1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
|
# -*- coding: utf-8 -*-
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import map, zip
import math
import warnings
import numpy as np
import matplotlib as mpl
from . import artist, cbook, colors, docstring, lines as mlines, transforms
from .bezier import (
concatenate_paths, get_cos_sin, get_intersection, get_parallels,
inside_circle, make_path_regular, make_wedged_bezier2,
split_bezier_intersecting_with_closedpath, split_path_inout)
from .path import Path
_patch_alias_map = {
'antialiased': ['aa'],
'edgecolor': ['ec'],
'facecolor': ['fc'],
'linewidth': ['lw'],
'linestyle': ['ls']
}
class Patch(artist.Artist):
"""
A patch is a 2D artist with a face color and an edge color.
If any of *edgecolor*, *facecolor*, *linewidth*, or *antialiased*
are *None*, they default to their rc params setting.
"""
zorder = 1
validCap = ('butt', 'round', 'projecting')
validJoin = ('miter', 'round', 'bevel')
# Whether to draw an edge by default. Set on a
# subclass-by-subclass basis.
_edge_default = False
def __str__(self):
return str(self.__class__).split('.')[-1]
def __init__(self,
edgecolor=None,
facecolor=None,
color=None,
linewidth=None,
linestyle=None,
antialiased=None,
hatch=None,
fill=True,
capstyle=None,
joinstyle=None,
**kwargs):
"""
The following kwarg properties are supported
%(Patch)s
"""
artist.Artist.__init__(self)
if linewidth is None:
linewidth = mpl.rcParams['patch.linewidth']
if linestyle is None:
linestyle = "solid"
if capstyle is None:
capstyle = 'butt'
if joinstyle is None:
joinstyle = 'miter'
if antialiased is None:
antialiased = mpl.rcParams['patch.antialiased']
self._hatch_color = colors.to_rgba(mpl.rcParams['hatch.color'])
self._fill = True # needed for set_facecolor call
if color is not None:
if (edgecolor is not None or facecolor is not None):
warnings.warn("Setting the 'color' property will override"
"the edgecolor or facecolor properties. ")
self.set_color(color)
else:
self.set_edgecolor(edgecolor)
self.set_facecolor(facecolor)
# unscaled dashes. Needed to scale dash patterns by lw
self._us_dashes = None
self._linewidth = 0
self.set_fill(fill)
self.set_linestyle(linestyle)
self.set_linewidth(linewidth)
self.set_antialiased(antialiased)
self.set_hatch(hatch)
self.set_capstyle(capstyle)
self.set_joinstyle(joinstyle)
self._combined_transform = transforms.IdentityTransform()
if len(kwargs):
self.update(kwargs)
def get_verts(self):
"""
Return a copy of the vertices used in this patch
If the patch contains Bezier curves, the curves will be
interpolated by line segments. To access the curves as
curves, use :meth:`get_path`.
"""
trans = self.get_transform()
path = self.get_path()
polygons = path.to_polygons(trans)
if len(polygons):
return polygons[0]
return []
def _process_radius(self, radius):
if radius is not None:
return radius
if cbook.is_numlike(self._picker):
_radius = self._picker
else:
if self.get_edgecolor()[3] == 0:
_radius = 0
else:
_radius = self.get_linewidth()
return _radius
def contains(self, mouseevent, radius=None):
"""Test whether the mouse event occurred in the patch.
Returns T/F, {}
"""
if callable(self._contains):
return self._contains(self, mouseevent)
radius = self._process_radius(radius)
inside = self.get_path().contains_point(
(mouseevent.x, mouseevent.y), self.get_transform(), radius)
return inside, {}
def contains_point(self, point, radius=None):
"""
Returns ``True`` if the given *point* is inside the path
(transformed with its transform attribute).
*radius* allows the path to be made slightly larger or smaller.
"""
radius = self._process_radius(radius)
return self.get_path().contains_point(point,
self.get_transform(),
radius)
def contains_points(self, points, radius=None):
"""
Returns a bool array which is ``True`` if the (closed) path
contains the corresponding point.
(transformed with its transform attribute).
*points* must be Nx2 array.
*radius* allows the path to be made slightly larger or smaller.
"""
radius = self._process_radius(radius)
return self.get_path().contains_points(points,
self.get_transform(),
radius)
def update_from(self, other):
"""
Updates this :class:`Patch` from the properties of *other*.
"""
artist.Artist.update_from(self, other)
# For some properties we don't need or don't want to go through the
# getters/setters, so we just copy them directly.
self._edgecolor = other._edgecolor
self._facecolor = other._facecolor
self._fill = other._fill
self._hatch = other._hatch
self._hatch_color = other._hatch_color
# copy the unscaled dash pattern
self._us_dashes = other._us_dashes
self.set_linewidth(other._linewidth) # also sets dash properties
self.set_transform(other.get_data_transform())
def get_extents(self):
"""
Return a :class:`~matplotlib.transforms.Bbox` object defining
the axis-aligned extents of the :class:`Patch`.
"""
return self.get_path().get_extents(self.get_transform())
def get_transform(self):
"""
Return the :class:`~matplotlib.transforms.Transform` applied
to the :class:`Patch`.
"""
return self.get_patch_transform() + artist.Artist.get_transform(self)
def get_data_transform(self):
"""
Return the :class:`~matplotlib.transforms.Transform` instance which
maps data coordinates to physical coordinates.
"""
return artist.Artist.get_transform(self)
def get_patch_transform(self):
"""
Return the :class:`~matplotlib.transforms.Transform` instance which
takes patch coordinates to data coordinates.
For example, one may define a patch of a circle which represents a
radius of 5 by providing coordinates for a unit circle, and a
transform which scales the coordinates (the patch coordinate) by 5.
"""
return transforms.IdentityTransform()
def get_antialiased(self):
"""
Returns True if the :class:`Patch` is to be drawn with antialiasing.
"""
return self._antialiased
get_aa = get_antialiased
def get_edgecolor(self):
"""
Return the edge color of the :class:`Patch`.
"""
return self._edgecolor
get_ec = get_edgecolor
def get_facecolor(self):
"""
Return the face color of the :class:`Patch`.
"""
return self._facecolor
get_fc = get_facecolor
def get_linewidth(self):
"""
Return the line width in points.
"""
return self._linewidth
get_lw = get_linewidth
def get_linestyle(self):
"""
Return the linestyle. Will be one of ['solid' | 'dashed' |
'dashdot' | 'dotted']
"""
return self._linestyle
get_ls = get_linestyle
def set_antialiased(self, aa):
"""
Set whether to use antialiased rendering.
Parameters
----------
b : bool or None
.. ACCEPTS: bool or None
"""
if aa is None:
aa = mpl.rcParams['patch.antialiased']
self._antialiased = aa
self.stale = True
def set_aa(self, aa):
"""alias for set_antialiased"""
return self.set_antialiased(aa)
def _set_edgecolor(self, color):
set_hatch_color = True
if color is None:
if (mpl.rcParams['patch.force_edgecolor'] or
not self._fill or self._edge_default):
color = mpl.rcParams['patch.edgecolor']
else:
color = 'none'
set_hatch_color = False
self._edgecolor = colors.to_rgba(color, self._alpha)
if set_hatch_color:
self._hatch_color = self._edgecolor
self.stale = True
def set_edgecolor(self, color):
"""
Set the patch edge color
ACCEPTS: mpl color spec, None, 'none', or 'auto'
"""
self._original_edgecolor = color
self._set_edgecolor(color)
def set_ec(self, color):
"""alias for set_edgecolor"""
return self.set_edgecolor(color)
def _set_facecolor(self, color):
if color is None:
color = mpl.rcParams['patch.facecolor']
alpha = self._alpha if self._fill else 0
self._facecolor = colors.to_rgba(color, alpha)
self.stale = True
def set_facecolor(self, color):
"""
Set the patch face color
ACCEPTS: mpl color spec, or None for default, or 'none' for no color
"""
self._original_facecolor = color
self._set_facecolor(color)
def set_fc(self, color):
"""alias for set_facecolor"""
return self.set_facecolor(color)
def set_color(self, c):
"""
Set both the edgecolor and the facecolor.
ACCEPTS: matplotlib color spec
.. seealso::
:meth:`set_facecolor`, :meth:`set_edgecolor`
For setting the edge or face color individually.
"""
self.set_facecolor(c)
self.set_edgecolor(c)
def set_alpha(self, alpha):
"""
Set the alpha tranparency of the patch.
ACCEPTS: float or None
"""
if alpha is not None:
try:
float(alpha)
except TypeError:
raise TypeError('alpha must be a float or None')
artist.Artist.set_alpha(self, alpha)
self._set_facecolor(self._original_facecolor)
self._set_edgecolor(self._original_edgecolor)
# stale is already True
def set_linewidth(self, w):
"""
Set the patch linewidth in points
ACCEPTS: float or None for default
"""
if w is None:
w = mpl.rcParams['patch.linewidth']
if w is None:
w = mpl.rcParams['axes.linewidth']
self._linewidth = float(w)
# scale the dash pattern by the linewidth
offset, ls = self._us_dashes
self._dashoffset, self._dashes = mlines._scale_dashes(
offset, ls, self._linewidth)
self.stale = True
def set_lw(self, lw):
"""alias for set_linewidth"""
return self.set_linewidth(lw)
def set_linestyle(self, ls):
"""
Set the patch linestyle
=========================== =================
linestyle description
=========================== =================
``'-'`` or ``'solid'`` solid line
``'--'`` or ``'dashed'`` dashed line
``'-.'`` or ``'dashdot'`` dash-dotted line
``':'`` or ``'dotted'`` dotted line
=========================== =================
Alternatively a dash tuple of the following form can be provided::
(offset, onoffseq),
where ``onoffseq`` is an even length tuple of on and off ink
in points.
ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' |
(offset, on-off-dash-seq) |
``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` |
``' '`` | ``''``]
Parameters
----------
ls : { '-', '--', '-.', ':'} and more see description
The line style.
"""
if ls is None:
ls = "solid"
self._linestyle = ls
# get the unscalled dash pattern
offset, ls = self._us_dashes = mlines._get_dash_pattern(ls)
# scale the dash pattern by the linewidth
self._dashoffset, self._dashes = mlines._scale_dashes(
offset, ls, self._linewidth)
self.stale = True
def set_ls(self, ls):
"""alias for set_linestyle"""
return self.set_linestyle(ls)
def set_fill(self, b):
"""
Set whether to fill the patch.
Parameters
----------
b : bool
.. ACCEPTS: bool
"""
self._fill = bool(b)
self._set_facecolor(self._original_facecolor)
self._set_edgecolor(self._original_edgecolor)
self.stale = True
def get_fill(self):
'return whether fill is set'
return self._fill
# Make fill a property so as to preserve the long-standing
# but somewhat inconsistent behavior in which fill was an
# attribute.
fill = property(get_fill, set_fill)
def set_capstyle(self, s):
"""
Set the patch capstyle
ACCEPTS: ['butt' | 'round' | 'projecting']
"""
s = s.lower()
if s not in self.validCap:
raise ValueError('set_capstyle passed "%s";\n' % (s,) +
'valid capstyles are %s' % (self.validCap,))
self._capstyle = s
self.stale = True
def get_capstyle(self):
"Return the current capstyle"
return self._capstyle
def set_joinstyle(self, s):
"""
Set the patch joinstyle
ACCEPTS: ['miter' | 'round' | 'bevel']
"""
s = s.lower()
if s not in self.validJoin:
raise ValueError('set_joinstyle passed "%s";\n' % (s,) +
'valid joinstyles are %s' % (self.validJoin,))
self._joinstyle = s
self.stale = True
def get_joinstyle(self):
"Return the current joinstyle"
return self._joinstyle
def set_hatch(self, hatch):
"""
Set the hatching pattern
*hatch* can be one of::
/ - diagonal hatching
\\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars
Letters can be combined, in which case all the specified
hatchings are done. If same letter repeats, it increases the
density of hatching of that pattern.
Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.
ACCEPTS: ['/' | '\\\\' | '|' | '-' | '+' | 'x' | 'o' | 'O' | '.' | '*']
"""
self._hatch = hatch
self.stale = True
def get_hatch(self):
'Return the current hatching pattern'
return self._hatch
@artist.allow_rasterization
def draw(self, renderer):
'Draw the :class:`Patch` to the given *renderer*.'
if not self.get_visible():
return
renderer.open_group('patch', self.get_gid())
gc = renderer.new_gc()
gc.set_foreground(self._edgecolor, isRGBA=True)
lw = self._linewidth
if self._edgecolor[3] == 0:
lw = 0
gc.set_linewidth(lw)
gc.set_dashes(0, self._dashes)
gc.set_capstyle(self._capstyle)
gc.set_joinstyle(self._joinstyle)
gc.set_antialiased(self._antialiased)
self._set_gc_clip(gc)
gc.set_url(self._url)
gc.set_snap(self.get_snap())
rgbFace = self._facecolor
if rgbFace[3] == 0:
rgbFace = None # (some?) renderers expect this as no-fill signal
gc.set_alpha(self._alpha)
if self._hatch:
gc.set_hatch(self._hatch)
try:
gc.set_hatch_color(self._hatch_color)
except AttributeError:
# if we end up with a GC that does not have this method
warnings.warn("Your backend does not have support for "
"setting the hatch color.")
if self.get_sketch_params() is not None:
gc.set_sketch_params(*self.get_sketch_params())
path = self.get_path()
transform = self.get_transform()
tpath = transform.transform_path_non_affine(path)
affine = transform.get_affine()
if self.get_path_effects():
from matplotlib.patheffects import PathEffectRenderer
renderer = PathEffectRenderer(self.get_path_effects(), renderer)
renderer.draw_path(gc, tpath, affine, rgbFace)
gc.restore()
renderer.close_group('patch')
self.stale = False
def get_path(self):
"""
Return the path of this patch
"""
raise NotImplementedError('Derived must override')
def get_window_extent(self, renderer=None):
return self.get_path().get_extents(self.get_transform())
patchdoc = artist.kwdoc(Patch)
for k in ('Rectangle', 'Circle', 'RegularPolygon', 'Polygon', 'Wedge', 'Arrow',
'FancyArrow', 'YAArrow', 'CirclePolygon', 'Ellipse', 'Arc',
'FancyBboxPatch', 'Patch'):
docstring.interpd.update({k: patchdoc})
# define Patch.__init__ docstring after the class has been added to interpd
docstring.dedent_interpd(Patch.__init__)
class Shadow(Patch):
def __str__(self):
return "Shadow(%s)" % (str(self.patch))
@docstring.dedent_interpd
def __init__(self, patch, ox, oy, props=None, **kwargs):
"""
Create a shadow of the given *patch* offset by *ox*, *oy*.
*props*, if not *None*, is a patch property update dictionary.
