1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
|
"""
An experimental support for curvilinear grid.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import zip
# TODO :
# see if tick_iterator method can be simplified by reusing the parent method.
import numpy as np
from matplotlib.transforms import Affine2D, IdentityTransform
from . import grid_helper_curvelinear
from .axislines import AxisArtistHelper, GridHelperBase
from .axis_artist import AxisArtist
from .grid_finder import GridFinder
class FloatingAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):
pass
class FixedAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):
def __init__(self, grid_helper, side, nth_coord_ticks=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
value, nth_coord = grid_helper.get_data_boundary(side) # return v= 0 , nth=1, extremes of the other coordinate.
super(FixedAxisArtistHelper, self).__init__(grid_helper,
nth_coord,
value,
axis_direction=side,
)
#self.grid_helper = grid_helper
if nth_coord_ticks is None:
nth_coord_ticks = nth_coord
self.nth_coord_ticks = nth_coord_ticks
self.value = value
self.grid_helper = grid_helper
self._side = side
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
self.grid_info = self.grid_helper.grid_info
def get_axislabel_pos_angle(self, axes):
extremes = self.grid_info["extremes"]
if self.nth_coord == 0:
xx0 = self.value
yy0 = (extremes[2]+extremes[3])/2.
dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000.
elif self.nth_coord == 1:
xx0 = (extremes[0]+extremes[1])/2.
yy0 = self.value
dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0.
grid_finder = self.grid_helper.grid_finder
xx1, yy1 = grid_finder.transform_xy([xx0], [yy0])
trans_passingthrough_point = axes.transData + axes.transAxes.inverted()
p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]])
if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.):
xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]])
xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy])
xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]])
return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180.
else:
return None, None
def get_tick_transform(self, axes):
return IdentityTransform() #axes.transData
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
grid_finder = self.grid_helper.grid_finder
lat_levs, lat_n, lat_factor = self.grid_info["lat_info"]
lon_levs, lon_n, lon_factor = self.grid_info["lon_info"]
lon_levs, lat_levs = np.asarray(lon_levs), np.asarray(lat_levs)
if lat_factor is not None:
yy0 = lat_levs / lat_factor
dy = 0.001 / lat_factor
else:
yy0 = lat_levs
dy = 0.001
if lon_factor is not None:
xx0 = lon_levs / lon_factor
dx = 0.001 / lon_factor
else:
xx0 = lon_levs
dx = 0.001
_extremes = self.grid_helper._extremes
xmin, xmax = sorted(_extremes[:2])
ymin, ymax = sorted(_extremes[2:])
if self.nth_coord == 0:
mask = (ymin <= yy0) & (yy0 <= ymax)
yy0 = yy0[mask]
elif self.nth_coord == 1:
mask = (xmin <= xx0) & (xx0 <= xmax)
xx0 = xx0[mask]
def transform_xy(x, y):
x1, y1 = grid_finder.transform_xy(x, y)
x2y2 = axes.transData.transform(np.array([x1, y1]).transpose())
x2, y2 = x2y2.transpose()
return x2, y2
# find angles
if self.nth_coord == 0:
xx0 = np.empty_like(yy0)
xx0.fill(self.value)
#yy0_ = yy0.copy()
xx1, yy1 = transform_xy(xx0, yy0)
xx00 = xx0.astype(float, copy=True)
xx00[xx0+dx>xmax] -= dx
xx1a, yy1a = transform_xy(xx00, yy0)
xx1b, yy1b = transform_xy(xx00+dx, yy0)
yy00 = yy0.astype(float, copy=True)
yy00[yy0+dy>ymax] -= dy
xx2a, yy2a = transform_xy(xx0, yy00)
xx2b, yy2b = transform_xy(xx0, yy00+dy)
labels = self.grid_info["lat_labels"]
labels = [l for l, m in zip(labels, mask) if m]
elif self.nth_coord == 1:
yy0 = np.empty_like(xx0)
yy0.fill(self.value)
#xx0_ = xx0.copy()
xx1, yy1 = transform_xy(xx0, yy0)
yy00 = yy0.astype(float, copy=True)
yy00[yy0+dy>ymax] -= dy
xx1a, yy1a = transform_xy(xx0, yy00)
xx1b, yy1b = transform_xy(xx0, yy00+dy)
xx00 = xx0.astype(float, copy=True)
xx00[xx0+dx>xmax] -= dx
xx2a, yy2a = transform_xy(xx00, yy0)
xx2b, yy2b = transform_xy(xx00+dx, yy0)
labels = self.grid_info["lon_labels"]
labels = [l for l, m in zip(labels, mask) if m]
def f1():
dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal
dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent
mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined
dd[mm] = dd2[mm] + np.pi / 2
#dd += np.pi
#dd = np.arctan2(xx2-xx1, angle_tangent-yy1)
trans_tick = self.get_tick_transform(axes)
tr2ax = trans_tick + axes.transAxes.inverted()
for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels):
c2 = tr2ax.transform_point((x, y))
delta=0.00001
if (0. -delta<= c2[0] <= 1.+delta) and \
(0. -delta<= c2[1] <= 1.+delta):
d1 = d/3.14159*180.
d2 = d2/3.14159*180.
