1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
"""
An experimental support for curvilinear grid.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import zip
from itertools import chain
from .grid_finder import GridFinder
from .axislines import AxisArtistHelper, GridHelperBase
from .axis_artist import AxisArtist
from matplotlib.transforms import Affine2D, IdentityTransform
import numpy as np
from matplotlib.path import Path
class FixedAxisArtistHelper(AxisArtistHelper.Fixed):
"""
Helper class for a fixed axis.
"""
def __init__(self, grid_helper, side, nth_coord_ticks=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
super(FixedAxisArtistHelper, self).__init__(loc=side)
self.grid_helper = grid_helper
if nth_coord_ticks is None:
nth_coord_ticks = self.nth_coord
self.nth_coord_ticks = nth_coord_ticks
self.side = side
self._limits_inverted = False
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
if self.nth_coord == 0:
xy1, xy2 = axes.get_ylim()
else:
xy1, xy2 = axes.get_xlim()
if xy1 > xy2:
self._limits_inverted = True
else:
self._limits_inverted = False
def change_tick_coord(self, coord_number=None):
if coord_number is None:
self.nth_coord_ticks = 1 - self.nth_coord_ticks
elif coord_number in [0, 1]:
self.nth_coord_ticks = coord_number
else:
raise Exception("wrong coord number")
def get_tick_transform(self, axes):
return axes.transData
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label"""
g = self.grid_helper
if self._limits_inverted:
side = {"left":"right","right":"left",
"top":"bottom", "bottom":"top"}[self.side]
else:
side = self.side
ti1 = g.get_tick_iterator(self.nth_coord_ticks, side)
ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, side, minor=True)
#ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True)
return chain(ti1, ti2), iter([])
class FloatingAxisArtistHelper(AxisArtistHelper.Floating):
def __init__(self, grid_helper, nth_coord, value, axis_direction=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
super(FloatingAxisArtistHelper, self).__init__(nth_coord,
value,
)
self.value = value
self.grid_helper = grid_helper
self._extremes = None, None
self._get_line_path = None # a method that returns a Path.
self._line_num_points = 100 # number of points to create a line
def set_extremes(self, e1, e2):
self._extremes = e1, e2
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
x1, x2 = axes.get_xlim()
y1, y2 = axes.get_ylim()
grid_finder = self.grid_helper.grid_finder
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
x1, y1, x2, y2)
extremes = list(extremes)
e1, e2 = self._extremes # ranges of other coordinates
if self.nth_coord == 0:
if e1 is not None:
extremes[2] = max(e1, extremes[2])
if e2 is not None:
extremes[3] = min(e2, extremes[3])
elif self.nth_coord == 1:
if e1 is not None:
extremes[0] = max(e1, extremes[0])
if e2 is not None:
extremes[1] = min(e2, extremes[1])
grid_info = dict()
lon_min, lon_max, lat_min, lat_max = extremes
lon_levs, lon_n, lon_factor = \
grid_finder.grid_locator1(lon_min, lon_max)
lat_levs, lat_n, lat_factor = \
grid_finder.grid_locator2(lat_min, lat_max)
grid_info["extremes"] = extremes
grid_info["lon_info"] = lon_levs, lon_n, lon_factor
grid_info["lat_info"] = lat_levs, lat_n, lat_factor
grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom",
lon_factor,
lon_levs)
grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom",
lat_factor,
lat_levs)
grid_finder = self.grid_helper.grid_finder
#e1, e2 = self._extremes # ranges of other coordinates
if self.nth_coord == 0:
xx0 = np.linspace(self.value, self.value, self._line_num_points)
yy0 = np.linspace(extremes[2], extremes[3], self._line_num_points)
xx, yy = grid_finder.transform_xy(xx0, yy0)
elif self.nth_coord == 1:
xx0 = np.linspace(extremes[0], extremes[1], self._line_num_points)
yy0 = np.linspace(self.value, self.value, self._line_num_points)
xx, yy = grid_finder.transform_xy(xx0, yy0)
grid_info["line_xy"] = xx, yy
self.grid_info = grid_info
def get_axislabel_transform(self, axes):
return Affine2D() #axes.transData
def get_axislabel_pos_angle(self, axes):
extremes = self.grid_info["extremes"]
if self.nth_coord == 0:
xx0 = self.value
yy0 = (extremes[2]+extremes[3])/2.
dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000.
elif self.nth_coord == 1:
xx0 = (extremes[0]+extremes[1])/2.
yy0 = self.value
dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0.
grid_finder = self.grid_helper.grid_finder
xx1, yy1 = grid_finder.transform_xy([xx0], [yy0])
trans_passingthrough_point = axes.transData + axes.transAxes.inverted()
p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]])
if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.):
xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]])
xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy])
xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]])
return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180.
else:
return None, None
def get_tick_transform(self, axes):
return IdentityTransform() #axes.transData
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
grid_finder = self.grid_helper.grid_finder
lat_levs, lat_n, lat_factor = self.grid_info["lat_info"]
lat_levs = np.asarray(lat_levs)
if lat_factor is not None:
yy0 = lat_levs / lat_factor
dy = 0.01 / lat_factor
else:
yy0 = lat_levs
dy = 0.01
lon_levs, lon_n, lon_factor = self.grid_info["lon_info"]
lon_levs = np.asarray(lon_levs)
if lon_factor is not None:
xx0 = lon_levs / lon_factor
dx = 0.01 / lon_factor
else:
xx0 = lon_levs
dx = 0.01
if None in self._extremes:
e0, e1 = self._extremes
else:
e0, e1 = sorted(self._extremes)
if e0 is None:
e0 = -np.inf
if e1 is None:
e1 = np.inf
if self.nth_coord == 0:
mask = (e0 <= yy0) & (yy0 <= e1)
#xx0, yy0 = xx0[mask], yy0[mask]
yy0 = yy0[mask]
elif self.nth_coord == 1:
mask = (e0 <= xx0) & (xx0 <= e1)
#xx0, yy0 = xx0[mask], yy0[mask]
xx0 = xx0[mask]
def transform_xy(x, y):
x1, y1 = grid_finder.transform_xy(x, y)
x2y2 = axes.transData.transform(np.array([x1, y1]).transpose())
x2, y2 = x2y2.transpose()
return x2, y2
# find angles
if self.nth_coord == 0:
xx0 = np.empty_like(yy0)
xx0.fill(self.value)
xx1, yy1 = transform_xy(xx0, yy0)
xx00 = xx0.copy()
xx00[xx0+dx>e1] -= dx
xx1a, yy1a = transform_xy(xx00, yy0)
xx1b, yy1b = transform_xy(xx00+dx, yy0)
xx2a, yy2a = transform_xy(xx0, yy0)
xx2b, yy2b = transform_xy(xx0, yy0+dy)
labels = self.grid_info["lat_labels"]
labels = [l for l, m in zip(labels, mask) if m]
elif self.nth_coord == 1:
yy0 = np.empty_like(xx0)
yy0.fill(self.value)
xx1, yy1 = transform_xy(xx0, yy0)
xx1a, yy1a = transform_xy(xx0, yy0)
xx1b, yy1b = transform_xy(xx0, yy0+dy)
xx00 = xx0.copy()
xx00[xx0+dx>e1] -= dx
xx2a, yy2a = transform_xy(xx00, yy0)
xx2b, yy2b = transform_xy(xx00+dx, yy0)
labels = self.grid_info["lon_labels"]
labels = [l for l, m in zip(labels, mask) if m]
def f1():
dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal
dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent
mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined
dd[mm] = dd2[mm] + np.pi / 2
#dd = np.arctan2(yy2-yy1, xx2-xx1) # angle normal
#dd2 = np.arctan2(yy3-yy1, xx3-xx1) # angle tangent
#mm = ((yy2-yy1)==0.) & ((xx2-xx1)==0.) # mask where dd1 is not defined
#dd[mm] = dd2[mm] + np.pi / 2
#dd += np.pi
#dd = np.arctan2(xx2-xx1, angle_tangent-yy1)
trans_tick = self.get_tick_transform(axes)
tr2ax = trans_tick + axes.transAxes.inverted()
for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels):
c2 = tr2ax.transform_point((x, y))
delta=0.00001
if (0. -delta<= c2[0] <= 1.+delta) and \
(0. -delta<= c2[1] <= 1.+delta):
d1 = d/3.14159*180.