If *None*, the shadow will have have the same color as the face,
but darkened.
kwargs are
%(Patch)s
"""
Patch.__init__(self)
self.patch = patch
self.props = props
self._ox, self._oy = ox, oy
self._shadow_transform = transforms.Affine2D()
self._update()
def _update(self):
self.update_from(self.patch)
# Place the shadow patch directly behind the inherited patch.
self.set_zorder(np.nextafter(self.patch.zorder, -np.inf))
if self.props is not None:
self.update(self.props)
else:
r, g, b, a = colors.to_rgba(self.patch.get_facecolor())
rho = 0.3
r = rho * r
g = rho * g
b = rho * b
self.set_facecolor((r, g, b, 0.5))
self.set_edgecolor((r, g, b, 0.5))
self.set_alpha(0.5)
def _update_transform(self, renderer):
ox = renderer.points_to_pixels(self._ox)
oy = renderer.points_to_pixels(self._oy)
self._shadow_transform.clear().translate(ox, oy)
def _get_ox(self):
return self._ox
def _set_ox(self, ox):
self._ox = ox
def _get_oy(self):
return self._oy
def _set_oy(self, oy):
self._oy = oy
def get_path(self):
return self.patch.get_path()
def get_patch_transform(self):
return self.patch.get_patch_transform() + self._shadow_transform
def draw(self, renderer):
self._update_transform(renderer)
Patch.draw(self, renderer)
class Rectangle(Patch):
"""
Draw a rectangle with lower left at *xy* = (*x*, *y*) with
specified *width*, *height* and rotation *angle*.
"""
def __str__(self):
pars = self._x0, self._y0, self._width, self._height, self.angle
fmt = "Rectangle(xy=(%g, %g), width=%g, height=%g, angle=%g)"
return fmt % pars
@docstring.dedent_interpd
def __init__(self, xy, width, height, angle=0.0, **kwargs):
"""
Parameters
----------
xy: length-2 tuple
The bottom and left rectangle coordinates
width:
Rectangle width
height:
Rectangle height
angle: float, optional
rotation in degrees anti-clockwise about *xy* (default is 0.0)
fill: bool, optional
Whether to fill the rectangle (default is ``True``)
Notes
-----
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self._x0 = xy[0]
self._y0 = xy[1]
self._width = width
self._height = height
self._x1 = self._x0 + self._width
self._y1 = self._y0 + self._height
self.angle = float(angle)
# Note: This cannot be calculated until this is added to an Axes
self._rect_transform = transforms.IdentityTransform()
def get_path(self):
"""
Return the vertices of the rectangle
"""
return Path.unit_rectangle()
def _update_patch_transform(self):
"""NOTE: This cannot be called until after this has been added
to an Axes, otherwise unit conversion will fail. This
makes it very important to call the accessor method and
not directly access the transformation member variable.
"""
x0, y0, x1, y1 = self._convert_units()
bbox = transforms.Bbox.from_extents(x0, y0, x1, y1)
rot_trans = transforms.Affine2D()
rot_trans.rotate_deg_around(x0, y0, self.angle)
self._rect_transform = transforms.BboxTransformTo(bbox)
self._rect_transform += rot_trans
def _update_x1(self):
self._x1 = self._x0 + self._width
def _update_y1(self):
self._y1 = self._y0 + self._height
def _convert_units(self):
'''
Convert bounds of the rectangle
'''
x0 = self.convert_xunits(self._x0)
y0 = self.convert_yunits(self._y0)
x1 = self.convert_xunits(self._x1)
y1 = self.convert_yunits(self._y1)
return x0, y0, x1, y1
def get_patch_transform(self):
self._update_patch_transform()
return self._rect_transform
def get_x(self):
"Return the left coord of the rectangle"
return self._x0
def get_y(self):
"Return the bottom coord of the rectangle"
return self._y0
def get_xy(self):
"Return the left and bottom coords of the rectangle"
return self._x0, self._y0
def get_width(self):
"Return the width of the rectangle"
return self._width
def get_height(self):
"Return the height of the rectangle"
return self._height
def set_x(self, x):
"Set the left coord of the rectangle"
self._x0 = x
self._update_x1()
self.stale = True
def set_y(self, y):
"Set the bottom coord of the rectangle"
self._y0 = y
self._update_y1()
self.stale = True
def set_xy(self, xy):
"""
Set the left and bottom coords of the rectangle
ACCEPTS: 2-item sequence
"""
self._x0, self._y0 = xy
self._update_x1()
self._update_y1()
self.stale = True
def set_width(self, w):
"Set the width of the rectangle"
self._width = w
self._update_x1()
self.stale = True
def set_height(self, h):
"Set the height of the rectangle"
self._height = h
self._update_y1()
self.stale = True
def set_bounds(self, *args):
"""
Set the bounds of the rectangle: l,b,w,h
ACCEPTS: (left, bottom, width, height)
"""
if len(args) == 0:
l, b, w, h = args[0]
else:
l, b, w, h = args
self._x0 = l
self._y0 = b
self._width = w
self._height = h
self._update_x1()
self._update_y1()
self.stale = True
def get_bbox(self):
x0, y0, x1, y1 = self._convert_units()
return transforms.Bbox.from_extents(x0, y0, x1, y1)
xy = property(get_xy, set_xy)
class RegularPolygon(Patch):
"""
A regular polygon patch.
"""
def __str__(self):
return "Poly%d(%g,%g)" % (self._numVertices, self._xy[0], self._xy[1])
@docstring.dedent_interpd
def __init__(self, xy, numVertices, radius=5, orientation=0,
**kwargs):
"""
Constructor arguments:
*xy*
A length 2 tuple (*x*, *y*) of the center.
*numVertices*
the number of vertices.
*radius*
The distance from the center to each of the vertices.
*orientation*
rotates the polygon (in radians).
Valid kwargs are:
%(Patch)s
"""
self._xy = xy
self._numVertices = numVertices
self._orientation = orientation
self._radius = radius
self._path = Path.unit_regular_polygon(numVertices)
self._poly_transform = transforms.Affine2D()
self._update_transform()
Patch.__init__(self, **kwargs)
def _update_transform(self):
self._poly_transform.clear() \
.scale(self.radius) \
.rotate(self.orientation) \
.translate(*self.xy)
def _get_xy(self):
return self._xy
def _set_xy(self, xy):
self._xy = xy
self._update_transform()
xy = property(_get_xy, _set_xy)
def _get_orientation(self):
return self._orientation
def _set_orientation(self, orientation):
self._orientation = orientation
self._update_transform()
orientation = property(_get_orientation, _set_orientation)
def _get_radius(self):
return self._radius
def _set_radius(self, radius):
self._radius = radius
self._update_transform()
radius = property(_get_radius, _set_radius)
def _get_numvertices(self):
return self._numVertices
def _set_numvertices(self, numVertices):
self._numVertices = numVertices
numvertices = property(_get_numvertices, _set_numvertices)
def get_path(self):
return self._path
def get_patch_transform(self):
self._update_transform()
return self._poly_transform
class PathPatch(Patch):
"""
A general polycurve path patch.
"""
_edge_default = True
def __str__(self):
return "Poly((%g, %g) ...)" % tuple(self._path.vertices[0])
@docstring.dedent_interpd
def __init__(self, path, **kwargs):
"""
*path* is a :class:`matplotlib.path.Path` object.
Valid kwargs are:
%(Patch)s
.. seealso::
:class:`Patch`
For additional kwargs
"""
Patch.__init__(self, **kwargs)
self._path = path
def get_path(self):
return self._path
class Polygon(Patch):
"""
A general polygon patch.
"""
def __str__(self):
return "Poly((%g, %g) ...)" % tuple(self._path.vertices[0])
@docstring.dedent_interpd
def __init__(self, xy, closed=True, **kwargs):
"""
*xy* is a numpy array with shape Nx2.
If *closed* is *True*, the polygon will be closed so the
starting and ending points are the same.
Valid kwargs are:
%(Patch)s
.. seealso::
:class:`Patch`
For additional kwargs
"""
Patch.__init__(self, **kwargs)
self._closed = closed
self.set_xy(xy)
def get_path(self):
"""
Get the path of the polygon
Returns
-------
path : Path
The :class:`~matplotlib.path.Path` object for
the polygon
"""
return self._path
def get_closed(self):
"""
Returns if the polygon is closed
Returns
-------
closed : bool
If the path is closed
"""
return self._closed
def set_closed(self, closed):
"""
Set if the polygon is closed
Parameters
----------
closed : bool
True if the polygon is closed
"""
if self._closed == bool(closed):
return
self._closed = bool(closed)
self.set_xy(self.get_xy())
self.stale = True
def get_xy(self):
"""
Get the vertices of the path
Returns
-------
vertices : numpy array
The coordinates of the vertices as a Nx2
ndarray.
"""
return self._path.vertices
def set_xy(self, xy):
"""
Set the vertices of the polygon
Parameters
----------
xy : numpy array or iterable of pairs
The coordinates of the vertices as a Nx2
ndarray or iterable of pairs.
"""
xy = np.asarray(xy)
if self._closed:
if len(xy) and (xy[0] != xy[-1]).any():
xy = np.concatenate([xy, [xy[0]]])
else:
if len(xy) > 2 and (xy[0] == xy[-1]).all():
xy = xy[:-1]
self._path = Path(xy, closed=self._closed)
self.stale = True
_get_xy = get_xy
_set_xy = set_xy
xy = property(
get_xy, set_xy, None,
"""Set/get the vertices of the polygon. This property is
provided for backward compatibility with matplotlib 0.91.x
only. New code should use
:meth:`~matplotlib.patches.Polygon.get_xy` and
:meth:`~matplotlib.patches.Polygon.set_xy` instead.""")
class Wedge(Patch):
"""
Wedge shaped patch.
"""
def __str__(self):
pars = (self.center[0], self.center[1], self.r,
self.theta1, self.theta2, self.width)
fmt = "Wedge(center=(%g, %g), r=%g, theta1=%g, theta2=%g, width=%s)"
return fmt % pars
@docstring.dedent_interpd
def __init__(self, center, r, theta1, theta2, width=None, **kwargs):
"""
Draw a wedge centered at *x*, *y* center with radius *r* that
sweeps *theta1* to *theta2* (in degrees). If *width* is given,
then a partial wedge is drawn from inner radius *r* - *width*
to outer radius *r*.
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self.center = center
self.r, self.width = r, width
self.theta1, self.theta2 = theta1, theta2
self._patch_transform = transforms.IdentityTransform()
self._recompute_path()
def _recompute_path(self):
# Inner and outer rings are connected unless the annulus is complete
if abs((self.theta2 - self.theta1) - 360) <= 1e-12:
theta1, theta2 = 0, 360
connector = Path.MOVETO
else:
theta1, theta2 = self.theta1, self.theta2
connector = Path.LINETO
# Form the outer ring
arc = Path.arc(theta1, theta2)
if self.width is not None:
# Partial annulus needs to draw the outer ring
# followed by a reversed and scaled inner ring
v1 = arc.vertices
v2 = arc.vertices[::-1] * (self.r - self.width) / self.r
v = np.vstack([v1, v2, v1[0, :], (0, 0)])
c = np.hstack([arc.codes, arc.codes, connector, Path.CLOSEPOLY])
c[len(arc.codes)] = connector
else:
# Wedge doesn't need an inner ring
v = np.vstack([arc.vertices, [(0, 0), arc.vertices[0, :], (0, 0)]])
c = np.hstack([arc.codes, [connector, connector, Path.CLOSEPOLY]])
# Shift and scale the wedge to the final location.
v *= self.r
v += np.asarray(self.center)
self._path = Path(v, c)
def set_center(self, center):
self._path = None
self.center = center
self.stale = True
def set_radius(self, radius):
self._path = None
self.r = radius
self.stale = True
def set_theta1(self, theta1):
self._path = None
self.theta1 = theta1
self.stale = True
def set_theta2(self, theta2):
self._path = None
self.theta2 = theta2
self.stale = True
def set_width(self, width):
self._path = None
self.width = width
self.stale = True
def get_path(self):
if self._path is None:
self._recompute_path()
return self._path
# COVERAGE NOTE: Not used internally or from examples
class Arrow(Patch):
"""
An arrow patch.
"""
def __str__(self):
return "Arrow()"
_path = Path([[0.0, 0.1], [0.0, -0.1],
[0.8, -0.1], [0.8, -0.3],
[1.0, 0.0], [0.8, 0.3],
[0.8, 0.1], [0.0, 0.1]],
closed=True)
@docstring.dedent_interpd
def __init__(self, x, y, dx, dy, width=1.0, **kwargs):
"""
Draws an arrow from (*x*, *y*) to (*x* + *dx*, *y* + *dy*).
The width of the arrow is scaled by *width*.
Parameters
----------
x : scalar
x coordinate of the arrow tail
y : scalar
y coordinate of the arrow tail
dx : scalar
Arrow length in the x direction
dy : scalar
Arrow length in the y direction
width : scalar, optional (default: 1)
Scale factor for the width of the arrow. With a default value of
1, the tail width is 0.2 and head width is 0.6.
**kwargs :
Keyword arguments control the :class:`~matplotlib.patches.Patch`
properties:
%(Patch)s
See Also
--------
:class:`FancyArrow` :
Patch that allows independent control of the head and tail
properties
"""
Patch.__init__(self, **kwargs)
L = np.hypot(dx, dy)
if L != 0:
cx = dx / L
sx = dy / L
else:
# Account for division by zero
cx, sx = 0, 1
trans1 = transforms.Affine2D().scale(L, width)
trans2 = transforms.Affine2D.from_values(cx, sx, -sx, cx, 0.0, 0.0)
trans3 = transforms.Affine2D().translate(x, y)
trans = trans1 + trans2 + trans3
self._patch_transform = trans.frozen()
def get_path(self):
return self._path
def get_patch_transform(self):
return self._patch_transform
class FancyArrow(Polygon):
"""
Like Arrow, but lets you set head width and head height independently.
"""
_edge_default = True
def __str__(self):
return "FancyArrow()"
@docstring.dedent_interpd
def __init__(self, x, y, dx, dy, width=0.001, length_includes_head=False,
head_width=None, head_length=None, shape='full', overhang=0,
head_starts_at_zero=False, **kwargs):
"""
Constructor arguments
*width*: float (default: 0.001)
width of full arrow tail
*length_includes_head*: bool (default: False)
True if head is to be counted in calculating the length.
*head_width*: float or None (default: 3*width)
total width of the full arrow head
*head_length*: float or None (default: 1.5 * head_width)
length of arrow head
*shape*: ['full', 'left', 'right'] (default: 'full')
draw the left-half, right-half, or full arrow
*overhang*: float (default: 0)
fraction that the arrow is swept back (0 overhang means
triangular shape). Can be negative or greater than one.
*head_starts_at_zero*: bool (default: False)
if True, the head starts being drawn at coordinate 0
instead of ending at coordinate 0.
