aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_bezier_arc.cpp
blob: 844d300c091492aca8f3aeac89d3395e6ce18d15 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software 
// is granted provided this copyright notice appears in all copies. 
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Arc generator. Produces at most 4 consecutive cubic bezier curves, i.e., 
// 4, 7, 10, or 13 vertices.
//
//----------------------------------------------------------------------------


#include <math.h>
#include "agg_bezier_arc.h"


namespace agg
{

    // This epsilon is used to prevent us from adding degenerate curves 
    // (converging to a single point).
    // The value isn't very critical. Function arc_to_bezier() has a limit 
    // of the sweep_angle. If fabs(sweep_angle) exceeds pi/2 the curve 
    // becomes inaccurate. But slight exceeding is quite appropriate.
    //-------------------------------------------------bezier_arc_angle_epsilon
    const double bezier_arc_angle_epsilon = 0.01;

    //------------------------------------------------------------arc_to_bezier
    void arc_to_bezier(double cx, double cy, double rx, double ry, 
                       double start_angle, double sweep_angle,
                       double* curve)
    {
        double x0 = cos(sweep_angle / 2.0);
        double y0 = sin(sweep_angle / 2.0);
        double tx = (1.0 - x0) * 4.0 / 3.0;
        double ty = y0 - tx * x0 / y0;
        double px[4];
        double py[4];
        px[0] =  x0;
        py[0] = -y0;
        px[1] =  x0 + tx;
        py[1] = -ty;
        px[2] =  x0 + tx;
        py[2] =  ty;
        px[3] =  x0;
        py[3] =  y0;

        double sn = sin(start_angle + sweep_angle / 2.0);
        double cs = cos(start_angle + sweep_angle / 2.0);

        unsigned i;
        for(i = 0; i < 4; i++)
        {
            curve[i * 2]     = cx + rx * (px[i] * cs - py[i] * sn);
            curve[i * 2 + 1] = cy + ry * (px[i] * sn + py[i] * cs);
        }
    }



    //------------------------------------------------------------------------
    void bezier_arc::init(double x,  double y, 
                          double rx, double ry, 
                          double start_angle, 
                          double sweep_angle)
    {
        start_angle = fmod(start_angle, 2.0 * pi);
        if(sweep_angle >=  2.0 * pi) sweep_angle =  2.0 * pi;
        if(sweep_angle <= -2.0 * pi) sweep_angle = -2.0 * pi;

        if(fabs(sweep_angle) < 1e-10)
        {
            m_num_vertices = 4;
            m_cmd = path_cmd_line_to;
            m_vertices[0] = x + rx * cos(start_angle);
            m_vertices[1] = y + ry * sin(start_angle);
            m_vertices[2] = x + rx * cos(start_angle + sweep_angle);
            m_vertices[3] = y + ry * sin(start_angle + sweep_angle);
            return;
        }

        double total_sweep = 0.0;
        double local_sweep = 0.0;
        double prev_sweep;
        m_num_vertices = 2;
        m_cmd = path_cmd_curve4;
        bool done = false;
        do
        {
            if(sweep_angle < 0.0)
            {
                prev_sweep  = total_sweep;
                local_sweep = -pi * 0.5;
                total_sweep -= pi * 0.5;
                if(total_sweep <= sweep_angle + bezier_arc_angle_epsilon)
                {
                    local_sweep = sweep_angle - prev_sweep;
                    done = true;
                }
            }
            else
            {
                prev_sweep  = total_sweep;
                local_sweep =  pi * 0.5;
                total_sweep += pi * 0.5;
                if(total_sweep >= sweep_angle - bezier_arc_angle_epsilon)
                {
                    local_sweep = sweep_angle - prev_sweep;
                    done = true;
                }
            }

            arc_to_bezier(x, y, rx, ry, 
                          start_angle, 
                          local_sweep, 
                          m_vertices + m_num_vertices - 2);

            m_num_vertices += 6;
            start_angle += local_sweep;
        }
        while(!done && m_num_vertices < 26);
    }




    //--------------------------------------------------------------------
    void bezier_arc_svg::init(double x0, double y0, 
                              double rx, double ry, 
                              double angle,
                              bool large_arc_flag,
                              bool sweep_flag,
                              double x2, double y2)
    {
        m_radii_ok = true;

        if(rx < 0.0) rx = -rx;
        if(ry < 0.0) ry = -rx;

