1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
# 3dproj.py
#
"""
Various transforms used for by the 3D code
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import zip
import numpy as np
import numpy.linalg as linalg
def line2d(p0, p1):
"""
Return 2D equation of line in the form ax+by+c = 0
"""
# x + x1 = 0
x0, y0 = p0[:2]
x1, y1 = p1[:2]
#
if x0 == x1:
a = -1
b = 0
c = x1
elif y0 == y1:
a = 0
b = 1
c = -y1
else:
a = (y0-y1)
b = (x0-x1)
c = (x0*y1 - x1*y0)
return a, b, c
def line2d_dist(l, p):
"""
Distance from line to point
line is a tuple of coefficients a,b,c
"""
a, b, c = l
x0, y0 = p
return abs((a*x0 + b*y0 + c)/np.sqrt(a**2+b**2))
def line2d_seg_dist(p1, p2, p0):
"""distance(s) from line defined by p1 - p2 to point(s) p0
p0[0] = x(s)
p0[1] = y(s)
intersection point p = p1 + u*(p2-p1)
and intersection point lies within segment if u is between 0 and 1
"""
x21 = p2[0] - p1[0]
y21 = p2[1] - p1[1]
x01 = np.asarray(p0[0]) - p1[0]
y01 = np.asarray(p0[1]) - p1[1]
u = (x01*x21 + y01*y21) / (x21**2 + y21**2)
u = np.clip(u, 0, 1)
d = np.sqrt((x01 - u*x21)**2 + (y01 - u*y21)**2)
return d
def mod(v):
"""3d vector length"""
return np.sqrt(v[0]**2+v[1]**2+v[2]**2)
def world_transformation(xmin, xmax,
ymin, ymax,
zmin, zmax):
dx, dy, dz = (xmax-xmin), (ymax-ymin), (zmax-zmin)
return np.array([
[1.0/dx,0,0,-xmin/dx],
[0,1.0/dy,0,-ymin/dy],
[0,0,1.0/dz,-zmin/dz],
[0,0,0,1.0]])
def view_transformation(E, R, V):
n = (E - R)
## new
# n /= mod(n)
# u = np.cross(V,n)
# u /= mod(u)
# v = np.cross(n,u)
# Mr = np.diag([1.]*4)
# Mt = np.diag([1.]*4)
# Mr[:3,:3] = u,v,n
# Mt[:3,-1] = -E
## end new
## old
n = n / mod(n)
u = np.cross(V, n)
u = u / mod(u)
v = np.cross(n, u)
Mr = [[u[0],u[1],u[2],0],
[v[0],v[1],v[2],0],
[n[0],n[1],n[2],0],
[0, 0, 0, 1],
]
#
Mt = [[1, 0, 0, -E[0]],
[0, 1, 0, -E[1]],
[0, 0, 1, -E[2]],
[0, 0, 0, 1]]
## end old
return np.dot(Mr, Mt)
def persp_transformation(zfront, zback):
a = (zfront+zback)/(zfront-zback)
b = -2*(zfront*zback)/(zfront-zback)
return np.array([[1,0,0,0],
[0,1,0,0],
[0,0,a,b],
[0,0,-1,0]
])
def ortho_transformation(zfront, zback):
# note: w component in the resulting vector will be (zback-zfront), not 1
a = -(zfront + zback)
b = -(zfront - zback)
return np.array([[2,0,0,0],
[0,2,0,0],
[0,0,-2,0],
[0,0,a,b]
])
def proj_transform_vec(vec, M):
vecw = np.dot(M, vec)
w = vecw[3]
# clip here..
txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
return txs, tys, tzs
def proj_transform_vec_clip(vec, M):
vecw = np.dot(M, vec)
w = vecw[3]
# clip here.
txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1)
if np.any(tis):
tis = vecw[1] < 1
return txs, tys, tzs, tis
def inv_transform(xs, ys, zs, M):
iM = linalg.inv(M)
vec = vec_pad_ones(xs, ys, zs)
vecr = np.dot(iM, vec)
try:
vecr = vecr/vecr[3]
except OverflowError:
pass
return vecr[0], vecr[1], vecr[2]
def vec_pad_ones(xs, ys, zs):
return np.array([xs, ys, zs, np.ones_like(xs)])
def proj_transform(xs, ys, zs, M):
"""
Transform the points by the projection matrix
"""
vec = vec_pad_ones(xs, ys, zs)
return proj_transform_vec(vec, M)
def proj_transform_clip(xs, ys, zs, M):
"""
Transform the points by the projection matrix
and return the clipping result
returns txs,tys,tzs,tis
"""
vec = vec_pad_ones(xs, ys, zs)
return proj_transform_vec_clip(vec, M)
transform = proj_transform
def proj_points(points, M):
return np.column_stack(proj_trans_points(points, M))
def proj_trans_points(points, M):
xs, ys, zs = zip(*points)
return proj_transform(xs, ys, zs, M)
def proj_trans_clip_points(points, M):
xs, ys, zs = zip(*points)
return proj_transform_clip(xs, ys, zs, M)
def rot_x(V, alpha):
cosa, sina = np.cos(alpha), np.sin(alpha)
M1 = np.array([[1,0,0,0],
[0,cosa,-sina,0],
[0,sina,cosa,0],
[0,0,0,1]])
return np.dot(M1, V)
|