interpolation == NEAREST) {
_bin_indices_middle(colstart, cols, xs1, nx, dx, x_min);
_bin_indices_middle(rowstart, rows, ys1, ny, dy, y_min);
for (i = 0; i < rows; i++, rowstart++) {
if (i > 0 && *rowstart == 0) {
memcpy(position, oldposition, rowsize * sizeof(unsigned char));
oldposition = position;
position += rowsize;
} else {
oldposition = position;
start += *rowstart * inrowsize;
inposition = start;
for (j = 0, colstart = &colstarts[0]; j < cols; j++, position += 4, colstart++) {
inposition += *colstart * 4;
memcpy(position, inposition, 4 * sizeof(unsigned char));
}
}
}
} else if (interpolation == BILINEAR) {
std::vector<float> acols(cols);
std::vector<float> arows(rows);
_bin_indices_middle_linear(&acols[0], colstart, cols, xs1, nx, dx, x_min);
_bin_indices_middle_linear(&arows[0], rowstart, rows, ys1, ny, dy, y_min);
double a00, a01, a10, a11, alpha, beta;
// Copy data to output buffer
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
alpha = arows[i];
beta = acols[j];
a00 = alpha * beta;
a01 = alpha * (1.0 - beta);
a10 = (1.0 - alpha) * beta;
a11 = 1.0 - a00 - a01 - a10;
for (size_t k = 0; k < 4; ++k) {
position[k] =
d(rowstart[i], colstart[j], k) * a00 +
d(rowstart[i], colstart[j] + 1, k) * a01 +
d(rowstart[i] + 1, colstart[j], k) * a10 +
d(rowstart[i] + 1, colstart[j] + 1, k) * a11;
}
position += 4;
}
}
}
}
template <class CoordinateArray, class ColorArray, class Color, class OutputArray>
void pcolor2(CoordinateArray &x,
CoordinateArray &y,
ColorArray &d,
unsigned int rows,
unsigned int cols,
float bounds[4],
Color &bg,
OutputArray &out)
{
double x_left = bounds[0];
double x_right = bounds[1];
double y_bot = bounds[2];
double y_top = bounds[3];
// Check we have something to output to
if (rows == 0 || cols == 0) {
throw std::runtime_error("rows or cols is zero; there are no pixels");
}
if (d.dim(2) != 4) {
throw std::runtime_error("data must be in RGBA format");
}
// Check dimensions match
unsigned long nx = x.dim(0);
unsigned long ny = y.dim(0);
if (nx != (unsigned long)d.dim(1) + 1 || ny != (unsigned long)d.dim(0) + 1) {
throw std::runtime_error("data and axis bin boundary dimensions are incompatible");
}
if (bg.dim(0) != 4) {
throw std::runtime_error("bg must be in RGBA format");
}
std::vector<int> irows(rows);
std::vector<int> jcols(cols);
// Calculate the pointer arrays to map input x to output x
size_t i, j;
const double *x0 = x.data();
const double *y0 = y.data();
double sx = cols / (x_right - x_left);
double sy = rows / (y_top - y_bot);
_bin_indices(&jcols[0], cols, x0, nx, sx, x_left);
_bin_indices(&irows[0], rows, y0, ny, sy, y_bot);
// Copy data to output buffer
unsigned char *position = (unsigned char *)out.data();
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
if (irows[i] == -1 || jcols[j] == -1) {
memcpy(position, (const unsigned char *)bg.data(), 4 * sizeof(unsigned char));
} else {
for (size_t k = 0; k < 4; ++k) {
position[k] = d(irows[i], jcols[j], k);
}
}
position += 4;
}
}
}
#endif
|