aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py2/mpl_toolkits/axisartist/angle_helper.py
blob: 15732a58ec0d2c7a9a29e3c2575565e7ea8227ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six

import numpy as np
import math

from mpl_toolkits.axisartist.grid_finder import ExtremeFinderSimple

def select_step_degree(dv):

    degree_limits_ = [1.5, 3, 7, 13, 20, 40, 70, 120, 270, 520]
    degree_steps_  = [  1, 2, 5, 10, 15, 30, 45,  90, 180, 360]
    degree_factors = [1.] * len(degree_steps_)

    minsec_limits_ = [1.5, 2.5, 3.5, 8, 11, 18, 25, 45]
    minsec_steps_  = [1,   2,   3,   5, 10, 15, 20, 30]

    minute_limits_ = np.array(minsec_limits_) / 60
    minute_factors = [60.] * len(minute_limits_)

    second_limits_ = np.array(minsec_limits_) / 3600
    second_factors = [3600.] * len(second_limits_)

    degree_limits = np.concatenate([second_limits_,
                                    minute_limits_,
                                    degree_limits_])

    degree_steps = np.concatenate([minsec_steps_,
                                   minsec_steps_,
                                   degree_steps_])

    degree_factors = np.concatenate([second_factors,
                                     minute_factors,
                                     degree_factors])

    n = degree_limits.searchsorted(dv)
    step = degree_steps[n]
    factor = degree_factors[n]

    return step, factor



def select_step_hour(dv):

    hour_limits_ = [1.5, 2.5, 3.5, 5, 7, 10, 15, 21, 36]
    hour_steps_  = [1,   2  , 3,   4, 6,  8, 12, 18, 24]
    hour_factors = [1.] * len(hour_steps_)

    minsec_limits_ = [1.5, 2.5, 3.5, 4.5, 5.5, 8, 11, 14, 18, 25, 45]
    minsec_steps_  = [1,   2,   3,   4,   5,   6, 10, 12, 15, 20, 30]

    minute_limits_ = np.array(minsec_limits_) / 60
    minute_factors = [60.] * len(minute_limits_)

    second_limits_ = np.array(minsec_limits_) / 3600
    second_factors = [3600.] * len(second_limits_)

    hour_limits = np.concatenate([second_limits_,
                                  minute_limits_,
                                  hour_limits_])

    hour_steps = np.concatenate([minsec_steps_,
                                 minsec_steps_,
                                 hour_steps_])

    hour_factors = np.concatenate([second_factors,
                                   minute_factors,
                                   hour_factors])

    n = hour_limits.searchsorted(dv)
    step = hour_steps[n]
    factor = hour_factors[n]

    return step, factor


def select_step_sub(dv):

    # subarcsec or degree
    tmp = 10.**(int(math.log10(dv))-1.)

    factor = 1./tmp

    if 1.5*tmp >= dv:
        step = 1
    elif 3.*tmp >= dv:
        step = 2
    elif 7.*tmp >= dv:
        step = 5
    else:
        step = 1
        factor = 0.1*factor

    return step, factor


def select_step(v1, v2, nv, hour=False, include_last=True,
                threshold_factor=3600.):

    if v1 > v2:
        v1, v2 = v2, v1

    dv = (v2 - v1) / nv

    if hour:
        _select_step = select_step_hour
        cycle = 24.
    else:
        _select_step = select_step_degree
        cycle = 360.

    # for degree
    if dv > 1./threshold_factor:
        step, factor = _select_step(dv)
    else:
        step, factor = select_step_sub(dv*threshold_factor)

        factor = factor * threshold_factor


    f1, f2, fstep = v1*factor, v2*factor, step/factor
    levs = np.arange(np.floor(f1/step), np.ceil(f2/step)+0.5, dtype=int) * step

    # n : number of valid levels. If there is a cycle, e.g., [0, 90, 180,
    # 270, 360], the grid line needs to be extended from 0 to 360, so
    # we need to return the whole array. However, the last level (360)
    # needs to be ignored often. In this case, so we return n=4.

    n = len(levs)