Other valid kwargs (inherited from :class:`Patch`) are:
%(Patch)s
"""
if head_width is None:
head_width = 3 * width
if head_length is None:
head_length = 1.5 * head_width
distance = np.hypot(dx, dy)
if length_includes_head:
length = distance
else:
length = distance + head_length
if not length:
verts = [] # display nothing if empty
else:
# start by drawing horizontal arrow, point at (0,0)
hw, hl, hs, lw = head_width, head_length, overhang, width
left_half_arrow = np.array([
[0.0, 0.0], # tip
[-hl, -hw / 2.0], # leftmost
[-hl * (1 - hs), -lw / 2.0], # meets stem
[-length, -lw / 2.0], # bottom left
[-length, 0],
])
# if we're not including the head, shift up by head length
if not length_includes_head:
left_half_arrow += [head_length, 0]
# if the head starts at 0, shift up by another head length
if head_starts_at_zero:
left_half_arrow += [head_length / 2.0, 0]
# figure out the shape, and complete accordingly
if shape == 'left':
coords = left_half_arrow
else:
right_half_arrow = left_half_arrow * [1, -1]
if shape == 'right':
coords = right_half_arrow
elif shape == 'full':
# The half-arrows contain the midpoint of the stem,
# which we can omit from the full arrow. Including it
# twice caused a problem with xpdf.
coords = np.concatenate([left_half_arrow[:-1],
right_half_arrow[-2::-1]])
else:
raise ValueError("Got unknown shape: %s" % shape)
if distance != 0:
cx = dx / distance
sx = dy / distance
else:
# Account for division by zero
cx, sx = 0, 1
M = [[cx, sx], [-sx, cx]]
verts = np.dot(coords, M) + (x + dx, y + dy)
Polygon.__init__(self, list(map(tuple, verts)), closed=True, **kwargs)
docstring.interpd.update({"FancyArrow": FancyArrow.__init__.__doc__})
class YAArrow(Patch):
"""
Yet another arrow class.
This is an arrow that is defined in display space and has a tip at
*x1*, *y1* and a base at *x2*, *y2*.
"""
def __str__(self):
return "YAArrow()"
@docstring.dedent_interpd
def __init__(self, figure, xytip, xybase,
width=4, frac=0.1, headwidth=12, **kwargs):
"""
Constructor arguments:
*xytip*
(*x*, *y*) location of arrow tip
*xybase*
(*x*, *y*) location the arrow base mid point
*figure*
The :class:`~matplotlib.figure.Figure` instance
(fig.dpi)
*width*
The width of the arrow in points
*frac*
The fraction of the arrow length occupied by the head
*headwidth*
The width of the base of the arrow head in points
Valid kwargs are:
%(Patch)s
"""
self.xytip = xytip
self.xybase = xybase
self.width = width
self.frac = frac
self.headwidth = headwidth
Patch.__init__(self, **kwargs)
# Set self.figure after Patch.__init__, since it sets self.figure to
# None
self.figure = figure
def get_path(self):
# Since this is dpi dependent, we need to recompute the path
# every time.
# the base vertices
x1, y1 = self.xytip
x2, y2 = self.xybase
k1 = self.width * self.figure.dpi / 72. / 2.
k2 = self.headwidth * self.figure.dpi / 72. / 2.
xb1, yb1, xb2, yb2 = self.getpoints(x1, y1, x2, y2, k1)
# a point on the segment 20% of the distance from the tip to the base
theta = math.atan2(y2 - y1, x2 - x1)
r = math.sqrt((y2 - y1) ** 2. + (x2 - x1) ** 2.)
xm = x1 + self.frac * r * math.cos(theta)
ym = y1 + self.frac * r * math.sin(theta)
xc1, yc1, xc2, yc2 = self.getpoints(x1, y1, xm, ym, k1)
xd1, yd1, xd2, yd2 = self.getpoints(x1, y1, xm, ym, k2)
xs = self.convert_xunits([xb1, xb2, xc2, xd2, x1, xd1, xc1, xb1])
ys = self.convert_yunits([yb1, yb2, yc2, yd2, y1, yd1, yc1, yb1])
return Path(np.column_stack([xs, ys]), closed=True)
def get_patch_transform(self):
return transforms.IdentityTransform()
def getpoints(self, x1, y1, x2, y2, k):
"""
For line segment defined by (*x1*, *y1*) and (*x2*, *y2*)
return the points on the line that is perpendicular to the
line and intersects (*x2*, *y2*) and the distance from (*x2*,
*y2*) of the returned points is *k*.
"""
x1, y1, x2, y2, k = map(float, (x1, y1, x2, y2, k))
if y2 - y1 == 0:
return x2, y2 + k, x2, y2 - k
elif x2 - x1 == 0:
return x2 + k, y2, x2 - k, y2
m = (y2 - y1) / (x2 - x1)
pm = -1. / m
a = 1
b = -2 * y2
c = y2 ** 2. - k ** 2. * pm ** 2. / (1. + pm ** 2.)
y3a = (-b + math.sqrt(b ** 2 - 4 * a * c)) / (2 * a)
x3a = (y3a - y2) / pm + x2
y3b = (-b - math.sqrt(b ** 2 - 4 * a * c)) / (2 * a)
x3b = (y3b - y2) / pm + x2
return x3a, y3a, x3b, y3b
class CirclePolygon(RegularPolygon):
"""
A polygon-approximation of a circle patch.
"""
def __str__(self):
return "CirclePolygon(%d,%d)" % self.center
@docstring.dedent_interpd
def __init__(self, xy, radius=5,
resolution=20, # the number of vertices
** kwargs):
"""
Create a circle at *xy* = (*x*, *y*) with given *radius*.
This circle is approximated by a regular polygon with
*resolution* sides. For a smoother circle drawn with splines,
see :class:`~matplotlib.patches.Circle`.
Valid kwargs are:
%(Patch)s
"""
RegularPolygon.__init__(self, xy,
resolution,
radius,
orientation=0,
**kwargs)
class Ellipse(Patch):
"""
A scale-free ellipse.
"""
def __str__(self):
pars = (self.center[0], self.center[1],
self.width, self.height, self.angle)
fmt = "Ellipse(xy=(%s, %s), width=%s, height=%s, angle=%s)"
return fmt % pars
@docstring.dedent_interpd
def __init__(self, xy, width, height, angle=0.0, **kwargs):
"""
*xy*
center of ellipse
*width*
total length (diameter) of horizontal axis
*height*
total length (diameter) of vertical axis
*angle*
rotation in degrees (anti-clockwise)
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self.center = xy
self.width, self.height = width, height
self.angle = angle
self._path = Path.unit_circle()
# Note: This cannot be calculated until this is added to an Axes
self._patch_transform = transforms.IdentityTransform()
def _recompute_transform(self):
"""NOTE: This cannot be called until after this has been added
to an Axes, otherwise unit conversion will fail. This
makes it very important to call the accessor method and
not directly access the transformation member variable.
"""
center = (self.convert_xunits(self.center[0]),
self.convert_yunits(self.center[1]))
width = self.convert_xunits(self.width)
height = self.convert_yunits(self.height)
self._patch_transform = transforms.Affine2D() \
.scale(width * 0.5, height * 0.5) \
.rotate_deg(self.angle) \
.translate(*center)
def get_path(self):
"""
Return the vertices of the rectangle
"""
return self._path
def get_patch_transform(self):
self._recompute_transform()
return self._patch_transform
class Circle(Ellipse):
"""
A circle patch.
"""
def __str__(self):
pars = self.center[0], self.center[1], self.radius
fmt = "Circle(xy=(%g, %g), radius=%g)"
return fmt % pars
@docstring.dedent_interpd
def __init__(self, xy, radius=5, **kwargs):
"""
Create true circle at center *xy* = (*x*, *y*) with given
*radius*. Unlike :class:`~matplotlib.patches.CirclePolygon`
which is a polygonal approximation, this uses Bézier splines
and is much closer to a scale-free circle.
Valid kwargs are:
%(Patch)s
"""
Ellipse.__init__(self, xy, radius * 2, radius * 2, **kwargs)
self.radius = radius
def set_radius(self, radius):
"""
Set the radius of the circle
ACCEPTS: float
"""
self.width = self.height = 2 * radius
self.stale = True
def get_radius(self):
'return the radius of the circle'
return self.width / 2.
radius = property(get_radius, set_radius)
class Arc(Ellipse):
"""
An elliptical arc. Because it performs various optimizations, it
can not be filled.
The arc must be used in an :class:`~matplotlib.axes.Axes`
instance---it can not be added directly to a
:class:`~matplotlib.figure.Figure`---because it is optimized to
only render the segments that are inside the axes bounding box
with high resolution.
"""
def __str__(self):
pars = (self.center[0], self.center[1], self.width,
self.height, self.angle, self.theta1, self.theta2)
fmt = ("Arc(xy=(%g, %g), width=%g, "
"height=%g, angle=%g, theta1=%g, theta2=%g)")
return fmt % pars
@docstring.dedent_interpd
def __init__(self, xy, width, height, angle=0.0,
theta1=0.0, theta2=360.0, **kwargs):
"""
The following args are supported:
*xy*
center of ellipse
*width*
length of horizontal axis
*height*
length of vertical axis
*angle*
rotation in degrees (anti-clockwise)
*theta1*
starting angle of the arc in degrees
*theta2*
ending angle of the arc in degrees
If *theta1* and *theta2* are not provided, the arc will form a
complete ellipse.
Valid kwargs are:
%(Patch)s
"""
fill = kwargs.setdefault('fill', False)
if fill:
raise ValueError("Arc objects can not be filled")
Ellipse.__init__(self, xy, width, height, angle, **kwargs)
self.theta1 = theta1
self.theta2 = theta2
@artist.allow_rasterization
def draw(self, renderer):
"""
Ellipses are normally drawn using an approximation that uses
eight cubic bezier splines. The error of this approximation
is 1.89818e-6, according to this unverified source:
Lancaster, Don. Approximating a Circle or an Ellipse Using
Four Bezier Cubic Splines.
http://www.tinaja.com/glib/ellipse4.pdf
There is a use case where very large ellipses must be drawn
with very high accuracy, and it is too expensive to render the
entire ellipse with enough segments (either splines or line
segments). Therefore, in the case where either radius of the
ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset
from the ideal), a different technique is used.
In that case, only the visible parts of the ellipse are drawn,
with each visible arc using a fixed number of spline segments
(8). The algorithm proceeds as follows:
1. The points where the ellipse intersects the axes bounding
box are located. (This is done be performing an inverse
transformation on the axes bbox such that it is relative
to the unit circle -- this makes the intersection
calculation much easier than doing rotated ellipse
intersection directly).
This uses the "line intersecting a circle" algorithm
from:
Vince, John. Geometry for Computer Graphics: Formulae,
Examples & Proofs. London: Springer-Verlag, 2005.
2. The angles of each of the intersection points are
calculated.
3. Proceeding counterclockwise starting in the positive
x-direction, each of the visible arc-segments between the
pairs of vertices are drawn using the bezier arc
approximation technique implemented in
:meth:`matplotlib.path.Path.arc`.
"""
if not hasattr(self, 'axes'):
raise RuntimeError('Arcs can only be used in Axes instances')
self._recompute_transform()
width = self.convert_xunits(self.width)
height = self.convert_yunits(self.height)
# If the width and height of ellipse are not equal, take into account
# stretching when calculating angles to draw between
def theta_stretch(theta, scale):
theta = np.deg2rad(theta)
x = np.cos(theta)
y = np.sin(theta)
return np.rad2deg(np.arctan2(scale * y, x))
theta1 = theta_stretch(self.theta1, width / height)
theta2 = theta_stretch(self.theta2, width / height)
# Get width and height in pixels
width, height = self.get_transform().transform_point((width, height))
inv_error = (1.0 / 1.89818e-6) * 0.5
if width < inv_error and height < inv_error:
self._path = Path.arc(theta1, theta2)
return Patch.draw(self, renderer)
def iter_circle_intersect_on_line(x0, y0, x1, y1):
dx = x1 - x0
dy = y1 - y0
dr2 = dx * dx + dy * dy
D = x0 * y1 - x1 * y0
D2 = D * D
discrim = dr2 - D2
# Single (tangential) intersection
if discrim == 0.0:
x = (D * dy) / dr2
y = (-D * dx) / dr2
yield x, y
elif discrim > 0.0:
# The definition of "sign" here is different from
# np.sign: we never want to get 0.0
if dy < 0.0:
sign_dy = -1.0
else:
sign_dy = 1.0
sqrt_discrim = np.sqrt(discrim)
for sign in (1., -1.):
x = (D * dy + sign * sign_dy * dx * sqrt_discrim) / dr2
y = (-D * dx + sign * np.abs(dy) * sqrt_discrim) / dr2
yield x, y
def iter_circle_intersect_on_line_seg(x0, y0, x1, y1):
epsilon = 1e-9
if x1 < x0:
x0e, x1e = x1, x0
else:
x0e, x1e = x0, x1
if y1 < y0:
y0e, y1e = y1, y0
else:
y0e, y1e = y0, y1
x0e -= epsilon
y0e -= epsilon
x1e += epsilon
y1e += epsilon
for x, y in iter_circle_intersect_on_line(x0, y0, x1, y1):
if x >= x0e and x <= x1e and y >= y0e and y <= y1e:
yield x, y
# Transforms the axes box_path so that it is relative to the unit
# circle in the same way that it is relative to the desired
# ellipse.
box_path = Path.unit_rectangle()
box_path_transform = transforms.BboxTransformTo(self.axes.bbox) + \
self.get_transform().inverted()
box_path = box_path.transformed(box_path_transform)
thetas = set()
# For each of the point pairs, there is a line segment
for p0, p1 in zip(box_path.vertices[:-1], box_path.vertices[1:]):
x0, y0 = p0
x1, y1 = p1
for x, y in iter_circle_intersect_on_line_seg(x0, y0, x1, y1):
theta = np.arccos(x)
if y < 0:
theta = 2 * np.pi - theta
# Convert radians to angles
theta = np.rad2deg(theta)
if theta1 < theta < theta2:
thetas.add(theta)
thetas = sorted(thetas) + [theta2]
last_theta = theta1
theta1_rad = np.deg2rad(theta1)
inside = box_path.contains_point((np.cos(theta1_rad),
np.sin(theta1_rad)))
# save original path
path_original = self._path
for theta in thetas:
if inside:
self._path = Path.arc(last_theta, theta, 8)
Patch.draw(self, renderer)
inside = False
else:
inside = True
last_theta = theta
# restore original path
self._path = path_original
def bbox_artist(artist, renderer, props=None, fill=True):
"""
This is a debug function to draw a rectangle around the bounding
box returned by
:meth:`~matplotlib.artist.Artist.get_window_extent` of an artist,
to test whether the artist is returning the correct bbox.
*props* is a dict of rectangle props with the additional property
'pad' that sets the padding around the bbox in points.
