1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import numpy as np
from matplotlib.transforms import Bbox
from . import clip_path
clip_line_to_rect = clip_path.clip_line_to_rect
import matplotlib.ticker as mticker
from matplotlib.transforms import Transform
# extremes finder
class ExtremeFinderSimple(object):
def __init__(self, nx, ny):
self.nx, self.ny = nx, ny
def __call__(self, transform_xy, x1, y1, x2, y2):
"""
get extreme values.
x1, y1, x2, y2 in image coordinates (0-based)
nx, ny : number of division in each axis
"""
x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
x, y = np.meshgrid(x_, y_)
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
lon_min, lon_max = lon.min(), lon.max()
lat_min, lat_max = lat.min(), lat.max()
return self._add_pad(lon_min, lon_max, lat_min, lat_max)
def _add_pad(self, lon_min, lon_max, lat_min, lat_max):
""" a small amount of padding is added because the current
clipping algorithms seems to fail when the gridline ends at
the bbox boundary.
"""
dlon = (lon_max - lon_min) / self.nx
dlat = (lat_max - lat_min) / self.ny
lon_min, lon_max = lon_min - dlon, lon_max + dlon
lat_min, lat_max = lat_min - dlat, lat_max + dlat
return lon_min, lon_max, lat_min, lat_max
class GridFinderBase(object):
def __init__(self,
extreme_finder,
grid_locator1,
grid_locator2,
tick_formatter1=None,
tick_formatter2=None):
"""
the transData of the axes to the world coordinate.
locator1, locator2 : grid locator for 1st and 2nd axis.
Derived must define "transform_xy, inv_transform_xy"
(may use update_transform)
"""
super(GridFinderBase, self).__init__()
self.extreme_finder = extreme_finder
self.grid_locator1 = grid_locator1
self.grid_locator2 = grid_locator2
self.tick_formatter1 = tick_formatter1
self.tick_formatter2 = tick_formatter2
def get_grid_info(self,
x1, y1, x2, y2):
"""
lon_values, lat_values : list of grid values. if integer is given,
rough number of grids in each direction.
"""
extremes = self.extreme_finder(self.inv_transform_xy, x1, y1, x2, y2)
# min & max rage of lat (or lon) for each grid line will be drawn.
# i.e., gridline of lon=0 will be drawn from lat_min to lat_max.
lon_min, lon_max, lat_min, lat_max = extremes
lon_levs, lon_n, lon_factor = \
self.grid_locator1(lon_min, lon_max)
lat_levs, lat_n, lat_factor = \
self.grid_locator2(lat_min, lat_max)
if lon_factor is None:
lon_values = np.asarray(lon_levs[:lon_n])
else:
lon_values = np.asarray(lon_levs[:lon_n]/lon_factor)
if lat_factor is None:
lat_values = np.asarray(lat_levs[:lat_n])
else:
lat_values = np.asarray(lat_levs[:lat_n]/lat_factor)
lon_lines, lat_lines = self._get_raw_grid_lines(lon_values,
lat_values,
lon_min, lon_max,
lat_min, lat_max)
ddx = (x2-x1)*1.e-10
ddy = (y2-y1)*1.e-10
bb = Bbox.from_extents(x1-ddx, y1-ddy, x2+ddx, y2+ddy)
grid_info = {}
grid_info["extremes"] = extremes
grid_info["lon_lines"] = lon_lines
grid_info["lat_lines"] = lat_lines
grid_info["lon"] = self._clip_grid_lines_and_find_ticks(lon_lines,
lon_values,
lon_levs,
bb)
grid_info["lat"] = self._clip_grid_lines_and_find_ticks(lat_lines,
lat_values,
lat_levs,
bb)
tck_labels = grid_info["lon"]["tick_labels"] = dict()
for direction in ["left", "bottom", "right", "top"]:
levs = grid_info["lon"]["tick_levels"][direction]
tck_labels[direction] = self.tick_formatter1(direction,
lon_factor, levs)
tck_labels = grid_info["lat"]["tick_labels"] = dict()
for direction in ["left", "bottom", "right", "top"]:
levs = grid_info["lat"]["tick_levels"][direction]
tck_labels[direction] = self.tick_formatter2(direction,
lat_factor, levs)
return grid_info
def _get_raw_grid_lines(self,
lon_values, lat_values,
lon_min, lon_max, lat_min, lat_max):
lons_i = np.linspace(lon_min, lon_max, 100) # for interpolation
lats_i = np.linspace(lat_min, lat_max, 100)
lon_lines = [self.transform_xy(np.zeros_like(lats_i) + lon, lats_i)
for lon in lon_values]
lat_lines = [self.transform_xy(lons_i, np.zeros_like(lons_i) + lat)
for lat in lat_values]
return lon_lines, lat_lines
def _clip_grid_lines_and_find_ticks(self, lines, values, levs, bb):
gi = dict()
gi["values"] = []
gi["levels"] = []
gi["tick_levels"] = dict(left=[], bottom=[], right=[], top=[])
gi["tick_locs"] = dict(left=[], bottom=[], right=[], top=[])