    # we need to check the range of values
    # for example, -90 to 90, 0 to 360,

    if factor == 1. and (levs[-1] >= levs[0]+cycle): # check for cycle
        nv = int(cycle / step)
        if include_last:
            levs = levs[0] + np.arange(0, nv+1, 1) * step
        else:
            levs = levs[0] + np.arange(0, nv, 1) * step

        n = len(levs)

    return np.array(levs), n, factor


def select_step24(v1, v2, nv, include_last=True, threshold_factor=3600):
    v1, v2 = v1/15., v2/15.
    levs, n, factor =  select_step(v1, v2, nv, hour=True,
                                   include_last=include_last,
                                   threshold_factor=threshold_factor)
    return levs*15., n, factor

def select_step360(v1, v2, nv, include_last=True, threshold_factor=3600):
    return select_step(v1, v2, nv, hour=False,
                       include_last=include_last,
                       threshold_factor=threshold_factor)


class LocatorBase(object):
    def __init__(self, den, include_last=True):
        self.den = den
        self._include_last = include_last

    @property
    def nbins(self):
        return self.den

    @nbins.setter
    def nbins(self, v):
        self.den = v

    def set_params(self, nbins=None):
        if nbins is not None:
            self.den = int(nbins)


class LocatorHMS(LocatorBase):
    def __call__(self, v1, v2):
        return select_step24(v1, v2, self.den, self._include_last)

class LocatorHM(LocatorBase):
    def __call__(self, v1, v2):
        return select_step24(v1, v2, self.den, self._include_last,
                             threshold_factor=60)

class LocatorH(LocatorBase):
    def __call__(self, v1, v2):
        return select_step24(v1, v2, self.den, self._include_last,
                             threshold_factor=1)


class LocatorDMS(LocatorBase):
    def __call__(self, v1, v2):
        return select_step360(v1, v2, self.den, self._include_last)

class LocatorDM(LocatorBase):
    def __call__(self, v1, v2):
        return select_step360(v1, v2, self.den, self._include_last,
                              threshold_factor=60)

class LocatorD(LocatorBase):
    def __call__(self, v1, v2):
        return select_step360(v1, v2, self.den, self._include_last,
                              threshold_factor=1)


class FormatterDMS(object):
    deg_mark = r"^{\circ}"
    min_mark = r"^{\prime}"
    sec_mark = r"^{\prime\prime}"

    fmt_d = "$%d" + deg_mark + "$"
    fmt_ds = r"$%d.%s" + deg_mark + "$"

    # %s for sign
    fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark + "$"
    fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark + "$"

    fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
    fmt_s_partial = "%02d" + sec_mark + "$"
    fmt_ss_partial = "%02d.%s" + sec_mark + "$"

    def _get_number_fraction(self, factor):
        ## check for fractional numbers
        number_fraction = None
        # check for 60

        for threshold in [1, 60, 3600]:
            if factor <= threshold:
                break

            d = factor // threshold
            int_log_d = int(np.floor(np.log10(d)))
            if 10**int_log_d == d and d != 1:
                number_fraction = int_log_d
                factor = factor // 10**int_log_d
                return factor, number_fraction

        return factor, number_fraction


    def __call__(self, direction, factor, values):
        if len(values) == 0:
            return []
        #ss = [[-1, 1][v>0] for v in values] #not py24 compliant
        values = np.asarray(values)
        ss = np.where(values>0, 1, -1)

        sign_map = {(-1, True):"-"}
        signs = [sign_map.get((s, v!=0), "") for s, v in zip(ss, values)]

        factor, number_fraction = self._get_number_fraction(factor)

        values = np.abs(values)

        if number_fraction is not None:
            values, frac_part = divmod(values, 10**number_fraction)
            frac_fmt = "%%0%dd" % (number_fraction,)
            frac_str = [frac_fmt % (f1,) for f1 in frac_part]

        if factor == 1:
            if number_fraction is None:
                return [self.fmt_d % (s*int(v),) for (s, v) in zip(ss, values)]
            else:
                return [self.fmt_ds % (s*int(v), f1)
                        for (s, v, f1) in zip(ss, values, frac_str)]
        elif factor == 60:
            deg_part, min_part = divmod(values, 60)
            if number_fraction is None:
                return [self.fmt_d_m % (s1, d1, m1)
                        for s1, d1, m1 in zip(signs, deg_part, min_part)]
            else:
                return [self.fmt_d_ms % (s, d1, m1, f1)
                        for s, d1, m1, f1 in zip(signs, deg_part, min_part, frac_str)]

        elif factor == 3600:
            if ss[-1] == -1:
                inverse_order = True
                values = values[::-1]
                signs = signs[::-1]
            else:
                inverse_order = False