"""
if props is None:
props = {}
props = props.copy() # don't want to alter the pad externally
pad = props.pop('pad', 4)
pad = renderer.points_to_pixels(pad)
bbox = artist.get_window_extent(renderer)
l, b, w, h = bbox.bounds
l -= pad / 2.
b -= pad / 2.
w += pad
h += pad
r = Rectangle(xy=(l, b),
width=w,
height=h,
fill=fill,
)
r.set_transform(transforms.IdentityTransform())
r.set_clip_on(False)
r.update(props)
r.draw(renderer)
def draw_bbox(bbox, renderer, color='k', trans=None):
"""
This is a debug function to draw a rectangle around the bounding
box returned by
:meth:`~matplotlib.artist.Artist.get_window_extent` of an artist,
to test whether the artist is returning the correct bbox.
"""
l, b, w, h = bbox.bounds
r = Rectangle(xy=(l, b),
width=w,
height=h,
edgecolor=color,
fill=False,
)
if trans is not None:
r.set_transform(trans)
r.set_clip_on(False)
r.draw(renderer)
def _pprint_table(_table, leadingspace=2):
"""
Given the list of list of strings, return a string of REST table format.
"""
if leadingspace:
pad = ' ' * leadingspace
else:
pad = ''
columns = [[] for cell in _table[0]]
for row in _table:
for column, cell in zip(columns, row):
column.append(cell)
col_len = [max(len(cell) for cell in column) for column in columns]
lines = []
table_formatstr = pad + ' '.join([('=' * cl) for cl in col_len])
lines.append('')
lines.append(table_formatstr)
lines.append(pad + ' '.join([cell.ljust(cl)
for cell, cl
in zip(_table[0], col_len)]))
lines.append(table_formatstr)
lines.extend([(pad + ' '.join([cell.ljust(cl)
for cell, cl
in zip(row, col_len)]))
for row in _table[1:]])
lines.append(table_formatstr)
lines.append('')
return "\n".join(lines)
def _pprint_styles(_styles):
"""
A helper function for the _Style class. Given the dictionary of
(stylename : styleclass), return a formatted string listing all the
styles. Used to update the documentation.
"""
import inspect
_table = [["Class", "Name", "Attrs"]]
for name, cls in sorted(_styles.items()):
if six.PY2:
args, varargs, varkw, defaults = inspect.getargspec(cls.__init__)
else:
(args, varargs, varkw, defaults, kwonlyargs, kwonlydefs,
annotations) = inspect.getfullargspec(cls.__init__)
if defaults:
args = [(argname, argdefault)
for argname, argdefault in zip(args[1:], defaults)]
else:
args = None
if args is None:
argstr = 'None'
else:
argstr = ",".join([("%s=%s" % (an, av))
for an, av
in args])
# adding ``quotes`` since - and | have special meaning in reST
_table.append([cls.__name__, "``%s``" % name, argstr])
return _pprint_table(_table)
def _simpleprint_styles(_styles):
"""
A helper function for the _Style class. Given the dictionary of
(stylename : styleclass), return a string rep of the list of keys.
Used to update the documentation.
"""
return "[{}]".format("|".join(map(" '{}' ".format, sorted(_styles))))
class _Style(object):
"""
A base class for the Styles. It is meant to be a container class,
where actual styles are declared as subclass of it, and it
provides some helper functions.
"""
def __new__(self, stylename, **kw):
"""
return the instance of the subclass with the given style name.
"""
# the "class" should have the _style_list attribute, which is
# a dictionary of stylname, style class paie.
_list = stylename.replace(" ", "").split(",")
_name = _list[0].lower()
try:
_cls = self._style_list[_name]
except KeyError:
raise ValueError("Unknown style : %s" % stylename)
try:
_args_pair = [cs.split("=") for cs in _list[1:]]
_args = {k: float(v) for k, v in _args_pair}
except ValueError:
raise ValueError("Incorrect style argument : %s" % stylename)
_args.update(kw)
return _cls(**_args)
@classmethod
def get_styles(klass):
"""
A class method which returns a dictionary of available styles.
"""
return klass._style_list
@classmethod
def pprint_styles(klass):
"""
A class method which returns a string of the available styles.
"""
return _pprint_styles(klass._style_list)
@classmethod
def register(klass, name, style):
"""
Register a new style.
"""
if not issubclass(style, klass._Base):
raise ValueError("%s must be a subclass of %s" % (style,
klass._Base))
klass._style_list[name] = style
class BoxStyle(_Style):
"""
:class:`BoxStyle` is a container class which defines several
boxstyle classes, which are used for :class:`FancyBboxPatch`.
A style object can be created as::
BoxStyle.Round(pad=0.2)
or::
BoxStyle("Round", pad=0.2)
or::
BoxStyle("Round, pad=0.2")
Following boxstyle classes are defined.
%(AvailableBoxstyles)s
An instance of any boxstyle class is an callable object,
whose call signature is::
__call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.)
and returns a :class:`Path` instance. *x0*, *y0*, *width* and
*height* specify the location and size of the box to be
drawn. *mutation_scale* determines the overall size of the
mutation (by which I mean the transformation of the rectangle to
the fancy box). *mutation_aspect* determines the aspect-ratio of
the mutation.
"""
_style_list = {}
class _Base(object):
"""
:class:`BBoxTransmuterBase` and its derivatives are used to make a
fancy box around a given rectangle. The :meth:`__call__` method
returns the :class:`~matplotlib.path.Path` of the fancy box. This
class is not an artist and actual drawing of the fancy box is done
by the :class:`FancyBboxPatch` class.
"""
# The derived classes are required to be able to be initialized
# w/o arguments, i.e., all its argument (except self) must have
# the default values.
def __init__(self):
"""
initializtion.
"""
super(BoxStyle._Base, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
"""
The transmute method is a very core of the
:class:`BboxTransmuter` class and must be overridden in the
subclasses. It receives the location and size of the
rectangle, and the mutation_size, with which the amount of
padding and etc. will be scaled. It returns a
:class:`~matplotlib.path.Path` instance.
"""
raise NotImplementedError('Derived must override')
def __call__(self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):
"""
Given the location and size of the box, return the path of
the box around it.
- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ration for the mutation.
"""
# The __call__ method is a thin wrapper around the transmute method
# and take care of the aspect.
if aspect_ratio is not None:
# Squeeze the given height by the aspect_ratio
y0, height = y0 / aspect_ratio, height / aspect_ratio
# call transmute method with squeezed height.
path = self.transmute(x0, y0, width, height, mutation_size)
vertices, codes = path.vertices, path.codes
# Restore the height
vertices[:, 1] = vertices[:, 1] * aspect_ratio
return Path(vertices, codes)
else:
return self.transmute(x0, y0, width, height, mutation_size)
def __reduce__(self):
# because we have decided to nest these classes, we need to
# add some more information to allow instance pickling.
return (cbook._NestedClassGetter(),
(BoxStyle, self.__class__.__name__),
self.__dict__
)
class Square(_Base):
"""
A simple square box.
"""
def __init__(self, pad=0.3):
"""
*pad*
amount of padding
"""
self.pad = pad
super(BoxStyle.Square, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
pad = mutation_size * self.pad
# width and height with padding added.
width, height = width + 2*pad, height + 2*pad
# boundary of the padded box
x0, y0 = x0 - pad, y0 - pad,
x1, y1 = x0 + width, y0 + height
vertices = [(x0, y0), (x1, y0), (x1, y1), (x0, y1), (x0, y0)]
codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY]
return Path(vertices, codes)
_style_list["square"] = Square
class Circle(_Base):
"""A simple circle box."""
def __init__(self, pad=0.3):
"""
Parameters
----------
pad : float
The amount of padding around the original box.
"""
self.pad = pad
super(BoxStyle.Circle, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
pad = mutation_size * self.pad
width, height = width + 2 * pad, height + 2 * pad
# boundary of the padded box
x0, y0 = x0 - pad, y0 - pad,
return Path.circle((x0 + width / 2, y0 + height / 2),
max(width, height) / 2)
_style_list["circle"] = Circle
class LArrow(_Base):
"""
(left) Arrow Box
"""
def __init__(self, pad=0.3):
self.pad = pad
super(BoxStyle.LArrow, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
# padding
pad = mutation_size * self.pad
# width and height with padding added.
width, height = width + 2. * pad, height + 2. * pad
# boundary of the padded box
x0, y0 = x0 - pad, y0 - pad,
x1, y1 = x0 + width, y0 + height
dx = (y1 - y0) / 2.
dxx = dx * .5
# adjust x0. 1.4 <- sqrt(2)
x0 = x0 + pad / 1.4
cp = [(x0 + dxx, y0), (x1, y0), (x1, y1), (x0 + dxx, y1),
(x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx),
(x0 + dxx, y0 - dxx), # arrow
(x0 + dxx, y0), (x0 + dxx, y0)]
com = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO,
Path.LINETO, Path.LINETO, Path.LINETO,
Path.LINETO, Path.CLOSEPOLY]
path = Path(cp, com)
return path
_style_list["larrow"] = LArrow
class RArrow(LArrow):
"""
(right) Arrow Box
"""
def __init__(self, pad=0.3):
super(BoxStyle.RArrow, self).__init__(pad)
def transmute(self, x0, y0, width, height, mutation_size):
p = BoxStyle.LArrow.transmute(self, x0, y0,
width, height, mutation_size)
p.vertices[:, 0] = 2 * x0 + width - p.vertices[:, 0]
return p
_style_list["rarrow"] = RArrow
class DArrow(_Base):
"""
(Double) Arrow Box
"""
# This source is copied from LArrow,
# modified to add a right arrow to the bbox.
def __init__(self, pad=0.3):
self.pad = pad
super(BoxStyle.DArrow, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
# padding
pad = mutation_size * self.pad
# width and height with padding added.
# The width is padded by the arrows, so we don't need to pad it.
height = height + 2. * pad
# boundary of the padded box
x0, y0 = x0 - pad, y0 - pad
x1, y1 = x0 + width, y0 + height
dx = (y1 - y0)/2.
dxx = dx * .5
# adjust x0. 1.4 <- sqrt(2)
x0 = x0 + pad / 1.4
cp = [(x0 + dxx, y0), (x1, y0), # bot-segment
(x1, y0 - dxx), (x1 + dx + dxx, y0 + dx),
(x1, y1 + dxx), # right-arrow
(x1, y1), (x0 + dxx, y1), # top-segment
(x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx),
(x0 + dxx, y0 - dxx), # left-arrow
(x0 + dxx, y0), (x0 + dxx, y0)] # close-poly
com = [Path.MOVETO, Path.LINETO,
Path.LINETO, Path.LINETO,
Path.LINETO,
Path.LINETO, Path.LINETO,
Path.LINETO, Path.LINETO,
Path.LINETO,
Path.LINETO, Path.CLOSEPOLY]
path = Path(cp, com)
return path
_style_list['darrow'] = DArrow
class Round(_Base):
"""
A box with round corners.
"""
def __init__(self, pad=0.3, rounding_size=None):
"""
*pad*
amount of padding
*rounding_size*
rounding radius of corners. *pad* if None
"""
self.pad = pad
self.rounding_size = rounding_size
super(BoxStyle.Round, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
# padding
pad = mutation_size * self.pad
# size of the roudning corner
if self.rounding_size:
dr = mutation_size * self.rounding_size
else:
dr = pad
width, height = width + 2. * pad, height + 2. * pad
x0, y0 = x0 - pad, y0 - pad,
x1, y1 = x0 + width, y0 + height
# Round corners are implemented as quadratic bezier. e.g.,
# [(x0, y0-dr), (x0, y0), (x0+dr, y0)] for lower left corner.
cp = [(x0 + dr, y0),
(x1 - dr, y0),
(x1, y0), (x1, y0 + dr),
(x1, y1 - dr),
(x1, y1), (x1 - dr, y1),
(x0 + dr, y1),
(x0, y1), (x0, y1 - dr),
(x0, y0 + dr),
(x0, y0), (x0 + dr, y0),
(x0 + dr, y0)]
com = [Path.MOVETO,
Path.LINETO,
Path.CURVE3, Path.CURVE3,
Path.LINETO,
Path.CURVE3, Path.CURVE3,
Path.LINETO,
Path.CURVE3, Path.CURVE3,
Path.LINETO,
Path.CURVE3, Path.CURVE3,
Path.CLOSEPOLY]
path = Path(cp, com)
return path
_style_list["round"] = Round
class Round4(_Base):
"""
Another box with round edges.
"""
def __init__(self, pad=0.3, rounding_size=None):
"""
*pad*
amount of padding
*rounding_size*
rounding size of edges. *pad* if None
"""
self.pad = pad
self.rounding_size = rounding_size
super(BoxStyle.Round4, self).__init__()
def transmute(self, x0, y0, width, height, mutation_size):
# padding
pad = mutation_size * self.pad
# roudning size. Use a half of the pad if not set.
if self.rounding_size:
dr = mutation_size * self.rounding_size
else:
dr = pad / 2.
width, height = (width + 2. * pad - 2 * dr,
height + 2. * pad - 2 * dr)
x0, y0 = x0 - pad + dr, y0 - pad + dr,
x1, y1 = x0 + width, y0 + height
cp = [(x0, y0),
(x0 + dr, y0 - dr), (x1 - dr, y0 - dr), (x1, y0),
(x1 + dr, y0 + dr), (x1 + dr, y1 - dr), (x1, y1),
(x1 - dr, y1 + dr), (x0 + dr, y1 + dr), (x0, y1),
(x0 - dr, y1 - dr), (x0 - dr, y0 + dr), (x0, y0),
(x0, y0)]
com = [Path.MOVETO,
Path.CURVE4, Path.CURVE4, Path.CURVE4,
Path.CURVE4, Path.CURVE4, Path.CURVE4,
Path.CURVE4, Path.CURVE4, Path.CURVE4,
Path.CURVE4, Path.CURVE4, Path.CURVE4,
Path.CLOSEPOLY]
path = Path(cp, com)
return path
_style_list["round4"] = Round4
class Sawtooth(_Base):
"""
A sawtooth box.