gi["lines"] = []
tck_levels = gi["tick_levels"]
tck_locs = gi["tick_locs"]
for (lx, ly), v, lev in zip(lines, values, levs):
xy, tcks = clip_line_to_rect(lx, ly, bb)
if not xy:
continue
gi["levels"].append(v)
gi["lines"].append(xy)
for tck, direction in zip(tcks,
["left", "bottom", "right", "top"]):
for t in tck:
tck_levels[direction].append(lev)
tck_locs[direction].append(t)
return gi
def update_transform(self, aux_trans):
if isinstance(aux_trans, Transform):
def transform_xy(x, y):
x, y = np.asarray(x), np.asarray(y)
ll1 = np.concatenate((x[:,np.newaxis], y[:,np.newaxis]), 1)
ll2 = aux_trans.transform(ll1)
lon, lat = ll2[:,0], ll2[:,1]
return lon, lat
def inv_transform_xy(x, y):
x, y = np.asarray(x), np.asarray(y)
ll1 = np.concatenate((x[:,np.newaxis], y[:,np.newaxis]), 1)
ll2 = aux_trans.inverted().transform(ll1)
lon, lat = ll2[:,0], ll2[:,1]
return lon, lat
else:
transform_xy, inv_transform_xy = aux_trans
self.transform_xy = transform_xy
self.inv_transform_xy = inv_transform_xy
def update(self, **kw):
for k in kw:
if k in ["extreme_finder",
"grid_locator1",
"grid_locator2",
"tick_formatter1",
"tick_formatter2"]:
setattr(self, k, kw[k])
else:
raise ValueError("unknown update property '%s'" % k)
class GridFinder(GridFinderBase):
def __init__(self,
transform,
extreme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
"""
transform : transform from the image coordinate (which will be
the transData of the axes to the world coordinate.
or transform = (transform_xy, inv_transform_xy)
locator1, locator2 : grid locator for 1st and 2nd axis.
"""
if extreme_finder is None:
extreme_finder = ExtremeFinderSimple(20, 20)
if grid_locator1 is None:
grid_locator1 = MaxNLocator()
if grid_locator2 is None:
grid_locator2 = MaxNLocator()
if tick_formatter1 is None:
tick_formatter1 = FormatterPrettyPrint()
if tick_formatter2 is None:
tick_formatter2 = FormatterPrettyPrint()
super(GridFinder, self).__init__(
extreme_finder,
grid_locator1,
grid_locator2,
tick_formatter1,
tick_formatter2)
self.update_transform(transform)
class MaxNLocator(mticker.MaxNLocator):
def __init__(self, nbins=10, steps=None,
trim=True,
integer=False,
symmetric=False,
prune=None):
# trim argument has no effect. It has been left for API compatibility
mticker.MaxNLocator.__init__(self, nbins, steps=steps,
integer=integer,
symmetric=symmetric, prune=prune)
self.create_dummy_axis()
self._factor = None
def __call__(self, v1, v2):
if self._factor is not None:
self.set_bounds(v1*self._factor, v2*self._factor)
locs = mticker.MaxNLocator.__call__(self)
return np.array(locs), len(locs), self._factor
else:
self.set_bounds(v1, v2)
locs = mticker.MaxNLocator.__call__(self)
return np.array(locs), len(locs), None
def set_factor(self, f):
self._factor = f
class FixedLocator(object):
def __init__(self, locs):
self._locs = locs
self._factor = None
def __call__(self, v1, v2):
if self._factor is None:
v1, v2 = sorted([v1, v2])
else:
v1, v2 = sorted([v1*self._factor, v2*self._factor])
locs = np.array([l for l in self._locs if ((v1 <= l) and (l <= v2))])
return locs, len(locs), self._factor
def set_factor(self, f):
self._factor = f
# Tick Formatter
class FormatterPrettyPrint(object):
def __init__(self, useMathText=True):
self._fmt = mticker.ScalarFormatter(
useMathText=useMathText, useOffset=False)
self._fmt.create_dummy_axis()
self._ignore_factor = True
def __call__(self, direction, factor, values):
if not self._ignore_factor:
if factor is None:
factor = 1.
values = [v/factor for v in values]
#values = [v for v in values]
self._fmt.set_locs(values)
return [self._fmt(v) for v in values]
class DictFormatter(object):
def __init__(self, format_dict, formatter=None):
"""
format_dict : dictionary for format strings to be used.
formatter : fall-back formatter
"""
super(DictFormatter, self).__init__()
self._format_dict = format_dict
self._fallback_formatter = formatter
def __call__(self, direction, factor, values):
"""
factor is ignored if value is found in the dictionary
"""
if self._fallback_formatter:
fallback_strings = self._fallback_formatter(
direction, factor, values)
else:
fallback_strings = [""]*len(values)
r = [self._format_dict.get(k, v) for k, v in zip(values,
fallback_strings)]
return r
|