d2 = d2/3.14159*180.
yield [x, y], d1, d2, lab
return f1(), iter([])
def get_line_transform(self, axes):
return axes.transData
def get_line(self, axes):
self.update_lim(axes)
x, y = self.grid_info["line_xy"]
if self._get_line_path is None:
return Path(np.column_stack([x, y]))
else:
return self._get_line_path(axes, x, y)
class GridHelperCurveLinear(GridHelperBase):
def __init__(self, aux_trans,
extreme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
"""
aux_trans : a transform from the source (curved) coordinate to
target (rectilinear) coordinate. An instance of MPL's Transform
(inverse transform should be defined) or a tuple of two callable
objects which defines the transform and its inverse. The callables
need take two arguments of array of source coordinates and
should return two target coordinates.
e.g., ``x2, y2 = trans(x1, y1)``
"""
super(GridHelperCurveLinear, self).__init__()
self.grid_info = None
self._old_values = None
#self._grid_params = dict()
self._aux_trans = aux_trans
self.grid_finder = GridFinder(aux_trans,
extreme_finder,
grid_locator1,
grid_locator2,
tick_formatter1,
tick_formatter2)
def update_grid_finder(self, aux_trans=None, **kw):
if aux_trans is not None:
self.grid_finder.update_transform(aux_trans)
self.grid_finder.update(**kw)
self.invalidate()
def _update(self, x1, x2, y1, y2):
"bbox in 0-based image coordinates"
# update wcsgrid
if self.valid() and self._old_values == (x1, x2, y1, y2):
return
self._update_grid(x1, y1, x2, y2)
self._old_values = (x1, x2, y1, y2)
self._force_update = False
def new_fixed_axis(self, loc,
nth_coord=None,
axis_direction=None,
offset=None,
axes=None):
if axes is None:
axes = self.axes
if axis_direction is None:
axis_direction = loc
_helper = FixedAxisArtistHelper(self, loc,
#nth_coord,
nth_coord_ticks=nth_coord,
)
axisline = AxisArtist(axes, _helper, axis_direction=axis_direction)
return axisline
def new_floating_axis(self, nth_coord,
value,
axes=None,
axis_direction="bottom"
):
if axes is None:
axes = self.axes
_helper = FloatingAxisArtistHelper(
self, nth_coord, value, axis_direction)
axisline = AxisArtist(axes, _helper)
#_helper = FloatingAxisArtistHelper(self, nth_coord,
# value,
# label_direction=label_direction,
# )
#axisline = AxisArtistFloating(axes, _helper,
# axis_direction=axis_direction)
axisline.line.set_clip_on(True)
axisline.line.set_clip_box(axisline.axes.bbox)
#axisline.major_ticklabels.set_visible(True)
#axisline.minor_ticklabels.set_visible(False)
#axisline.major_ticklabels.set_rotate_along_line(True)
#axisline.set_rotate_label_along_line(True)
return axisline
def _update_grid(self, x1, y1, x2, y2):
self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2)
def get_gridlines(self, which="major", axis="both"):
grid_lines = []
if axis in ["both", "x"]:
for gl in self.grid_info["lon"]["lines"]:
grid_lines.extend(gl)
if axis in ["both", "y"]:
for gl in self.grid_info["lat"]["lines"]:
grid_lines.extend(gl)
return grid_lines
def get_tick_iterator(self, nth_coord, axis_side, minor=False):
#axisnr = dict(left=0, bottom=1, right=2, top=3)[axis_side]
angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side]
#angle = [0, 90, 180, 270][axisnr]
lon_or_lat = ["lon", "lat"][nth_coord]
if not minor: # major ticks
def f():
for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side],
self.grid_info[lon_or_lat]["tick_labels"][axis_side]):
angle_normal = a
yield xy, angle_normal, angle_tangent, l
else:
def f():
for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side],
self.grid_info[lon_or_lat]["tick_labels"][axis_side]):
angle_normal = a
yield xy, angle_normal, angle_tangent, ""
#for xy, a, l in self.grid_info[lon_or_lat]["ticks"][axis_side]:
# yield xy, a, ""
return f()
|