"""
def __init__(self, pad=0.3, tooth_size=None):
"""
*pad*
amount of padding
*tooth_size*
size of the sawtooth. pad* if None
"""
self.pad = pad
self.tooth_size = tooth_size
super(BoxStyle.Sawtooth, self).__init__()
def _get_sawtooth_vertices(self, x0, y0, width, height, mutation_size):
# padding
pad = mutation_size * self.pad
# size of sawtooth
if self.tooth_size is None:
tooth_size = self.pad * .5 * mutation_size
else:
tooth_size = self.tooth_size * mutation_size
tooth_size2 = tooth_size / 2.
width, height = (width + 2. * pad - tooth_size,
height + 2. * pad - tooth_size)
# the sizes of the vertical and horizontal sawtooth are
# separately adjusted to fit the given box size.
dsx_n = int(np.round((width - tooth_size) / (tooth_size * 2))) * 2
dsx = (width - tooth_size) / dsx_n
dsy_n = int(np.round((height - tooth_size) / (tooth_size * 2))) * 2
dsy = (height - tooth_size) / dsy_n
x0, y0 = x0 - pad + tooth_size2, y0 - pad + tooth_size2
x1, y1 = x0 + width, y0 + height
bottom_saw_x = [x0] + \
[x0 + tooth_size2 + dsx * .5 * i
for i
in range(dsx_n * 2)] + \
[x1 - tooth_size2]
bottom_saw_y = [y0] + \
[y0 - tooth_size2, y0,
y0 + tooth_size2, y0] * dsx_n + \
[y0 - tooth_size2]
right_saw_x = [x1] + \
[x1 + tooth_size2,
x1,
x1 - tooth_size2,
x1] * dsx_n + \
[x1 + tooth_size2]
right_saw_y = [y0] + \
[y0 + tooth_size2 + dsy * .5 * i
for i
in range(dsy_n * 2)] + \
[y1 - tooth_size2]
top_saw_x = [x1] + \
[x1 - tooth_size2 - dsx * .5 * i
for i
in range(dsx_n * 2)] + \
[x0 + tooth_size2]
top_saw_y = [y1] + \
[y1 + tooth_size2,
y1,
y1 - tooth_size2,
y1] * dsx_n + \
[y1 + tooth_size2]
left_saw_x = [x0] + \
[x0 - tooth_size2,
x0,
x0 + tooth_size2,
x0] * dsy_n + \
[x0 - tooth_size2]
left_saw_y = [y1] + \
[y1 - tooth_size2 - dsy * .5 * i
for i
in range(dsy_n * 2)] + \
[y0 + tooth_size2]
saw_vertices = (list(zip(bottom_saw_x, bottom_saw_y)) +
list(zip(right_saw_x, right_saw_y)) +
list(zip(top_saw_x, top_saw_y)) +
list(zip(left_saw_x, left_saw_y)) +
[(bottom_saw_x[0], bottom_saw_y[0])])
return saw_vertices
def transmute(self, x0, y0, width, height, mutation_size):
saw_vertices = self._get_sawtooth_vertices(x0, y0, width,
height, mutation_size)
path = Path(saw_vertices, closed=True)
return path
_style_list["sawtooth"] = Sawtooth
class Roundtooth(Sawtooth):
"""A rounded tooth box."""
def __init__(self, pad=0.3, tooth_size=None):
"""
*pad*
amount of padding
*tooth_size*
size of the sawtooth. pad* if None
"""
super(BoxStyle.Roundtooth, self).__init__(pad, tooth_size)
def transmute(self, x0, y0, width, height, mutation_size):
saw_vertices = self._get_sawtooth_vertices(x0, y0,
width, height,
mutation_size)
# Add a trailing vertex to allow us to close the polygon correctly
saw_vertices = np.concatenate([np.array(saw_vertices),
[saw_vertices[0]]], axis=0)
codes = ([Path.MOVETO] +
[Path.CURVE3, Path.CURVE3] * ((len(saw_vertices)-1)//2) +
[Path.CLOSEPOLY])
return Path(saw_vertices, codes)
_style_list["roundtooth"] = Roundtooth
if __doc__: # __doc__ could be None if -OO optimization is enabled
__doc__ = cbook.dedent(__doc__) % \
{"AvailableBoxstyles": _pprint_styles(_style_list)}
docstring.interpd.update(
AvailableBoxstyles=_pprint_styles(BoxStyle._style_list),
ListBoxstyles=_simpleprint_styles(BoxStyle._style_list))
class FancyBboxPatch(Patch):
"""
Draw a fancy box around a rectangle with lower left at *xy*=(*x*,
*y*) with specified width and height.
:class:`FancyBboxPatch` class is similar to :class:`Rectangle`
class, but it draws a fancy box around the rectangle. The
transformation of the rectangle box to the fancy box is delegated
to the :class:`BoxTransmuterBase` and its derived classes.
"""
_edge_default = True
def __str__(self):
return self.__class__.__name__ \
+ "(%g,%g;%gx%g)" % (self._x, self._y,
self._width, self._height)
@docstring.dedent_interpd
def __init__(self, xy, width, height,
boxstyle="round",
bbox_transmuter=None,
mutation_scale=1.,
mutation_aspect=None,
**kwargs):
"""
*xy* = lower left corner
*width*, *height*
*boxstyle* determines what kind of fancy box will be drawn. It
can be a string of the style name with a comma separated
attribute, or an instance of :class:`BoxStyle`. Following box
styles are available.
%(AvailableBoxstyles)s
*mutation_scale* : a value with which attributes of boxstyle
(e.g., pad) will be scaled. default=1.
*mutation_aspect* : The height of the rectangle will be
squeezed by this value before the mutation and the mutated
box will be stretched by the inverse of it. default=None.
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self._x = xy[0]
self._y = xy[1]
self._width = width
self._height = height
if boxstyle == "custom":
if bbox_transmuter is None:
raise ValueError("bbox_transmuter argument is needed with "
"custom boxstyle")
self._bbox_transmuter = bbox_transmuter
else:
self.set_boxstyle(boxstyle)
self._mutation_scale = mutation_scale
self._mutation_aspect = mutation_aspect
self.stale = True
@docstring.dedent_interpd
def set_boxstyle(self, boxstyle=None, **kw):
"""
Set the box style.
*boxstyle* can be a string with boxstyle name with optional
comma-separated attributes. Alternatively, the attrs can
be provided as keywords::
set_boxstyle("round,pad=0.2")
set_boxstyle("round", pad=0.2)
Old attrs simply are forgotten.
Without argument (or with *boxstyle* = None), it returns
available box styles.
The following boxstyles are available:
%(AvailableBoxstyles)s
ACCEPTS: %(ListBoxstyles)s
"""
if boxstyle is None:
return BoxStyle.pprint_styles()
if isinstance(boxstyle, BoxStyle._Base) or callable(boxstyle):
self._bbox_transmuter = boxstyle
else:
self._bbox_transmuter = BoxStyle(boxstyle, **kw)
self.stale = True
def set_mutation_scale(self, scale):
"""
Set the mutation scale.
ACCEPTS: float
"""
self._mutation_scale = scale
self.stale = True
def get_mutation_scale(self):
"""
Return the mutation scale.
"""
return self._mutation_scale
def set_mutation_aspect(self, aspect):
"""
Set the aspect ratio of the bbox mutation.
ACCEPTS: float
"""
self._mutation_aspect = aspect
self.stale = True
def get_mutation_aspect(self):
"""
Return the aspect ratio of the bbox mutation.
"""
return self._mutation_aspect
def get_boxstyle(self):
"Return the boxstyle object"
return self._bbox_transmuter
def get_path(self):
"""
Return the mutated path of the rectangle
"""
_path = self.get_boxstyle()(self._x, self._y,
self._width, self._height,
self.get_mutation_scale(),
self.get_mutation_aspect())
return _path
# Following methods are borrowed from the Rectangle class.
def get_x(self):
"Return the left coord of the rectangle"
return self._x
def get_y(self):
"Return the bottom coord of the rectangle"
return self._y
def get_width(self):
"Return the width of the rectangle"
return self._width
def get_height(self):
"Return the height of the rectangle"
return self._height
def set_x(self, x):
"""
Set the left coord of the rectangle
ACCEPTS: float
"""
self._x = x
self.stale = True
def set_y(self, y):
"""
Set the bottom coord of the rectangle
ACCEPTS: float
"""
self._y = y
self.stale = True
def set_width(self, w):
"""
Set the width rectangle
ACCEPTS: float
"""
self._width = w
self.stale = True
def set_height(self, h):
"""
Set the width rectangle
ACCEPTS: float
"""
self._height = h
self.stale = True
def set_bounds(self, *args):
"""
Set the bounds of the rectangle: l,b,w,h
ACCEPTS: (left, bottom, width, height)
"""
if len(args) == 0:
l, b, w, h = args[0]
else:
l, b, w, h = args
self._x = l
self._y = b
self._width = w
self._height = h
self.stale = True
def get_bbox(self):
return transforms.Bbox.from_bounds(self._x, self._y,
self._width, self._height)
class ConnectionStyle(_Style):
"""
:class:`ConnectionStyle` is a container class which defines
several connectionstyle classes, which is used to create a path
between two points. These are mainly used with
:class:`FancyArrowPatch`.
A connectionstyle object can be either created as::
ConnectionStyle.Arc3(rad=0.2)
or::
ConnectionStyle("Arc3", rad=0.2)
or::
ConnectionStyle("Arc3, rad=0.2")
The following classes are defined
%(AvailableConnectorstyles)s
An instance of any connection style class is an callable object,
whose call signature is::
__call__(self, posA, posB,
patchA=None, patchB=None,
shrinkA=2., shrinkB=2.)
and it returns a :class:`Path` instance. *posA* and *posB* are
tuples of x,y coordinates of the two points to be
connected. *patchA* (or *patchB*) is given, the returned path is
clipped so that it start (or end) from the boundary of the
patch. The path is further shrunk by *shrinkA* (or *shrinkB*)
which is given in points.
"""
_style_list = {}
class _Base(object):
"""
A base class for connectionstyle classes. The subclass needs
to implement a *connect* method whose call signature is::
connect(posA, posB)
where posA and posB are tuples of x, y coordinates to be
connected. The method needs to return a path connecting two
points. This base class defines a __call__ method, and a few
helper methods.
"""
class SimpleEvent:
def __init__(self, xy):
self.x, self.y = xy
def _clip(self, path, patchA, patchB):
"""
Clip the path to the boundary of the patchA and patchB.
The starting point of the path needed to be inside of the
patchA and the end point inside the patch B. The *contains*
methods of each patch object is utilized to test if the point
is inside the path.
"""
if patchA:
def insideA(xy_display):
xy_event = ConnectionStyle._Base.SimpleEvent(xy_display)
return patchA.contains(xy_event)[0]
try:
left, right = split_path_inout(path, insideA)
except ValueError:
right = path
path = right
if patchB:
def insideB(xy_display):
xy_event = ConnectionStyle._Base.SimpleEvent(xy_display)
return patchB.contains(xy_event)[0]
try:
left, right = split_path_inout(path, insideB)
except ValueError:
left = path
path = left
return path
def _shrink(self, path, shrinkA, shrinkB):
"""
Shrink the path by fixed size (in points) with shrinkA and shrinkB
"""
if shrinkA:
x, y = path.vertices[0]
insideA = inside_circle(x, y, shrinkA)
try:
left, right = split_path_inout(path, insideA)
path = right
except ValueError:
pass
if shrinkB:
x, y = path.vertices[-1]
insideB = inside_circle(x, y, shrinkB)
try:
left, right = split_path_inout(path, insideB)
path = left
except ValueError:
pass
return path
def __call__(self, posA, posB,
shrinkA=2., shrinkB=2., patchA=None, patchB=None):
"""
Calls the *connect* method to create a path between *posA*
and *posB*. The path is clipped and shrunken.
"""
path = self.connect(posA, posB)
clipped_path = self._clip(path, patchA, patchB)
shrunk_path = self._shrink(clipped_path, shrinkA, shrinkB)
return shrunk_path
def __reduce__(self):
# because we have decided to nest these classes, we need to
# add some more information to allow instance pickling.
return (cbook._NestedClassGetter(),
(ConnectionStyle, self.__class__.__name__),
self.__dict__
)
class Arc3(_Base):
"""
Creates a simple quadratic bezier curve between two
points. The curve is created so that the middle control point
(C1) is located at the same distance from the start (C0) and
end points(C2) and the distance of the C1 to the line
connecting C0-C2 is *rad* times the distance of C0-C2.
"""
def __init__(self, rad=0.):
"""
*rad*
curvature of the curve.
"""
self.rad = rad
def connect(self, posA, posB):
x1, y1 = posA
x2, y2 = posB
x12, y12 = (x1 + x2) / 2., (y1 + y2) / 2.
dx, dy = x2 - x1, y2 - y1
f = self.rad
cx, cy = x12 + f * dy, y12 - f * dx
vertices = [(x1, y1),
(cx, cy),
(x2, y2)]
codes = [Path.MOVETO,
Path.CURVE3,
Path.CURVE3]
return Path(vertices, codes)
_style_list["arc3"] = Arc3
class Angle3(_Base):
"""
Creates a simple quadratic bezier curve between two
points. The middle control points is placed at the
intersecting point of two lines which crosses the start (or
end) point and has a angle of angleA (or angleB).
"""
def __init__(self, angleA=90, angleB=0):
"""
*angleA*
starting angle of the path
*angleB*
ending angle of the path
"""
self.angleA = angleA
self.angleB = angleB
def connect(self, posA, posB):
x1, y1 = posA
x2, y2 = posB
cosA = math.cos(math.radians(self.angleA))
sinA = math.sin(math.radians(self.angleA))
cosB = math.cos(math.radians(self.angleB))
sinB = math.sin(math.radians(self.angleB))
cx, cy = get_intersection(x1, y1, cosA, sinA,
x2, y2, cosB, sinB)
vertices = [(x1, y1), (cx, cy), (x2, y2)]
codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3]
return Path(vertices, codes)
_style_list["angle3"] = Angle3
class Angle(_Base):
"""
Creates a picewise continuous quadratic bezier path between
two points. The path has a one passing-through point placed at
the intersecting point of two lines which crosses the start
(or end) point and has a angle of angleA (or angleB). The
connecting edges are rounded with *rad*.
"""
def __init__(self, angleA=90, angleB=0, rad=0.):
"""
*angleA*
starting angle of the path
*angleB*
ending angle of the path
*rad*
rounding radius of the edge
"""
self.angleA = angleA
self.angleB = angleB
self.rad = rad
def connect(self, posA, posB):
x1, y1 = posA
x2, y2 = posB
cosA = math.cos(math.radians(self.angleA))
sinA = math.sin(math.radians(self.angleA))
cosB = math.cos(math.radians(self.angleB))
sinB = math.sin(math.radians(self.angleB))
cx, cy = get_intersection(x1, y1, cosA, sinA,
x2, y2, cosB, sinB)
vertices = [(x1, y1)]
codes = [Path.MOVETO]
if self.rad == 0.:
vertices.append((cx, cy))
codes.append(Path.LINETO)
else:
dx1, dy1 = x1 - cx, y1 - cy
d1 = (dx1 ** 2 + dy1 ** 2) ** .5
f1 = self.rad / d1
dx2, dy2 = x2 - cx, y2 - cy
d2 = (dx2 ** 2 + dy2 ** 2) ** .5
f2 = self.rad / d2
vertices.extend([(cx + dx1 * f1, cy + dy1 * f1),
(cx, cy),
(cx + dx2 * f2, cy + dy2 * f2)])
codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3])
vertices.append((x2, y2))
codes.append(Path.LINETO)
return Path(vertices, codes)
_style_list["angle"] = Angle
class Arc(_Base):
"""
Creates a picewise continuous quadratic bezier path between
two points. The path can have two passing-through points, a
point placed at the distance of armA and angle of angleA from
point A, another point with respect to point B. The edges are
rounded with *rad*.
