aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib-inline/matplotlib_inline/backend_inline.py
blob: 1e3431fc0f2eb63cd957096dff47c14bf82d01ca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""A matplotlib backend for publishing figures via display_data""" 
 
# Copyright (c) IPython Development Team. 
# Distributed under the terms of the BSD 3-Clause License. 
 
import matplotlib 
from matplotlib.backends.backend_agg import (  # noqa 
    new_figure_manager, 
    FigureCanvasAgg, 
    new_figure_manager_given_figure, 
) 
from matplotlib import colors 
from matplotlib._pylab_helpers import Gcf 
 
from IPython.core.interactiveshell import InteractiveShell 
from IPython.core.getipython import get_ipython 
from IPython.core.pylabtools import select_figure_formats 
from IPython.display import display 
 
from .config import InlineBackend 
 
 
def show(close=None, block=None): 
    """Show all figures as SVG/PNG payloads sent to the IPython clients. 
 
    Parameters 
    ---------- 
    close : bool, optional 
        If true, a ``plt.close('all')`` call is automatically issued after 
        sending all the figures. If this is set, the figures will entirely 
        removed from the internal list of figures. 
    block : Not used. 
        The `block` parameter is a Matplotlib experimental parameter. 
        We accept it in the function signature for compatibility with other 
        backends. 
    """ 
    if close is None: 
        close = InlineBackend.instance().close_figures 
    try: 
        for figure_manager in Gcf.get_all_fig_managers(): 
            display( 
                figure_manager.canvas.figure, 
                metadata=_fetch_figure_metadata(figure_manager.canvas.figure) 
            ) 
    finally: 
        show._to_draw = [] 
        # only call close('all') if any to close 
        # close triggers gc.collect, which can be slow 
        if close and Gcf.get_all_fig_managers(): 
            matplotlib.pyplot.close('all') 
 
 
# This flag will be reset by draw_if_interactive when called 
show._draw_called = False 
# list of figures to draw when flush_figures is called 
show._to_draw = [] 
 
 
def draw_if_interactive(): 
    """ 
    Is called after every pylab drawing command 
    """ 
    # signal that the current active figure should be sent at the end of 
    # execution.  Also sets the _draw_called flag, signaling that there will be 
    # something to send.  At the end of the code execution, a separate call to 
    # flush_figures() will act upon these values 
    manager = Gcf.get_active() 
    if manager is None: 
        return 
    fig = manager.canvas.figure 
 
    # Hack: matplotlib FigureManager objects in interacive backends (at least 
    # in some of them) monkeypatch the figure object and add a .show() method 
    # to it.  This applies the same monkeypatch in order to support user code 
    # that might expect `.show()` to be part of the official API of figure 
    # objects. 
    # For further reference: 
    # https://github.com/ipython/ipython/issues/1612 
    # https://github.com/matplotlib/matplotlib/issues/835 
 
    if not hasattr(fig, 'show'): 
        # Queue up `fig` for display 
        fig.show = lambda *a: display(fig, metadata=_fetch_figure_metadata(fig)) 
 
    # If matplotlib was manually set to non-interactive mode, this function 
    # should be a no-op (otherwise we'll generate duplicate plots, since a user 
    # who set ioff() manually expects to make separate draw/show calls). 
    if not matplotlib.is_interactive(): 
        return 
 
    # ensure current figure will be drawn, and each subsequent call 
    # of draw_if_interactive() moves the active figure to ensure it is 
    # drawn last 
    try: 
        show._to_draw.remove(fig) 
    except ValueError: 
        # ensure it only appears in the draw list once 
        pass 
    # Queue up the figure for drawing in next show() call 
    show._to_draw.append(fig) 
    show._draw_called = True 
 
 
def flush_figures(): 
    """Send all figures that changed 
 
    This is meant to be called automatically and will call show() if, during 
    prior code execution, there had been any calls to draw_if_interactive. 
 
    This function is meant to be used as a post_execute callback in IPython, 
    so user-caused errors are handled with showtraceback() instead of being 
    allowed to raise.  If this function is not called from within IPython, 
    then these exceptions will raise. 
    """ 
    if not show._draw_called: 
        return 
 
    if InlineBackend.instance().close_figures: 
        # ignore the tracking, just draw and close all figures 
        try: 
            return show(True) 
        except Exception as e: 
            # safely show traceback if in IPython, else raise 
            ip = get_ipython() 
            if ip is None: 
                raise e 
            else: 
                ip.showtraceback() 
                return 
    try: 
        # exclude any figures that were closed: 
        active = set([fm.canvas.figure for fm in Gcf.get_all_fig_managers()]) 
        for fig in [fig for fig in show._to_draw if fig in active]: 
            try: 
                display(fig, metadata=_fetch_figure_metadata(fig)) 
            except Exception as e: 
                # safely show traceback if in IPython, else raise 
                ip = get_ipython() 
                if ip is None: 
                    raise e 
                else: 
                    ip.showtraceback() 
                    return 
    finally: 
        # clear flags for next round 
        show._to_draw = [] 
        show._draw_called = False 
 
 
# Changes to matplotlib in version 1.2 requires a mpl backend to supply a default 
# figurecanvas. This is set here to a Agg canvas 
# See https://github.com/matplotlib/matplotlib/pull/1125 
FigureCanvas = FigureCanvasAgg 
 
 
def configure_inline_support(shell, backend): 
    """Configure an IPython shell object for matplotlib use. 
 