#_mod = (d2-d1+180)%360
#if _mod < 180:
# d1 += 180
##_div, _mod = divmod(d2-d1, 360)
yield [x, y], d1, d2, lab
#, d2/3.14159*180.+da)
return f1(), iter([])
def get_line_transform(self, axes):
return axes.transData
def get_line(self, axes):
self.update_lim(axes)
from matplotlib.path import Path
k, v = dict(left=("lon_lines0", 0),
right=("lon_lines0", 1),
bottom=("lat_lines0", 0),
top=("lat_lines0", 1))[self._side]
xx, yy = self.grid_info[k][v]
return Path(np.column_stack([xx, yy]))
from .grid_finder import ExtremeFinderSimple
class ExtremeFinderFixed(ExtremeFinderSimple):
def __init__(self, extremes):
self._extremes = extremes
def __call__(self, transform_xy, x1, y1, x2, y2):
"""
get extreme values.
x1, y1, x2, y2 in image coordinates (0-based)
nx, ny : number of division in each axis
"""
#lon_min, lon_max, lat_min, lat_max = self._extremes
return self._extremes
class GridHelperCurveLinear(grid_helper_curvelinear.GridHelperCurveLinear):
def __init__(self, aux_trans, extremes,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
"""
aux_trans : a transform from the source (curved) coordinate to
target (rectilinear) coordinate. An instance of MPL's Transform
(inverse transform should be defined) or a tuple of two callable
objects which defines the transform and its inverse. The callables
need take two arguments of array of source coordinates and
should return two target coordinates:
e.g., *x2, y2 = trans(x1, y1)*
"""
self._old_values = None
self._extremes = extremes
extreme_finder = ExtremeFinderFixed(extremes)
super(GridHelperCurveLinear, self).__init__(aux_trans,
extreme_finder,
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1,
tick_formatter2=tick_formatter2)
# def update_grid_finder(self, aux_trans=None, **kw):
# if aux_trans is not None:
# self.grid_finder.update_transform(aux_trans)
# self.grid_finder.update(**kw)
# self.invalidate()
# def _update(self, x1, x2, y1, y2):
# "bbox in 0-based image coordinates"
# # update wcsgrid
# if self.valid() and self._old_values == (x1, x2, y1, y2):
# return
# self._update_grid(x1, y1, x2, y2)
# self._old_values = (x1, x2, y1, y2)
# self._force_update = False
def get_data_boundary(self, side):
"""
return v= 0 , nth=1
"""
lon1, lon2, lat1, lat2 = self._extremes
return dict(left=(lon1, 0),
right=(lon2, 0),
bottom=(lat1, 1),
top=(lat2, 1))[side]
def new_fixed_axis(self, loc,
nth_coord=None,
axis_direction=None,
offset=None,
axes=None):
if axes is None:
axes = self.axes
if axis_direction is None:
axis_direction = loc
_helper = FixedAxisArtistHelper(self, loc,
nth_coord_ticks=nth_coord)
axisline = AxisArtist(axes, _helper, axis_direction=axis_direction)
axisline.line.set_clip_on(True)
axisline.line.set_clip_box(axisline.axes.bbox)