"""
def __init__(self, angleA=0, angleB=0, armA=None, armB=None, rad=0.):
"""
*angleA* :
starting angle of the path
*angleB* :
ending angle of the path
*armA* :
length of the starting arm
*armB* :
length of the ending arm
*rad* :
rounding radius of the edges
"""
self.angleA = angleA
self.angleB = angleB
self.armA = armA
self.armB = armB
self.rad = rad
def connect(self, posA, posB):
x1, y1 = posA
x2, y2 = posB
vertices = [(x1, y1)]
rounded = []
codes = [Path.MOVETO]
if self.armA:
cosA = math.cos(math.radians(self.angleA))
sinA = math.sin(math.radians(self.angleA))
# x_armA, y_armB
d = self.armA - self.rad
rounded.append((x1 + d * cosA, y1 + d * sinA))
d = self.armA
rounded.append((x1 + d * cosA, y1 + d * sinA))
if self.armB:
cosB = math.cos(math.radians(self.angleB))
sinB = math.sin(math.radians(self.angleB))
x_armB, y_armB = x2 + self.armB * cosB, y2 + self.armB * sinB
if rounded:
xp, yp = rounded[-1]
dx, dy = x_armB - xp, y_armB - yp
dd = (dx * dx + dy * dy) ** .5
rounded.append((xp + self.rad * dx / dd,
yp + self.rad * dy / dd))
vertices.extend(rounded)
codes.extend([Path.LINETO,
Path.CURVE3,
Path.CURVE3])
else:
xp, yp = vertices[-1]
dx, dy = x_armB - xp, y_armB - yp
dd = (dx * dx + dy * dy) ** .5
d = dd - self.rad
rounded = [(xp + d * dx / dd, yp + d * dy / dd),
(x_armB, y_armB)]
if rounded:
xp, yp = rounded[-1]
dx, dy = x2 - xp, y2 - yp
dd = (dx * dx + dy * dy) ** .5
rounded.append((xp + self.rad * dx / dd,
yp + self.rad * dy / dd))
vertices.extend(rounded)
codes.extend([Path.LINETO,
Path.CURVE3,
Path.CURVE3])
vertices.append((x2, y2))
codes.append(Path.LINETO)
return Path(vertices, codes)
_style_list["arc"] = Arc
class Bar(_Base):
"""
A line with *angle* between A and B with *armA* and
*armB*. One of the arms is extended so that they are connected in
a right angle. The length of armA is determined by (*armA*
+ *fraction* x AB distance). Same for armB.
"""
def __init__(self, armA=0., armB=0., fraction=0.3, angle=None):
"""
Parameters
----------
armA : float
minimum length of armA
armB : float
minimum length of armB
fraction : float
a fraction of the distance between two points that
will be added to armA and armB.
angle : float or None
angle of the connecting line (if None, parallel
to A and B)
"""
self.armA = armA
self.armB = armB
self.fraction = fraction
self.angle = angle
def connect(self, posA, posB):
x1, y1 = posA
x20, y20 = x2, y2 = posB
theta1 = math.atan2(y2 - y1, x2 - x1)
dx, dy = x2 - x1, y2 - y1
dd = (dx * dx + dy * dy) ** .5
ddx, ddy = dx / dd, dy / dd
armA, armB = self.armA, self.armB
if self.angle is not None:
theta0 = np.deg2rad(self.angle)
dtheta = theta1 - theta0
dl = dd * math.sin(dtheta)
dL = dd * math.cos(dtheta)
x2, y2 = x1 + dL * math.cos(theta0), y1 + dL * math.sin(theta0)
armB = armB - dl
# update
dx, dy = x2 - x1, y2 - y1
dd2 = (dx * dx + dy * dy) ** .5
ddx, ddy = dx / dd2, dy / dd2
else:
dl = 0.
arm = max(armA, armB)
f = self.fraction * dd + arm
cx1, cy1 = x1 + f * ddy, y1 - f * ddx
cx2, cy2 = x2 + f * ddy, y2 - f * ddx
vertices = [(x1, y1),
(cx1, cy1),
(cx2, cy2),
(x20, y20)]
codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO]
return Path(vertices, codes)
_style_list["bar"] = Bar
if __doc__:
__doc__ = cbook.dedent(__doc__) % \
{"AvailableConnectorstyles": _pprint_styles(_style_list)}
def _point_along_a_line(x0, y0, x1, y1, d):
"""
find a point along a line connecting (x0, y0) -- (x1, y1) whose
distance from (x0, y0) is d.
"""
dx, dy = x0 - x1, y0 - y1
ff = d / (dx * dx + dy * dy) ** .5
x2, y2 = x0 - ff * dx, y0 - ff * dy
return x2, y2
class ArrowStyle(_Style):
"""
:class:`ArrowStyle` is a container class which defines several
arrowstyle classes, which is used to create an arrow path along a
given path. These are mainly used with :class:`FancyArrowPatch`.
A arrowstyle object can be either created as::
ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4)
or::
ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)
or::
ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")
The following classes are defined
%(AvailableArrowstyles)s
An instance of any arrow style class is a callable object,
whose call signature is::
__call__(self, path, mutation_size, linewidth, aspect_ratio=1.)
and it returns a tuple of a :class:`Path` instance and a boolean
value. *path* is a :class:`Path` instance along which the arrow
will be drawn. *mutation_size* and *aspect_ratio* have the same
meaning as in :class:`BoxStyle`. *linewidth* is a line width to be
stroked. This is meant to be used to correct the location of the
head so that it does not overshoot the destination point, but not all
classes support it.
"""
_style_list = {}
class _Base(object):
"""
Arrow Transmuter Base class
ArrowTransmuterBase and its derivatives are used to make a fancy
arrow around a given path. The __call__ method returns a path
(which will be used to create a PathPatch instance) and a boolean
value indicating the path is open therefore is not fillable. This
class is not an artist and actual drawing of the fancy arrow is
done by the FancyArrowPatch class.
"""
# The derived classes are required to be able to be initialized
# w/o arguments, i.e., all its argument (except self) must have
# the default values.
@staticmethod
def ensure_quadratic_bezier(path):
""" Some ArrowStyle class only wokrs with a simple
quaratic bezier curve (created with Arc3Connetion or
Angle3Connector). This static method is to check if the
provided path is a simple quadratic bezier curve and returns
its control points if true.
"""
segments = list(path.iter_segments())
if (len(segments) != 2 or segments[0][1] != Path.MOVETO or
segments[1][1] != Path.CURVE3):
raise ValueError(
"'path' it's not a valid quadratic Bezier curve")
return list(segments[0][0]) + list(segments[1][0])
def transmute(self, path, mutation_size, linewidth):
"""
The transmute method is the very core of the ArrowStyle
class and must be overridden in the subclasses. It receives
the path object along which the arrow will be drawn, and
the mutation_size, with which the arrow head etc.
will be scaled. The linewidth may be used to adjust
the path so that it does not pass beyond the given
points. It returns a tuple of a Path instance and a
boolean. The boolean value indicate whether the path can
be filled or not. The return value can also be a list of paths
and list of booleans of a same length.
"""
raise NotImplementedError('Derived must override')
def __call__(self, path, mutation_size, linewidth,
aspect_ratio=1.):
"""
The __call__ method is a thin wrapper around the transmute method
and take care of the aspect ratio.
"""
path = make_path_regular(path)
if aspect_ratio is not None:
# Squeeze the given height by the aspect_ratio
vertices, codes = path.vertices[:], path.codes[:]
# Squeeze the height
vertices[:, 1] = vertices[:, 1] / aspect_ratio
path_shrunk = Path(vertices, codes)
# call transmute method with squeezed height.
path_mutated, fillable = self.transmute(path_shrunk,
linewidth,
mutation_size)
if cbook.iterable(fillable):
path_list = []
for p in zip(path_mutated):
v, c = p.vertices, p.codes
# Restore the height
v[:, 1] = v[:, 1] * aspect_ratio
path_list.append(Path(v, c))
return path_list, fillable
else:
return path_mutated, fillable
else:
return self.transmute(path, mutation_size, linewidth)
def __reduce__(self):
# because we have decided to nest these classes, we need to
# add some more information to allow instance pickling.
return (cbook._NestedClassGetter(),
(ArrowStyle, self.__class__.__name__),
self.__dict__
)
class _Curve(_Base):
"""
A simple arrow which will work with any path instance. The
returned path is simply concatenation of the original path + at
most two paths representing the arrow head at the begin point and the
at the end point. The arrow heads can be either open or closed.
"""
def __init__(self, beginarrow=None, endarrow=None,
fillbegin=False, fillend=False,
head_length=.2, head_width=.1):
"""
The arrows are drawn if *beginarrow* and/or *endarrow* are
true. *head_length* and *head_width* determines the size
of the arrow relative to the *mutation scale*. The
arrowhead at the begin (or end) is closed if fillbegin (or
fillend) is True.
"""
self.beginarrow, self.endarrow = beginarrow, endarrow
self.head_length, self.head_width = head_length, head_width
self.fillbegin, self.fillend = fillbegin, fillend
super(ArrowStyle._Curve, self).__init__()
def _get_arrow_wedge(self, x0, y0, x1, y1,
head_dist, cos_t, sin_t, linewidth
):
"""
Return the paths for arrow heads. Since arrow lines are
drawn with capstyle=projected, The arrow goes beyond the
desired point. This method also returns the amount of the path
to be shrunken so that it does not overshoot.
"""
# arrow from x0, y0 to x1, y1
dx, dy = x0 - x1, y0 - y1
cp_distance = np.hypot(dx, dy)
# pad_projected : amount of pad to account the
# overshooting of the projection of the wedge
pad_projected = (.5 * linewidth / sin_t)
# Account for division by zero
if cp_distance == 0:
cp_distance = 1
# apply pad for projected edge
ddx = pad_projected * dx / cp_distance
ddy = pad_projected * dy / cp_distance
# offset for arrow wedge
dx = dx / cp_distance * head_dist
dy = dy / cp_distance * head_dist
dx1, dy1 = cos_t * dx + sin_t * dy, -sin_t * dx + cos_t * dy
dx2, dy2 = cos_t * dx - sin_t * dy, sin_t * dx + cos_t * dy
vertices_arrow = [(x1 + ddx + dx1, y1 + ddy + dy1),
(x1 + ddx, y1 + ddy),
(x1 + ddx + dx2, y1 + ddy + dy2)]
codes_arrow = [Path.MOVETO,
Path.LINETO,
Path.LINETO]
return vertices_arrow, codes_arrow, ddx, ddy
def transmute(self, path, mutation_size, linewidth):
head_length = self.head_length * mutation_size
head_width = self.head_width * mutation_size
head_dist = math.sqrt(head_length ** 2 + head_width ** 2)
cos_t, sin_t = head_length / head_dist, head_width / head_dist
# begin arrow
x0, y0 = path.vertices[0]
x1, y1 = path.vertices[1]
# If there is no room for an arrow and a line, then skip the arrow
has_begin_arrow = self.beginarrow and not (x0 == x1 and y0 == y1)
if has_begin_arrow:
verticesA, codesA, ddxA, ddyA = \
self._get_arrow_wedge(x1, y1, x0, y0,
head_dist, cos_t, sin_t,
linewidth)
else:
verticesA, codesA = [], []
ddxA, ddyA = 0., 0.
# end arrow
x2, y2 = path.vertices[-2]
x3, y3 = path.vertices[-1]
# If there is no room for an arrow and a line, then skip the arrow
has_end_arrow = (self.endarrow and not ((x2 == x3) and (y2 == y3)))
if has_end_arrow:
verticesB, codesB, ddxB, ddyB = \
self._get_arrow_wedge(x2, y2, x3, y3,
head_dist, cos_t, sin_t,
linewidth)
else:
verticesB, codesB = [], []
ddxB, ddyB = 0., 0.
# this simple code will not work if ddx, ddy is greater than
# separation bettern vertices.
_path = [Path(np.concatenate([[(x0 + ddxA, y0 + ddyA)],
path.vertices[1:-1],
[(x3 + ddxB, y3 + ddyB)]]),
path.codes)]
_fillable = [False]
if has_begin_arrow:
if self.fillbegin:
p = np.concatenate([verticesA, [verticesA[0],
verticesA[0]], ])
c = np.concatenate([codesA, [Path.LINETO, Path.CLOSEPOLY]])
_path.append(Path(p, c))
_fillable.append(True)
else:
_path.append(Path(verticesA, codesA))
_fillable.append(False)
if has_end_arrow:
if self.fillend:
_fillable.append(True)
p = np.concatenate([verticesB, [verticesB[0],
verticesB[0]], ])
c = np.concatenate([codesB, [Path.LINETO, Path.CLOSEPOLY]])
_path.append(Path(p, c))
else:
_fillable.append(False)
_path.append(Path(verticesB, codesB))
return _path, _fillable
class Curve(_Curve):
"""
A simple curve without any arrow head.
"""
def __init__(self):
super(ArrowStyle.Curve, self).__init__(
beginarrow=False, endarrow=False)
_style_list["-"] = Curve
class CurveA(_Curve):
"""
An arrow with a head at its begin point.
"""
def __init__(self, head_length=.4, head_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.2
Width of the arrow head
"""
super(ArrowStyle.CurveA, self).__init__(
beginarrow=True, endarrow=False,
head_length=head_length, head_width=head_width)
_style_list["<-"] = CurveA
class CurveB(_Curve):
"""
An arrow with a head at its end point.
"""
def __init__(self, head_length=.4, head_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.2
Width of the arrow head
"""
super(ArrowStyle.CurveB, self).__init__(
beginarrow=False, endarrow=True,
head_length=head_length, head_width=head_width)
_style_list["->"] = CurveB
class CurveAB(_Curve):
"""
An arrow with heads both at the begin and the end point.
"""
def __init__(self, head_length=.4, head_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.2
Width of the arrow head
"""
super(ArrowStyle.CurveAB, self).__init__(
beginarrow=True, endarrow=True,
head_length=head_length, head_width=head_width)
_style_list["<->"] = CurveAB
class CurveFilledA(_Curve):
"""
An arrow with filled triangle head at the begin.
"""
def __init__(self, head_length=.4, head_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.2
Width of the arrow head
"""
super(ArrowStyle.CurveFilledA, self).__init__(
beginarrow=True, endarrow=False,
fillbegin=True, fillend=False,
head_length=head_length, head_width=head_width)
_style_list["<|-"] = CurveFilledA
class CurveFilledB(_Curve):
"""
An arrow with filled triangle head at the end.
"""
def __init__(self, head_length=.4, head_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.2
Width of the arrow head
"""
super(ArrowStyle.CurveFilledB, self).__init__(
beginarrow=False, endarrow=True,
fillbegin=False, fillend=True,
head_length=head_length, head_width=head_width)
_style_list["-|>"] = CurveFilledB
class CurveFilledAB(_Curve):
"""
An arrow with filled triangle heads at both ends.