        // Calculate the middle point between 
        // the current and the final points
        //------------------------
        double dx2 = (x0 - x2) / 2.0;
        double dy2 = (y0 - y2) / 2.0;

        double cos_a = cos(angle);
        double sin_a = sin(angle);

        // Calculate (x1, y1)
        //------------------------
        double x1 =  cos_a * dx2 + sin_a * dy2;
        double y1 = -sin_a * dx2 + cos_a * dy2;

        // Ensure radii are large enough
        //------------------------
        double prx = rx * rx;
        double pry = ry * ry;
        double px1 = x1 * x1;
        double py1 = y1 * y1;

        // Check that radii are large enough
        //------------------------
        double radii_check = px1/prx + py1/pry;
        if(radii_check > 1.0) 
        {
            rx = sqrt(radii_check) * rx;
            ry = sqrt(radii_check) * ry;
            prx = rx * rx;
            pry = ry * ry;
            if(radii_check > 10.0) m_radii_ok = false;
        }

        // Calculate (cx1, cy1)
        //------------------------
        double sign = (large_arc_flag == sweep_flag) ? -1.0 : 1.0;
        double sq   = (prx*pry - prx*py1 - pry*px1) / (prx*py1 + pry*px1);
        double coef = sign * sqrt((sq < 0) ? 0 : sq);
        double cx1  = coef *  ((rx * y1) / ry);
        double cy1  = coef * -((ry * x1) / rx);

        //
        // Calculate (cx, cy) from (cx1, cy1)
        //------------------------
        double sx2 = (x0 + x2) / 2.0;
        double sy2 = (y0 + y2) / 2.0;
        double cx = sx2 + (cos_a * cx1 - sin_a * cy1);
        double cy = sy2 + (sin_a * cx1 + cos_a * cy1);

        // Calculate the start_angle (angle1) and the sweep_angle (dangle)
        //------------------------
        double ux =  (x1 - cx1) / rx;
        double uy =  (y1 - cy1) / ry;
        double vx = (-x1 - cx1) / rx;
        double vy = (-y1 - cy1) / ry;
        double p, n;

        // Calculate the angle start
        //------------------------
        n = sqrt(ux*ux + uy*uy);
        p = ux; // (1 * ux) + (0 * uy)
        sign = (uy < 0) ? -1.0 : 1.0;
        double v = p / n;
        if(v < -1.0) v = -1.0;
        if(v >  1.0) v =  1.0;
        double start_angle = sign * acos(v);

        // Calculate the sweep angle
        //------------------------
        n = sqrt((ux*ux + uy*uy) * (vx*vx + vy*vy));
        p = ux * vx + uy * vy;
        sign = (ux * vy - uy * vx < 0) ? -1.0 : 1.0;
        v = p / n;
        if(v < -1.0) v = -1.0;
        if(v >  1.0) v =  1.0;
        double sweep_angle = sign * acos(v);
        if(!sweep_flag && sweep_angle > 0) 
        {
            sweep_angle -= pi * 2.0;
        } 
        else 
        if (sweep_flag && sweep_angle < 0) 
        {
            sweep_angle += pi * 2.0;
        }

        // We can now build and transform the resulting arc
        //------------------------
        m_arc.init(0.0, 0.0, rx, ry, start_angle, sweep_angle);
        trans_affine mtx = trans_affine_rotation(angle);
        mtx *= trans_affine_translation(cx, cy);
        
        for(unsigned i = 2; i < m_arc.num_vertices()-2; i += 2)
        {
            mtx.transform(m_arc.vertices() + i, m_arc.vertices() + i + 1);
        }

        // We must make sure that the starting and ending points
        // exactly coincide with the initial (x0,y0) and (x2,y2)
        m_arc.vertices()[0] = x0;
        m_arc.vertices()[1] = y0;
        if(m_arc.num_vertices() > 2)
        {
            m_arc.vertices()[m_arc.num_vertices() - 2] = x2;
            m_arc.vertices()[m_arc.num_vertices() - 1] = y2;
        }
    }


}