aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/kiwisolver/py3/kiwi/solverimpl.h
blob: c1960fcb7e6ec06ab565099751d5cc01ccee5247 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
/*-----------------------------------------------------------------------------
| Copyright (c) 2013-2017, Nucleic Development Team.
|
| Distributed under the terms of the Modified BSD License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/
#pragma once
#include <algorithm>
#include <limits>
#include <memory>
#include <vector>
#include "constraint.h"
#include "errors.h"
#include "expression.h"
#include "maptype.h"
#include "row.h"
#include "symbol.h"
#include "term.h"
#include "util.h"
#include "variable.h"


namespace kiwi
{

namespace impl
{

class SolverImpl
{
	friend class DebugHelper;

	struct Tag
	{
		Symbol marker;
		Symbol other;
	};

	struct EditInfo
	{
		Tag tag;
		Constraint constraint;
		double constant;
	};

	using VarMap = MapType<Variable, Symbol>;

	using RowMap = MapType<Symbol, Row*>;

	using CnMap = MapType<Constraint, Tag>;

	using EditMap = MapType<Variable, EditInfo>;

	struct DualOptimizeGuard
	{
		DualOptimizeGuard( SolverImpl& impl ) : m_impl( impl ) {}
		~DualOptimizeGuard() { m_impl.dualOptimize(); }
		SolverImpl& m_impl;
	};

public:

	SolverImpl() : m_objective( new Row() ), m_id_tick( 1 ) {}

	SolverImpl( const SolverImpl& ) = delete;

	SolverImpl( SolverImpl&& ) = delete;

	~SolverImpl() { clearRows(); }

	/* Add a constraint to the solver.

	Throws
	------
	DuplicateConstraint
		The given constraint has already been added to the solver.

	UnsatisfiableConstraint
		The given constraint is required and cannot be satisfied.

	*/
	void addConstraint( const Constraint& constraint )
	{
		if( m_cns.find( constraint ) != m_cns.end() )
			throw DuplicateConstraint( constraint );

		// Creating a row causes symbols to be reserved for the variables
		// in the constraint. If this method exits with an exception,
		// then its possible those variables will linger in the var map.
		// Since its likely that those variables will be used in other
		// constraints and since exceptional conditions are uncommon,
		// i'm not too worried about aggressive cleanup of the var map.
		Tag tag;
		std::unique_ptr<Row> rowptr( createRow( constraint, tag ) );
		Symbol subject( chooseSubject( *rowptr, tag ) );

		// If chooseSubject could not find a valid entering symbol, one
		// last option is available if the entire row is composed of
		// dummy variables. If the constant of the row is zero, then
		// this represents redundant constraints and the new dummy
		// marker can enter the basis. If the constant is non-zero,
		// then it represents an unsatisfiable constraint.
		if( subject.type() == Symbol::Invalid && allDummies( *rowptr ) )
		{
			if( !nearZero( rowptr->constant() ) )
				throw UnsatisfiableConstraint( constraint );
			else
				subject = tag.marker;
		}

		// If an entering symbol still isn't found, then the row must
		// be added using an artificial variable. If that fails, then
		// the row represents an unsatisfiable constraint.
		if( subject.type() == Symbol::Invalid )
		{
			if( !addWithArtificialVariable( *rowptr ) )
				throw UnsatisfiableConstraint( constraint );
		}
		else
		{
			rowptr->solveFor( subject );
			substitute( subject, *rowptr );
			m_rows[ subject ] = rowptr.release();
		}

		m_cns[ constraint ] = tag;

		// Optimizing after each constraint is added performs less
		// aggregate work due to a smaller average system size. It
		// also ensures the solver remains in a consistent state.
		optimize( *m_objective );
	}

	/* Remove a constraint from the solver.

	Throws
	------
	UnknownConstraint
		The given constraint has not been added to the solver.