"""
def __init__(self, head_length=.4, head_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.2
Width of the arrow head
"""
super(ArrowStyle.CurveFilledAB, self).__init__(
beginarrow=True, endarrow=True,
fillbegin=True, fillend=True,
head_length=head_length, head_width=head_width)
_style_list["<|-|>"] = CurveFilledAB
class _Bracket(_Base):
def __init__(self, bracketA=None, bracketB=None,
widthA=1., widthB=1.,
lengthA=0.2, lengthB=0.2,
angleA=None, angleB=None,
scaleA=None, scaleB=None):
self.bracketA, self.bracketB = bracketA, bracketB
self.widthA, self.widthB = widthA, widthB
self.lengthA, self.lengthB = lengthA, lengthB
self.angleA, self.angleB = angleA, angleB
self.scaleA, self.scaleB = scaleA, scaleB
def _get_bracket(self, x0, y0,
cos_t, sin_t, width, length):
# arrow from x0, y0 to x1, y1
from matplotlib.bezier import get_normal_points
x1, y1, x2, y2 = get_normal_points(x0, y0, cos_t, sin_t, width)
dx, dy = length * cos_t, length * sin_t
vertices_arrow = [(x1 + dx, y1 + dy),
(x1, y1),
(x2, y2),
(x2 + dx, y2 + dy)]
codes_arrow = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO]
return vertices_arrow, codes_arrow
def transmute(self, path, mutation_size, linewidth):
if self.scaleA is None:
scaleA = mutation_size
else:
scaleA = self.scaleA
if self.scaleB is None:
scaleB = mutation_size
else:
scaleB = self.scaleB
vertices_list, codes_list = [], []
if self.bracketA:
x0, y0 = path.vertices[0]
x1, y1 = path.vertices[1]
cos_t, sin_t = get_cos_sin(x1, y1, x0, y0)
verticesA, codesA = self._get_bracket(x0, y0, cos_t, sin_t,
self.widthA * scaleA,
self.lengthA * scaleA)
vertices_list.append(verticesA)
codes_list.append(codesA)
vertices_list.append(path.vertices)
codes_list.append(path.codes)
if self.bracketB:
x0, y0 = path.vertices[-1]
x1, y1 = path.vertices[-2]
cos_t, sin_t = get_cos_sin(x1, y1, x0, y0)
verticesB, codesB = self._get_bracket(x0, y0, cos_t, sin_t,
self.widthB * scaleB,
self.lengthB * scaleB)
vertices_list.append(verticesB)
codes_list.append(codesB)
vertices = np.concatenate(vertices_list)
codes = np.concatenate(codes_list)
p = Path(vertices, codes)
return p, False
class BracketAB(_Bracket):
"""
An arrow with a bracket(]) at both ends.
"""
def __init__(self,
widthA=1., lengthA=0.2, angleA=None,
widthB=1., lengthB=0.2, angleB=None):
"""
Parameters
----------
widthA : float, optional, default : 1.0
Width of the bracket
lengthA : float, optional, default : 0.2
Length of the bracket
angleA : float, optional, default : None
Angle between the bracket and the line
widthB : float, optional, default : 1.0
Width of the bracket
lengthB : float, optional, default : 0.2
Length of the bracket
angleB : float, optional, default : None
Angle between the bracket and the line
"""
super(ArrowStyle.BracketAB, self).__init__(
True, True, widthA=widthA, lengthA=lengthA,
angleA=angleA, widthB=widthB, lengthB=lengthB,
angleB=angleB)
_style_list["]-["] = BracketAB
class BracketA(_Bracket):
"""
An arrow with a bracket(]) at its end.
"""
def __init__(self, widthA=1., lengthA=0.2, angleA=None):
"""
Parameters
----------
widthA : float, optional, default : 1.0
Width of the bracket
lengthA : float, optional, default : 0.2
Length of the bracket
angleA : float, optional, default : None
Angle between the bracket and the line
"""
super(ArrowStyle.BracketA, self).__init__(True, None,
widthA=widthA,
lengthA=lengthA,
angleA=angleA)
_style_list["]-"] = BracketA
class BracketB(_Bracket):
"""
An arrow with a bracket([) at its end.
"""
def __init__(self, widthB=1., lengthB=0.2, angleB=None):
"""
Parameters
----------
widthB : float, optional, default : 1.0
Width of the bracket
lengthB : float, optional, default : 0.2
Length of the bracket
angleB : float, optional, default : None
Angle between the bracket and the line
"""
super(ArrowStyle.BracketB, self).__init__(None, True,
widthB=widthB,
lengthB=lengthB,
angleB=angleB)
_style_list["-["] = BracketB
class BarAB(_Bracket):
"""
An arrow with a bar(|) at both ends.
"""
def __init__(self,
widthA=1., angleA=None,
widthB=1., angleB=None):
"""
Parameters
----------
widthA : float, optional, default : 1.0
Width of the bracket
angleA : float, optional, default : None
Angle between the bracket and the line
widthB : float, optional, default : 1.0
Width of the bracket
angleB : float, optional, default : None
Angle between the bracket and the line
"""
super(ArrowStyle.BarAB, self).__init__(
True, True, widthA=widthA, lengthA=0, angleA=angleA,
widthB=widthB, lengthB=0, angleB=angleB)
_style_list["|-|"] = BarAB
class Simple(_Base):
"""
A simple arrow. Only works with a quadratic bezier curve.
"""
def __init__(self, head_length=.5, head_width=.5, tail_width=.2):
"""
Parameters
----------
head_length : float, optional, default : 0.5
Length of the arrow head
head_width : float, optional, default : 0.5
Width of the arrow head
tail_width : float, optional, default : 0.2
Width of the arrow tail
"""
self.head_length, self.head_width, self.tail_width = \
head_length, head_width, tail_width
super(ArrowStyle.Simple, self).__init__()
def transmute(self, path, mutation_size, linewidth):
x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path)
# divide the path into a head and a tail
head_length = self.head_length * mutation_size
in_f = inside_circle(x2, y2, head_length)
arrow_path = [(x0, y0), (x1, y1), (x2, y2)]
from .bezier import NonIntersectingPathException
try:
arrow_out, arrow_in = \
split_bezier_intersecting_with_closedpath(arrow_path,
in_f,
tolerence=0.01)
except NonIntersectingPathException:
# if this happens, make a straight line of the head_length
# long.
x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length)
x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2)
arrow_in = [(x0, y0), (x1n, y1n), (x2, y2)]
arrow_out = None
# head
head_width = self.head_width * mutation_size
head_left, head_right = make_wedged_bezier2(arrow_in,
head_width / 2., wm=.5)
# tail
if arrow_out is not None:
tail_width = self.tail_width * mutation_size
tail_left, tail_right = get_parallels(arrow_out,
tail_width / 2.)
patch_path = [(Path.MOVETO, tail_right[0]),
(Path.CURVE3, tail_right[1]),
(Path.CURVE3, tail_right[2]),
(Path.LINETO, head_right[0]),
(Path.CURVE3, head_right[1]),
(Path.CURVE3, head_right[2]),
(Path.CURVE3, head_left[1]),
(Path.CURVE3, head_left[0]),
(Path.LINETO, tail_left[2]),
(Path.CURVE3, tail_left[1]),
(Path.CURVE3, tail_left[0]),
(Path.LINETO, tail_right[0]),
(Path.CLOSEPOLY, tail_right[0]),
]
else:
patch_path = [(Path.MOVETO, head_right[0]),
(Path.CURVE3, head_right[1]),
(Path.CURVE3, head_right[2]),
(Path.CURVE3, head_left[1]),
(Path.CURVE3, head_left[0]),
(Path.CLOSEPOLY, head_left[0]),
]
path = Path([p for c, p in patch_path], [c for c, p in patch_path])
return path, True
_style_list["simple"] = Simple
class Fancy(_Base):
"""
A fancy arrow. Only works with a quadratic bezier curve.
"""
def __init__(self, head_length=.4, head_width=.4, tail_width=.4):
"""
Parameters
----------
head_length : float, optional, default : 0.4
Length of the arrow head
head_width : float, optional, default : 0.4
Width of the arrow head
tail_width : float, optional, default : 0.4
Width of the arrow tail
"""
self.head_length, self.head_width, self.tail_width = \
head_length, head_width, tail_width
super(ArrowStyle.Fancy, self).__init__()
def transmute(self, path, mutation_size, linewidth):
x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path)
# divide the path into a head and a tail
head_length = self.head_length * mutation_size
arrow_path = [(x0, y0), (x1, y1), (x2, y2)]
from .bezier import NonIntersectingPathException
# path for head
in_f = inside_circle(x2, y2, head_length)
try:
path_out, path_in = \
split_bezier_intersecting_with_closedpath(
arrow_path,
in_f,
tolerence=0.01)
except NonIntersectingPathException:
# if this happens, make a straight line of the head_length
# long.
x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length)
x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2)
arrow_path = [(x0, y0), (x1n, y1n), (x2, y2)]
path_head = arrow_path
else:
path_head = path_in
# path for head
in_f = inside_circle(x2, y2, head_length * .8)
path_out, path_in = split_bezier_intersecting_with_closedpath(
arrow_path,
in_f,
tolerence=0.01
)
path_tail = path_out
# head
head_width = self.head_width * mutation_size
head_l, head_r = make_wedged_bezier2(path_head,
head_width / 2.,
wm=.6)
# tail
tail_width = self.tail_width * mutation_size
tail_left, tail_right = make_wedged_bezier2(path_tail,
tail_width * .5,
w1=1., wm=0.6, w2=0.3)
# path for head
in_f = inside_circle(x0, y0, tail_width * .3)
path_in, path_out = split_bezier_intersecting_with_closedpath(
arrow_path,
in_f,
tolerence=0.01
)
tail_start = path_in[-1]
head_right, head_left = head_r, head_l
patch_path = [(Path.MOVETO, tail_start),
(Path.LINETO, tail_right[0]),
(Path.CURVE3, tail_right[1]),
(Path.CURVE3, tail_right[2]),
(Path.LINETO, head_right[0]),
(Path.CURVE3, head_right[1]),
(Path.CURVE3, head_right[2]),
(Path.CURVE3, head_left[1]),
(Path.CURVE3, head_left[0]),
(Path.LINETO, tail_left[2]),
(Path.CURVE3, tail_left[1]),
(Path.CURVE3, tail_left[0]),
(Path.LINETO, tail_start),
(Path.CLOSEPOLY, tail_start),
]
path = Path([p for c, p in patch_path], [c for c, p in patch_path])
return path, True
_style_list["fancy"] = Fancy
class Wedge(_Base):
"""
Wedge(?) shape. Only works with a quadratic bezier curve. The
begin point has a width of the tail_width and the end point has a
width of 0. At the middle, the width is shrink_factor*tail_width.
"""
def __init__(self, tail_width=.3, shrink_factor=0.5):
"""
Parameters
----------
tail_width : float, optional, default : 0.3
Width of the tail
shrink_factor : float, optional, default : 0.5
Fraction of the arrow width at the middle point
"""
self.tail_width = tail_width
self.shrink_factor = shrink_factor
super(ArrowStyle.Wedge, self).__init__()
def transmute(self, path, mutation_size, linewidth):
x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path)
arrow_path = [(x0, y0), (x1, y1), (x2, y2)]
b_plus, b_minus = make_wedged_bezier2(
arrow_path,
self.tail_width * mutation_size / 2.,
wm=self.shrink_factor)
patch_path = [(Path.MOVETO, b_plus[0]),
(Path.CURVE3, b_plus[1]),
(Path.CURVE3, b_plus[2]),
(Path.LINETO, b_minus[2]),
(Path.CURVE3, b_minus[1]),
(Path.CURVE3, b_minus[0]),
(Path.CLOSEPOLY, b_minus[0]),
]
path = Path([p for c, p in patch_path], [c for c, p in patch_path])
return path, True
_style_list["wedge"] = Wedge
if __doc__:
__doc__ = cbook.dedent(__doc__) % \
{"AvailableArrowstyles": _pprint_styles(_style_list)}
docstring.interpd.update(
AvailableArrowstyles=_pprint_styles(ArrowStyle._style_list),
AvailableConnectorstyles=_pprint_styles(ConnectionStyle._style_list),
)
class FancyArrowPatch(Patch):
"""
A fancy arrow patch. It draws an arrow using the :class:`ArrowStyle`.
The head and tail positions are fixed at the specified start and end points
of the arrow, but the size and shape (in display coordinates) of the arrow
does not change when the axis is moved or zoomed.
"""
_edge_default = True
def __str__(self):
if self._posA_posB is not None:
(x1, y1), (x2, y2) = self._posA_posB
return self.__class__.__name__ \
+ "(%g,%g->%g,%g)" % (x1, y1, x2, y2)
else:
return self.__class__.__name__ \
+ "(%s)" % (str(self._path_original),)
@docstring.dedent_interpd
def __init__(self, posA=None, posB=None,
path=None,
arrowstyle="simple",
arrow_transmuter=None,
connectionstyle="arc3",
connector=None,
patchA=None,
patchB=None,
shrinkA=2,
shrinkB=2,
mutation_scale=1,
mutation_aspect=None,
dpi_cor=1,
**kwargs):
"""
If *posA* and *posB* are given, a path connecting two points is
created according to *connectionstyle*. The path will be
clipped with *patchA* and *patchB* and further shrunken by
*shrinkA* and *shrinkB*. An arrow is drawn along this
resulting path using the *arrowstyle* parameter.
Alternatively if *path* is provided, an arrow is drawn along this path
and *patchA*, *patchB*, *shrinkA*, and *shrinkB* are ignored.
Parameters
----------
posA, posB : None, tuple, optional (default: None)
(x,y) coordinates of arrow tail and arrow head respectively.
path : None, Path (default: None)
:class:`matplotlib.path.Path` instance. If provided, an arrow is
drawn along this path and *patchA*, *patchB*, *shrinkA*, and
*shrinkB* are ignored.
arrowstyle : str or ArrowStyle, optional (default: 'simple')
Describes how the fancy arrow will be
drawn. It can be string of the available arrowstyle names,
with optional comma-separated attributes, or an
:class:`ArrowStyle` instance. The optional attributes are meant to
be scaled with the *mutation_scale*. The following arrow styles are
available:
%(AvailableArrowstyles)s
arrow_transmuter :
Ignored
connectionstyle : str, ConnectionStyle, or None, optional
(default: 'arc3')
Describes how *posA* and *posB* are connected. It can be an
instance of the :class:`ConnectionStyle` class or a string of the
connectionstyle name, with optional comma-separated attributes. The
following connection styles are available:
%(AvailableConnectorstyles)s
connector :
Ignored
patchA, patchB : None, Patch, optional (default: None)
Head and tail patch respectively. :class:`matplotlib.patch.Patch`
instance.
shrinkA, shrinkB : scalar, optional (default: 2)
Shrinking factor of the tail and head of the arrow respectively
mutation_scale : scalar, optional (default: 1)
Value with which attributes of *arrowstyle* (e.g., *head_length*)
will be scaled.
mutation_aspect : None, scalar, optional (default: None)
The height of the rectangle will be squeezed by this value before
the mutation and the mutated box will be stretched by the inverse
of it.
dpi_cor : scalar, optional (default: 1)
dpi_cor is currently used for linewidth-related things and shrink
factor. Mutation scale is affected by this.