            l_hm_old = ""
            r = []

            deg_part, min_part_ = divmod(values, 3600)
            min_part, sec_part = divmod(min_part_, 60)

            if number_fraction is None:
                sec_str = [self.fmt_s_partial % (s1,) for s1 in sec_part]
            else:
                sec_str = [self.fmt_ss_partial % (s1, f1) for s1, f1 in zip(sec_part, frac_str)]

            for s, d1, m1, s1 in zip(signs, deg_part, min_part, sec_str):
                l_hm = self.fmt_d_m_partial % (s, d1, m1)
                if l_hm != l_hm_old:
                    l_hm_old = l_hm
                    l = l_hm + s1 #l_s
                else:
                    l = "$" + s + s1
                r.append(l)

            if inverse_order:
                return r[::-1]
            else:
                return r

        else: # factor > 3600.
            return [r"$%s^{\circ}$" % (str(v),) for v in ss*values]


class FormatterHMS(FormatterDMS):
    deg_mark = r"^\mathrm{h}"
    min_mark = r"^\mathrm{m}"
    sec_mark = r"^\mathrm{s}"

    fmt_d = "$%d" + deg_mark + "$"
    fmt_ds = r"$%d.%s" + deg_mark + "$"

    # %s for sign
    fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark+"$"
    fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark+"$"

    fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
    fmt_s_partial = "%02d" + sec_mark + "$"
    fmt_ss_partial = "%02d.%s" + sec_mark + "$"

    def __call__(self, direction, factor, values): # hour
        return FormatterDMS.__call__(self, direction, factor, np.asarray(values)/15.)





class ExtremeFinderCycle(ExtremeFinderSimple):
    """
    When there is a cycle, e.g., longitude goes from 0-360.
    """
    def __init__(self,
                 nx, ny,
                 lon_cycle = 360.,
                 lat_cycle = None,
                 lon_minmax = None,
                 lat_minmax = (-90, 90)
                 ):
        #self.transfrom_xy = transform_xy
        #self.inv_transfrom_xy = inv_transform_xy
        self.nx, self.ny = nx, ny
        self.lon_cycle, self.lat_cycle = lon_cycle, lat_cycle
        self.lon_minmax = lon_minmax
        self.lat_minmax = lat_minmax


    def __call__(self, transform_xy, x1, y1, x2, y2):
        """
        get extreme values.

        x1, y1, x2, y2 in image coordinates (0-based)
        nx, ny : number of divisions in each axis
        """
        x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
        x, y = np.meshgrid(x_, y_)
        lon, lat = transform_xy(np.ravel(x), np.ravel(y))

        # iron out jumps, but algorithm should be improved.
        # This is just naive way of doing and my fail for some cases.
        # Consider replacing this with numpy.unwrap
        # We are ignoring invalid warnings. They are triggered when
        # comparing arrays with NaNs using > We are already handling
        # that correctly using np.nanmin and np.nanmax
        with np.errstate(invalid='ignore'):
            if self.lon_cycle is not None:
                lon0 = np.nanmin(lon)
                lon -= 360. * ((lon - lon0) > 180.)
            if self.lat_cycle is not None:
                lat0 = np.nanmin(lat)
                lat -= 360. * ((lat - lat0) > 180.)

        lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
        lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)

        lon_min, lon_max, lat_min, lat_max = \
                 self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)

        return lon_min, lon_max, lat_min, lat_max


    def _adjust_extremes(self, lon_min, lon_max, lat_min, lat_max):

        lon_min, lon_max, lat_min, lat_max = \
                 self._add_pad(lon_min, lon_max, lat_min, lat_max)

        # check cycle
        if self.lon_cycle:
            lon_max = min(lon_max, lon_min + self.lon_cycle)
        if self.lat_cycle:
            lat_max = min(lat_max, lat_min + self.lat_cycle)

        if self.lon_minmax is not None:
            min0 = self.lon_minmax[0]
            lon_min = max(min0, lon_min)
            max0 = self.lon_minmax[1]
            lon_max = min(max0, lon_max)

        if self.lat_minmax is not None:
            min0 = self.lat_minmax[0]
            lat_min = max(min0, lat_min)
            max0 = self.lat_minmax[1]
            lat_max = min(max0, lat_max)

        return lon_min, lon_max, lat_min, lat_max