	*/
	void removeConstraint( const Constraint& constraint )
	{
		auto cn_it = m_cns.find( constraint );
		if( cn_it == m_cns.end() )
			throw UnknownConstraint( constraint );

		Tag tag( cn_it->second );
		m_cns.erase( cn_it );

		// Remove the error effects from the objective function
		// *before* pivoting, or substitutions into the objective
		// will lead to incorrect solver results.
		removeConstraintEffects( constraint, tag );

		// If the marker is basic, simply drop the row. Otherwise,
		// pivot the marker into the basis and then drop the row.
		auto row_it = m_rows.find( tag.marker );
		if( row_it != m_rows.end() )
		{
			std::unique_ptr<Row> rowptr( row_it->second );
			m_rows.erase( row_it );
		}
		else
		{
			row_it = getMarkerLeavingRow( tag.marker );
			if( row_it == m_rows.end() )
				throw InternalSolverError( "failed to find leaving row" );
			Symbol leaving( row_it->first );
			std::unique_ptr<Row> rowptr( row_it->second );
			m_rows.erase( row_it );
			rowptr->solveFor( leaving, tag.marker );
			substitute( tag.marker, *rowptr );
		}

		// Optimizing after each constraint is removed ensures that the
		// solver remains consistent. It makes the solver api easier to
		// use at a small tradeoff for speed.
		optimize( *m_objective );
	}

	/* Test whether a constraint has been added to the solver.

	*/
	bool hasConstraint( const Constraint& constraint ) const
	{
		return m_cns.find( constraint ) != m_cns.end();
	}

	/* Add an edit variable to the solver.

	This method should be called before the `suggestValue` method is
	used to supply a suggested value for the given edit variable.

	Throws
	------
	DuplicateEditVariable
		The given edit variable has already been added to the solver.

	BadRequiredStrength
		The given strength is >= required.

	*/
	void addEditVariable( const Variable& variable, double strength )
	{
		if( m_edits.find( variable ) != m_edits.end() )
			throw DuplicateEditVariable( variable );
		strength = strength::clip( strength );
		if( strength == strength::required )
			throw BadRequiredStrength();
		Constraint cn( Expression( variable ), OP_EQ, strength );
		addConstraint( cn );
		EditInfo info;
		info.tag = m_cns[ cn ];
		info.constraint = cn;
		info.constant = 0.0;
		m_edits[ variable ] = info;
	}

	/* Remove an edit variable from the solver.

	Throws
	------
	UnknownEditVariable
		The given edit variable has not been added to the solver.

	*/
	void removeEditVariable( const Variable& variable )
	{
		auto it = m_edits.find( variable );
		if( it == m_edits.end() )
			throw UnknownEditVariable( variable );
		removeConstraint( it->second.constraint );
		m_edits.erase( it );
	}

	/* Test whether an edit variable has been added to the solver.

	*/
	bool hasEditVariable( const Variable& variable ) const
	{
		return m_edits.find( variable ) != m_edits.end();
	}

	/* Suggest a value for the given edit variable.

	This method should be used after an edit variable as been added to
	the solver in order to suggest the value for that variable.

	Throws
	------
	UnknownEditVariable
		The given edit variable has not been added to the solver.

	*/
	void suggestValue( const Variable& variable, double value )
	{
		auto it = m_edits.find( variable );
		if( it == m_edits.end() )
			throw UnknownEditVariable( variable );

		DualOptimizeGuard guard( *this );
		EditInfo& info = it->second;
		double delta = value - info.constant;
		info.constant = value;

		// Check first if the positive error variable is basic.
		auto row_it = m_rows.find( info.tag.marker );
		if( row_it != m_rows.end() )
		{
			if( row_it->second->add( -delta ) < 0.0 )
				m_infeasible_rows.push_back( row_it->first );
			return;
		}

		// Check next if the negative error variable is basic.
		row_it = m_rows.find( info.tag.other );
		if( row_it != m_rows.end() )
		{
			if( row_it->second->add( delta ) < 0.0 )
				m_infeasible_rows.push_back( row_it->first );
			return;
		}

		// Otherwise update each row where the error variables exist.
		for (const auto & rowPair : m_rows)
		{
			double coeff = rowPair.second->coefficientFor( info.tag.marker );
			if( coeff != 0.0 &&
				rowPair.second->add( delta * coeff ) < 0.0 &&
				rowPair.first.type() != Symbol::External )
				m_infeasible_rows.push_back( rowPair.first );
		}
	}

	/* Update the values of the external solver variables.