    Parameters 
    ---------- 
    shell : InteractiveShell instance 
 
    backend : matplotlib backend 
    """ 
    # If using our svg payload backend, register the post-execution 
    # function that will pick up the results for display.  This can only be 
    # done with access to the real shell object. 
 
    cfg = InlineBackend.instance(parent=shell) 
    cfg.shell = shell 
    if cfg not in shell.configurables: 
        shell.configurables.append(cfg) 
 
    if backend == 'module://matplotlib_inline.backend_inline': 
        shell.events.register('post_execute', flush_figures) 
 
        # Save rcParams that will be overwrittern 
        shell._saved_rcParams = {} 
        for k in cfg.rc: 
            shell._saved_rcParams[k] = matplotlib.rcParams[k] 
        # load inline_rc 
        matplotlib.rcParams.update(cfg.rc) 
        new_backend_name = "inline" 
    else: 
        try: 
            shell.events.unregister('post_execute', flush_figures) 
        except ValueError: 
            pass 
        if hasattr(shell, '_saved_rcParams'): 
            matplotlib.rcParams.update(shell._saved_rcParams) 
            del shell._saved_rcParams 
        new_backend_name = "other" 
 
    # only enable the formats once -> don't change the enabled formats (which the user may 
    # has changed) when getting another "%matplotlib inline" call. 
    # See https://github.com/ipython/ipykernel/issues/29 
    cur_backend = getattr(configure_inline_support, "current_backend", "unset") 
    if new_backend_name != cur_backend: 
        # Setup the default figure format 
        select_figure_formats(shell, cfg.figure_formats, **cfg.print_figure_kwargs) 
        configure_inline_support.current_backend = new_backend_name 
 
 
def _enable_matplotlib_integration(): 
    """Enable extra IPython matplotlib integration when we are loaded as the matplotlib backend.""" 
    from matplotlib import get_backend 
    ip = get_ipython() 
    backend = get_backend() 
    if ip and backend == 'module://%s' % __name__: 
        from IPython.core.pylabtools import activate_matplotlib 
        try: 
            activate_matplotlib(backend) 
            configure_inline_support(ip, backend) 
        except (ImportError, AttributeError): 
            # bugs may cause a circular import on Python 2 
            def configure_once(*args): 
                activate_matplotlib(backend) 
                configure_inline_support(ip, backend) 
                ip.events.unregister('post_run_cell', configure_once) 
            ip.events.register('post_run_cell', configure_once) 
 
 
_enable_matplotlib_integration() 
 
 
def _fetch_figure_metadata(fig): 
    """Get some metadata to help with displaying a figure.""" 
    # determine if a background is needed for legibility 
    if _is_transparent(fig.get_facecolor()): 
        # the background is transparent 
        ticksLight = _is_light([label.get_color() 
                                for axes in fig.axes 
                                for axis in (axes.xaxis, axes.yaxis) 
                                for label in axis.get_ticklabels()]) 
        if ticksLight.size and (ticksLight == ticksLight[0]).all(): 
            # there are one or more tick labels, all with the same lightness 
            return {'needs_background': 'dark' if ticksLight[0] else 'light'} 
 
    return None 
 
 
def _is_light(color): 
    """Determines if a color (or each of a sequence of colors) is light (as 
    opposed to dark). Based on ITU BT.601 luminance formula (see 
    https://stackoverflow.com/a/596241).""" 
    rgbaArr = colors.to_rgba_array(color) 
    return rgbaArr[:, :3].dot((.299, .587, .114)) > .5 
 
 
def _is_transparent(color): 
    """Determine transparency from alpha.""" 
    rgba = colors.to_rgba(color) 
    return rgba[3] < .5 
 
 
def set_matplotlib_formats(*formats, **kwargs): 
    """Select figure formats for the inline backend. Optionally pass quality for JPEG. 
 
    For example, this enables PNG and JPEG output with a JPEG quality of 90%:: 
 
        In [1]: set_matplotlib_formats('png', 'jpeg', quality=90) 
 
    To set this in your config files use the following:: 
 
        c.InlineBackend.figure_formats = {'png', 'jpeg'} 
        c.InlineBackend.print_figure_kwargs.update({'quality' : 90}) 
 
    Parameters 
    ---------- 
    *formats : strs 
        One or more figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. 
    **kwargs 
        Keyword args will be relayed to ``figure.canvas.print_figure``. 
    """ 
    # build kwargs, starting with InlineBackend config 
    cfg = InlineBackend.instance() 
    kw = {} 
    kw.update(cfg.print_figure_kwargs) 
    kw.update(**kwargs) 
    shell = InteractiveShell.instance() 
    select_figure_formats(shell, formats, **kw) 
 
 
def set_matplotlib_close(close=True): 
    """Set whether the inline backend closes all figures automatically or not. 
 
    By default, the inline backend used in the IPython Notebook will close all 
    matplotlib figures automatically after each cell is run. This means that 
    plots in different cells won't interfere. Sometimes, you may want to make 
    a plot in one cell and then refine it in later cells. This can be accomplished 
    by:: 
 
        In [1]: set_matplotlib_close(False) 
 
    To set this in your config files use the following:: 
 
        c.InlineBackend.close_figures = False 
 
    Parameters 
    ---------- 
    close : bool 
        Should all matplotlib figures be automatically closed after each cell is 
        run? 
    """ 
    cfg = InlineBackend.instance() 
    cfg.close_figures = close