Notes
-----
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
if posA is not None and posB is not None and path is None:
self._posA_posB = [posA, posB]
if connectionstyle is None:
connectionstyle = "arc3"
self.set_connectionstyle(connectionstyle)
elif posA is None and posB is None and path is not None:
self._posA_posB = None
self._connetors = None
else:
raise ValueError("either posA and posB, or path need to provided")
self.patchA = patchA
self.patchB = patchB
self.shrinkA = shrinkA
self.shrinkB = shrinkB
self._path_original = path
self.set_arrowstyle(arrowstyle)
self._mutation_scale = mutation_scale
self._mutation_aspect = mutation_aspect
self.set_dpi_cor(dpi_cor)
def set_dpi_cor(self, dpi_cor):
"""
dpi_cor is currently used for linewidth-related things and
shrink factor. Mutation scale is affected by this.
Parameters
----------
dpi_cor : scalar
"""
self._dpi_cor = dpi_cor
self.stale = True
def get_dpi_cor(self):
"""
dpi_cor is currently used for linewidth-related things and
shrink factor. Mutation scale is affected by this.
Returns
-------
dpi_cor : scalar
"""
return self._dpi_cor
def set_positions(self, posA, posB):
"""
Set the begin and end positions of the connecting path.
Parameters
----------
posA, posB : None, tuple
(x,y) coordinates of arrow tail and arrow head respectively. If
`None` use current value.
"""
if posA is not None:
self._posA_posB[0] = posA
if posB is not None:
self._posA_posB[1] = posB
self.stale = True
def set_patchA(self, patchA):
"""
Set the tail patch.
Parameters
----------
patchA : Patch
:class:`matplotlib.patch.Patch` instance.
"""
self.patchA = patchA
self.stale = True
def set_patchB(self, patchB):
"""
Set the head patch.
Parameters
----------
patchB : Patch
:class:`matplotlib.patch.Patch` instance.
"""
self.patchB = patchB
self.stale = True
def set_connectionstyle(self, connectionstyle, **kw):
"""
Set the connection style. Old attributes are forgotten.
Parameters
----------
connectionstyle : None, ConnectionStyle instance, or string
Can be a string with connectionstyle name with
optional comma-separated attributes, e.g.::
set_connectionstyle("arc,angleA=0,armA=30,rad=10")
Alternatively, the attributes can be provided as keywords, e.g.::
set_connectionstyle("arc", angleA=0,armA=30,rad=10)
Without any arguments (or with ``connectionstyle=None``), return
available styles as a list of strings.
"""
if connectionstyle is None:
return ConnectionStyle.pprint_styles()
if (isinstance(connectionstyle, ConnectionStyle._Base) or
callable(connectionstyle)):
self._connector = connectionstyle
else:
self._connector = ConnectionStyle(connectionstyle, **kw)
self.stale = True
def get_connectionstyle(self):
"""
Return the :class:`ConnectionStyle` instance.
"""
return self._connector
def set_arrowstyle(self, arrowstyle=None, **kw):
"""
Set the arrow style. Old attributes are forgotten. Without arguments
(or with ``arrowstyle=None``) returns available box styles as a list of
strings.
Parameters
----------
arrowstyle : None, ArrowStyle, str, optional (default: None)
Can be a string with arrowstyle name with optional comma-separated
attributes, e.g.::
set_arrowstyle("Fancy,head_length=0.2")
Alternatively attributes can be provided as keywords, e.g.::
set_arrowstyle("fancy", head_length=0.2)
"""
if arrowstyle is None:
return ArrowStyle.pprint_styles()
if isinstance(arrowstyle, ArrowStyle._Base):
self._arrow_transmuter = arrowstyle
else:
self._arrow_transmuter = ArrowStyle(arrowstyle, **kw)
self.stale = True
def get_arrowstyle(self):
"""
Return the arrowstyle object.
"""
return self._arrow_transmuter
def set_mutation_scale(self, scale):
"""
Set the mutation scale.
Parameters
----------
scale : scalar
"""
self._mutation_scale = scale
self.stale = True
def get_mutation_scale(self):
"""
Return the mutation scale.
Returns
-------
scale : scalar
"""
return self._mutation_scale
def set_mutation_aspect(self, aspect):
"""
Set the aspect ratio of the bbox mutation.
Parameters
----------
aspect : scalar
"""
self._mutation_aspect = aspect
self.stale = True
def get_mutation_aspect(self):
"""
Return the aspect ratio of the bbox mutation.
"""
return self._mutation_aspect
def get_path(self):
"""
Return the path of the arrow in the data coordinates. Use
get_path_in_displaycoord() method to retrieve the arrow path
in display coordinates.
"""
_path, fillable = self.get_path_in_displaycoord()
if cbook.iterable(fillable):
_path = concatenate_paths(_path)
return self.get_transform().inverted().transform_path(_path)
def get_path_in_displaycoord(self):
"""
Return the mutated path of the arrow in display coordinates.
"""
dpi_cor = self.get_dpi_cor()
if self._posA_posB is not None:
posA = self.get_transform().transform_point(self._posA_posB[0])
posB = self.get_transform().transform_point(self._posA_posB[1])
_path = self.get_connectionstyle()(posA, posB,
patchA=self.patchA,
patchB=self.patchB,
shrinkA=self.shrinkA * dpi_cor,
shrinkB=self.shrinkB * dpi_cor
)
else:
_path = self.get_transform().transform_path(self._path_original)
_path, fillable = self.get_arrowstyle()(
_path,
self.get_mutation_scale() * dpi_cor,
self.get_linewidth() * dpi_cor,
self.get_mutation_aspect())
# if not fillable:
# self._fill = False
return _path, fillable
def draw(self, renderer):
if not self.get_visible():
return
renderer.open_group('patch', self.get_gid())
gc = renderer.new_gc()
gc.set_foreground(self._edgecolor, isRGBA=True)
lw = self._linewidth
if self._edgecolor[3] == 0:
lw = 0
gc.set_linewidth(lw)
gc.set_dashes(self._dashoffset, self._dashes)
gc.set_antialiased(self._antialiased)
self._set_gc_clip(gc)
gc.set_capstyle('round')
gc.set_snap(self.get_snap())
rgbFace = self._facecolor
if rgbFace[3] == 0:
rgbFace = None # (some?) renderers expect this as no-fill signal
gc.set_alpha(self._alpha)
if self._hatch:
gc.set_hatch(self._hatch)
if self._hatch_color is not None:
try:
gc.set_hatch_color(self._hatch_color)
except AttributeError:
# if we end up with a GC that does not have this method
warnings.warn("Your backend does not support setting the "
"hatch color.")
if self.get_sketch_params() is not None:
gc.set_sketch_params(*self.get_sketch_params())
# FIXME : dpi_cor is for the dpi-dependecy of the
# linewidth. There could be room for improvement.
#
# dpi_cor = renderer.points_to_pixels(1.)
self.set_dpi_cor(renderer.points_to_pixels(1.))
path, fillable = self.get_path_in_displaycoord()
if not cbook.iterable(fillable):
path = [path]
fillable = [fillable]
affine = transforms.IdentityTransform()
if self.get_path_effects():
from matplotlib.patheffects import PathEffectRenderer
renderer = PathEffectRenderer(self.get_path_effects(), renderer)
for p, f in zip(path, fillable):
if f:
renderer.draw_path(gc, p, affine, rgbFace)
else:
renderer.draw_path(gc, p, affine, None)
gc.restore()
renderer.close_group('patch')
self.stale = False
class ConnectionPatch(FancyArrowPatch):
"""
A :class:`~matplotlib.patches.ConnectionPatch` class is to make
connecting lines between two points (possibly in different axes).
"""
def __str__(self):
return "ConnectionPatch((%g,%g),(%g,%g))" % \
(self.xy1[0], self.xy1[1], self.xy2[0], self.xy2[1])
@docstring.dedent_interpd
def __init__(self, xyA, xyB, coordsA, coordsB=None,
axesA=None, axesB=None,
arrowstyle="-",
arrow_transmuter=None,
connectionstyle="arc3",
connector=None,
patchA=None,
patchB=None,
shrinkA=0.,
shrinkB=0.,
mutation_scale=10.,
mutation_aspect=None,
clip_on=False,
dpi_cor=1.,
**kwargs):
"""
Connect point *xyA* in *coordsA* with point *xyB* in *coordsB*
Valid keys are
=============== ======================================================
Key Description
=============== ======================================================
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for :class:`matplotlib.patches.PathPatch`
=============== ======================================================
*coordsA* and *coordsB* are strings that indicate the
coordinates of *xyA* and *xyB*.
================= ===================================================
Property Description
================= ===================================================
'figure points' points from the lower left corner of the figure
'figure pixels' pixels from the lower left corner of the figure
'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right
'axes points' points from lower left corner of axes
'axes pixels' pixels from lower left corner of axes
'axes fraction' 0,1 is lower left of axes and 1,1 is upper right
'data' use the coordinate system of the object being
annotated (default)
'offset points' Specify an offset (in points) from the *xy* value
'polar' you can specify *theta*, *r* for the annotation,
even in cartesian plots. Note that if you
are using a polar axes, you do not need
to specify polar for the coordinate
system since that is the native "data" coordinate
system.
================= ===================================================
"""
if coordsB is None:
coordsB = coordsA
# we'll draw ourself after the artist we annotate by default
self.xy1 = xyA
self.xy2 = xyB
self.coords1 = coordsA
self.coords2 = coordsB
self.axesA = axesA
self.axesB = axesB
FancyArrowPatch.__init__(self,
posA=(0, 0), posB=(1, 1),
arrowstyle=arrowstyle,
arrow_transmuter=arrow_transmuter,
connectionstyle=connectionstyle,
connector=connector,
patchA=patchA,
patchB=patchB,
shrinkA=shrinkA,
shrinkB=shrinkB,
mutation_scale=mutation_scale,
mutation_aspect=mutation_aspect,
clip_on=clip_on,
dpi_cor=dpi_cor,
**kwargs)
# if True, draw annotation only if self.xy is inside the axes
self._annotation_clip = None
def _get_xy(self, x, y, s, axes=None):
"""
calculate the pixel position of given point
"""
if axes is None:
axes = self.axes
if s == 'data':
trans = axes.transData
x = float(self.convert_xunits(x))
y = float(self.convert_yunits(y))
return trans.transform_point((x, y))
elif s == 'offset points':
# convert the data point
dx, dy = self.xy
# prevent recursion
if self.xycoords == 'offset points':
return self._get_xy(dx, dy, 'data')
dx, dy = self._get_xy(dx, dy, self.xycoords)
# convert the offset
dpi = self.figure.get_dpi()
x *= dpi / 72.
y *= dpi / 72.
# add the offset to the data point
x += dx
y += dy
return x, y
elif s == 'polar':
theta, r = x, y
x = r * np.cos(theta)
y = r * np.sin(theta)
trans = axes.transData
return trans.transform_point((x, y))
elif s == 'figure points':
# points from the lower left corner of the figure
dpi = self.figure.dpi
l, b, w, h = self.figure.bbox.bounds
r = l + w
t = b + h
x *= dpi / 72.
y *= dpi / 72.
if x < 0:
x = r + x
if y < 0:
y = t + y
return x, y
elif s == 'figure pixels':
# pixels from the lower left corner of the figure
l, b, w, h = self.figure.bbox.bounds
r = l + w
t = b + h
if x < 0:
x = r + x
if y < 0:
y = t + y
return x, y
elif s == 'figure fraction':
# (0,0) is lower left, (1,1) is upper right of figure
trans = self.figure.transFigure
return trans.transform_point((x, y))
elif s == 'axes points':
# points from the lower left corner of the axes
dpi = self.figure.dpi
l, b, w, h = axes.bbox.bounds
r = l + w
t = b + h
if x < 0:
x = r + x * dpi / 72.
else:
x = l + x * dpi / 72.
if y < 0:
y = t + y * dpi / 72.
else:
y = b + y * dpi / 72.
return x, y
elif s == 'axes pixels':
#pixels from the lower left corner of the axes
l, b, w, h = axes.bbox.bounds
r = l + w
t = b + h
if x < 0:
x = r + x
else:
x = l + x
if y < 0:
y = t + y
else:
y = b + y
return x, y
elif s == 'axes fraction':
#(0,0) is lower left, (1,1) is upper right of axes
trans = axes.transAxes
return trans.transform_point((x, y))
def set_annotation_clip(self, b):
"""
set *annotation_clip* attribute.
* True: the annotation will only be drawn when self.xy is inside the
axes.
* False: the annotation will always be drawn regardless of its
position.
* None: the self.xy will be checked only if *xycoords* is "data"
"""
self._annotation_clip = b
self.stale = True
def get_annotation_clip(self):
"""
Return *annotation_clip* attribute.
See :meth:`set_annotation_clip` for the meaning of return values.
"""
return self._annotation_clip
def get_path_in_displaycoord(self):
"""
Return the mutated path of the arrow in the display coord
"""
dpi_cor = self.get_dpi_cor()
x, y = self.xy1
posA = self._get_xy(x, y, self.coords1, self.axesA)
x, y = self.xy2
posB = self._get_xy(x, y, self.coords2, self.axesB)
_path = self.get_connectionstyle()(posA, posB,
patchA=self.patchA,
patchB=self.patchB,
shrinkA=self.shrinkA * dpi_cor,
shrinkB=self.shrinkB * dpi_cor
)
_path, fillable = self.get_arrowstyle()(
_path,
self.get_mutation_scale() * dpi_cor,
self.get_linewidth() * dpi_cor,
self.get_mutation_aspect()
)
return _path, fillable
def _check_xy(self, renderer):
"""
check if the annotation need to
be drawn.
"""
b = self.get_annotation_clip()
if b or (b is None and self.coords1 == "data"):
x, y = self.xy1
xy_pixel = self._get_xy(x, y, self.coords1, self.axesA)
if not self.axes.contains_point(xy_pixel):
return False
if b or (b is None and self.coords2 == "data"):
x, y = self.xy2
xy_pixel = self._get_xy(x, y, self.coords2, self.axesB)
if self.axesB is None:
axes = self.axes
else:
axes = self.axesB
if not axes.contains_point(xy_pixel):
return False
return True
def draw(self, renderer):
"""
Draw.
"""
if renderer is not None:
self._renderer = renderer
if not self.get_visible():
return
if not self._check_xy(renderer):
return
FancyArrowPatch.draw(self, renderer)
|