return axisline
# new_floating_axis will inherit the grid_helper's extremes.
# def new_floating_axis(self, nth_coord,
# value,
# axes=None,
# axis_direction="bottom"
# ):
# axis = super(GridHelperCurveLinear,
# self).new_floating_axis(nth_coord,
# value, axes=axes,
# axis_direction=axis_direction)
# # set extreme values of the axis helper
# if nth_coord == 1:
# axis.get_helper().set_extremes(*self._extremes[:2])
# elif nth_coord == 0:
# axis.get_helper().set_extremes(*self._extremes[2:])
# return axis
def _update_grid(self, x1, y1, x2, y2):
#self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2)
if self.grid_info is None:
self.grid_info = dict()
grid_info = self.grid_info
grid_finder = self.grid_finder
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
x1, y1, x2, y2)
lon_min, lon_max = sorted(extremes[:2])
lat_min, lat_max = sorted(extremes[2:])
lon_levs, lon_n, lon_factor = \
grid_finder.grid_locator1(lon_min, lon_max)
lat_levs, lat_n, lat_factor = \
grid_finder.grid_locator2(lat_min, lat_max)
grid_info["extremes"] = lon_min, lon_max, lat_min, lat_max #extremes
grid_info["lon_info"] = lon_levs, lon_n, lon_factor
grid_info["lat_info"] = lat_levs, lat_n, lat_factor
grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom",
lon_factor,
lon_levs)
grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom",
lat_factor,
lat_levs)
if lon_factor is None:
lon_values = np.asarray(lon_levs[:lon_n])
else:
lon_values = np.asarray(lon_levs[:lon_n]/lon_factor)
if lat_factor is None:
lat_values = np.asarray(lat_levs[:lat_n])
else:
lat_values = np.asarray(lat_levs[:lat_n]/lat_factor)
lon_values0 = lon_values[(lon_min<lon_values) & (lon_values<lon_max)]
lat_values0 = lat_values[(lat_min<lat_values) & (lat_values<lat_max)]
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(lon_values0,
lat_values0,
lon_min, lon_max,
lat_min, lat_max)
grid_info["lon_lines"] = lon_lines
grid_info["lat_lines"] = lat_lines
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(extremes[:2],
extremes[2:],
*extremes)
#lon_min, lon_max,
# lat_min, lat_max)
grid_info["lon_lines0"] = lon_lines
grid_info["lat_lines0"] = lat_lines
def get_gridlines(self, which="major", axis="both"):
grid_lines = []
if axis in ["both", "x"]:
for gl in self.grid_info["lon_lines"]:
grid_lines.extend([gl])
if axis in ["both", "y"]:
for gl in self.grid_info["lat_lines"]:
grid_lines.extend([gl])
return grid_lines
def get_boundary(self):
"""
return Nx2 array of x,y coordinate of the boundary
"""
x0, x1, y0, y1 = self._extremes
tr = self._aux_trans
xx = np.linspace(x0, x1, 100)
yy0, yy1 = np.empty_like(xx), np.empty_like(xx)
yy0.fill(y0)
yy1.fill(y1)
yy = np.linspace(y0, y1, 100)
xx0, xx1 = np.empty_like(yy), np.empty_like(yy)
xx0.fill(x0)
xx1.fill(x1)
xxx = np.concatenate([xx[:-1], xx1[:-1], xx[-1:0:-1], xx0])
yyy = np.concatenate([yy0[:-1], yy[:-1], yy1[:-1], yy[::-1]])
t = tr.transform(np.array([xxx, yyy]).transpose())
return t
class FloatingAxesBase(object):
def __init__(self, *kl, **kwargs):
grid_helper = kwargs.get("grid_helper", None)
if grid_helper is None:
raise ValueError("FloatingAxes requires grid_helper argument")
if not hasattr(grid_helper, "get_boundary"):
raise ValueError("grid_helper must implement get_boundary method")
self._axes_class_floating.__init__(self, *kl, **kwargs)
self.set_aspect(1.)
self.adjust_axes_lim()
def _gen_axes_patch(self):
"""
Returns the patch used to draw the background of the axes. It
is also used as the clipping path for any data elements on the
axes.
In the standard axes, this is a rectangle, but in other
projections it may not be.
.. note::
Intended to be overridden by new projection types.
"""
import matplotlib.patches as mpatches
grid_helper = self.get_grid_helper()
t = grid_helper.get_boundary()
return mpatches.Polygon(t)
def cla(self):
self._axes_class_floating.cla(self)
#HostAxes.cla(self)
self.patch.set_transform(self.transData)
patch = self._axes_class_floating._gen_axes_patch(self)
patch.set_figure(self.figure)
patch.set_visible(False)
patch.set_transform(self.transAxes)
self.patch.set_clip_path(patch)
self.gridlines.set_clip_path(patch)
self._original_patch = patch
def adjust_axes_lim(self):
#t = self.get_boundary()
grid_helper = self.get_grid_helper()
t = grid_helper.get_boundary()
x, y = t[:,0], t[:,1]
xmin, xmax = min(x), max(x)
ymin, ymax = min(y), max(y)
dx = (xmax-xmin)/100.
dy = (ymax-ymin)/100.
self.set_xlim(xmin-dx, xmax+dx)
self.set_ylim(ymin-dy, ymax+dy)
_floatingaxes_classes = {}
def floatingaxes_class_factory(axes_class):
new_class = _floatingaxes_classes.get(axes_class)
if new_class is None:
new_class = type(str("Floating %s" % (axes_class.__name__)),
(FloatingAxesBase, axes_class),
{'_axes_class_floating': axes_class})
_floatingaxes_classes[axes_class] = new_class
return new_class
from .axislines import Axes
from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory
FloatingAxes = floatingaxes_class_factory(host_axes_class_factory(Axes))
import matplotlib.axes as maxes
FloatingSubplot = maxes.subplot_class_factory(FloatingAxes)
|