1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import numpy as np
from .axes_divider import make_axes_locatable, Size, locatable_axes_factory
import sys
from .mpl_axes import Axes
def make_rgb_axes(ax, pad=0.01, axes_class=None, add_all=True):
"""
pad : fraction of the axes height.
"""
divider = make_axes_locatable(ax)
pad_size = Size.Fraction(pad, Size.AxesY(ax))
xsize = Size.Fraction((1.-2.*pad)/3., Size.AxesX(ax))
ysize = Size.Fraction((1.-2.*pad)/3., Size.AxesY(ax))
divider.set_horizontal([Size.AxesX(ax), pad_size, xsize])
divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize])
ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1))
ax_rgb = []
if axes_class is None:
try:
axes_class = locatable_axes_factory(ax._axes_class)
except AttributeError:
axes_class = locatable_axes_factory(type(ax))
for ny in [4, 2, 0]:
ax1 = axes_class(ax.get_figure(),
ax.get_position(original=True),
sharex=ax, sharey=ax)
locator = divider.new_locator(nx=2, ny=ny)
ax1.set_axes_locator(locator)
for t in ax1.yaxis.get_ticklabels() + ax1.xaxis.get_ticklabels():
t.set_visible(False)
try:
for axis in ax1.axis.values():
axis.major_ticklabels.set_visible(False)
except AttributeError:
pass
ax_rgb.append(ax1)
if add_all:
fig = ax.get_figure()
for ax1 in ax_rgb:
fig.add_axes(ax1)
return ax_rgb
def imshow_rgb(ax, r, g, b, **kwargs):
ny, nx = r.shape
R = np.zeros([ny, nx, 3], dtype="d")
R[:,:,0] = r
G = np.zeros_like(R)
G[:,:,1] = g
B = np.zeros_like(R)
B[:,:,2] = b
RGB = R + G + B
im_rgb = ax.imshow(RGB, **kwargs)
return im_rgb
class RGBAxesBase(object):
"""base class for a 4-panel imshow (RGB, R, G, B)
Layout:
+---------------+-----+
| | R |
+ +-----+
| RGB | G |
+ +-----+
| | B |
+---------------+-----+
Attributes
----------
_defaultAxesClass : matplotlib.axes.Axes
defaults to 'Axes' in RGBAxes child class.
No default in abstract base class
RGB : _defaultAxesClass
The axes object for the three-channel imshow
R : _defaultAxesClass
The axes object for the red channel imshow
G : _defaultAxesClass
The axes object for the green channel imshow
B : _defaultAxesClass
The axes object for the blue channel imshow
"""
def __init__(self, *kl, **kwargs):
"""
Parameters
----------
pad : float
fraction of the axes height to put as padding.
defaults to 0.0
add_all : bool
True: Add the {rgb, r, g, b} axes to the figure
defaults to True.
axes_class : matplotlib.axes.Axes
kl :
Unpacked into axes_class() init for RGB
kwargs :
Unpacked into axes_class() init for RGB, R, G, B axes
"""
pad = kwargs.pop("pad", 0.0)
add_all = kwargs.pop("add_all", True)
try:
axes_class = kwargs.pop("axes_class", self._defaultAxesClass)
except AttributeError:
new_msg = ("A subclass of RGBAxesBase must have a "
"_defaultAxesClass attribute. If you are not sure which "
"axes class to use, consider using "
"mpl_toolkits.axes_grid1.mpl_axes.Axes.")
six.reraise(AttributeError, AttributeError(new_msg),
sys.exc_info()[2])
ax = axes_class(*kl, **kwargs)
divider = make_axes_locatable(ax)
pad_size = Size.Fraction(pad, Size.AxesY(ax))
xsize = Size.Fraction((1.-2.*pad)/3., Size.AxesX(ax))
ysize = Size.Fraction((1.-2.*pad)/3., Size.AxesY(ax))
divider.set_horizontal([Size.AxesX(ax), pad_size, xsize])
divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize])
ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1))
ax_rgb = []
for ny in [4, 2, 0]:
ax1 = axes_class(ax.get_figure(),
ax.get_position(original=True),
sharex=ax, sharey=ax, **kwargs)
locator = divider.new_locator(nx=2, ny=ny)
ax1.set_axes_locator(locator)
ax1.axis[:].toggle(ticklabels=False)
ax_rgb.append(ax1)
self.RGB = ax
self.R, self.G, self.B = ax_rgb
if add_all:
fig = ax.get_figure()
fig.add_axes(ax)
self.add_RGB_to_figure()
self._config_axes()
def _config_axes(self, line_color='w', marker_edge_color='w'):
"""Set the line color and ticks for the axes
Parameters
----------
line_color : any matplotlib color
marker_edge_color : any matplotlib color
"""
for ax1 in [self.RGB, self.R, self.G, self.B]:
ax1.axis[:].line.set_color(line_color)
ax1.axis[:].major_ticks.set_markeredgecolor(marker_edge_color)
def add_RGB_to_figure(self):
"""Add the red, green and blue axes to the RGB composite's axes figure
"""
self.RGB.get_figure().add_axes(self.R)
self.RGB.get_figure().add_axes(self.G)
self.RGB.get_figure().add_axes(self.B)
def imshow_rgb(self, r, g, b, **kwargs):
"""Create the four images {rgb, r, g, b}
Parameters
----------
r : array-like
The red array
g : array-like
The green array
b : array-like
The blue array
kwargs : imshow kwargs
kwargs get unpacked into the imshow calls for the four images
Returns
-------
rgb : matplotlib.image.AxesImage
r : matplotlib.image.AxesImage
g : matplotlib.image.AxesImage
b : matplotlib.image.AxesImage
"""
if not (r.shape == g.shape == b.shape):
raise ValueError('Input shapes do not match.'
'\nr.shape = {}'
'\ng.shape = {}'
'\nb.shape = {}'
.format(r.shape, g.shape, b.shape))
RGB = np.dstack([r, g, b])
R = np.zeros_like(RGB)
R[:,:,0] = r
G = np.zeros_like(RGB)
G[:,:,1] = g
B = np.zeros_like(RGB)
B[:,:,2] = b
im_rgb = self.RGB.imshow(RGB, **kwargs)
im_r = self.R.imshow(R, **kwargs)
im_g = self.G.imshow(G, **kwargs)
im_b = self.B.imshow(B, **kwargs)
return im_rgb, im_r, im_g, im_b
class RGBAxes(RGBAxesBase):
_defaultAxesClass = Axes
|