	*/
	void updateVariables()
	{
		auto row_end = m_rows.end();

		for (auto &varPair : m_vars)
		{
			Variable& var = varPair.first;
			auto row_it = m_rows.find( varPair.second );
			if( row_it == row_end )
				var.setValue( 0.0 );
			else
				var.setValue( row_it->second->constant() );
		}
	}

	/* Reset the solver to the empty starting condition.

	This method resets the internal solver state to the empty starting
	condition, as if no constraints or edit variables have been added.
	This can be faster than deleting the solver and creating a new one
	when the entire system must change, since it can avoid unecessary
	heap (de)allocations.

	*/
	void reset()
	{
		clearRows();
		m_cns.clear();
		m_vars.clear();
		m_edits.clear();
		m_infeasible_rows.clear();
		m_objective.reset( new Row() );
		m_artificial.reset();
		m_id_tick = 1;
	}

	SolverImpl& operator=( const SolverImpl& ) = delete;

	SolverImpl& operator=( SolverImpl&& ) = delete;

private:

	struct RowDeleter
	{
		template<typename T>
		void operator()( T& pair ) { delete pair.second; }
	};

	void clearRows()
	{
		std::for_each( m_rows.begin(), m_rows.end(), RowDeleter() );
		m_rows.clear();
	}

	/* Get the symbol for the given variable.

	If a symbol does not exist for the variable, one will be created.

	*/
	Symbol getVarSymbol( const Variable& variable )
	{
		auto it = m_vars.find( variable );
		if( it != m_vars.end() )
			return it->second;
		Symbol symbol( Symbol::External, m_id_tick++ );
		m_vars[ variable ] = symbol;
		return symbol;
	}

	/* Create a new Row object for the given constraint.

	The terms in the constraint will be converted to cells in the row.
	Any term in the constraint with a coefficient of zero is ignored.
	This method uses the `getVarSymbol` method to get the symbol for
	the variables added to the row. If the symbol for a given cell
	variable is basic, the cell variable will be substituted with the
	basic row.

	The necessary slack and error variables will be added to the row.
	If the constant for the row is negative, the sign for the row
	will be inverted so the constant becomes positive.

	The tag will be updated with the marker and error symbols to use
	for tracking the movement of the constraint in the tableau.

	*/
	std::unique_ptr<Row> createRow( const Constraint& constraint, Tag& tag )
	{
		const Expression& expr( constraint.expression() );
		std::unique_ptr<Row> row( new Row( expr.constant() ) );

		// Substitute the current basic variables into the row.
		for (const auto &term : expr.terms())
		{
			if( !nearZero( term.coefficient() ) )
			{
				Symbol symbol( getVarSymbol( term.variable() ) );
				auto row_it = m_rows.find( symbol );
				if( row_it != m_rows.end() )
					row->insert( *row_it->second, term.coefficient() );
				else
					row->insert( symbol, term.coefficient() );
			}
		}

		// Add the necessary slack, error, and dummy variables.
		switch( constraint.op() )
		{
			case OP_LE:
			case OP_GE:
			{
				double coeff = constraint.op() == OP_LE ? 1.0 : -1.0;
				Symbol slack( Symbol::Slack, m_id_tick++ );
				tag.marker = slack;
				row->insert( slack, coeff );
				if( constraint.strength() < strength::required )
				{
					Symbol error( Symbol::Error, m_id_tick++ );
					tag.other = error;
					row->insert( error, -coeff );
					m_objective->insert( error, constraint.strength() );
				}
				break;
			}
			case OP_EQ:
			{
				if( constraint.strength() < strength::required )
				{
					Symbol errplus( Symbol::Error, m_id_tick++ );
					Symbol errminus( Symbol::Error, m_id_tick++ );
					tag.marker = errplus;
					tag.other = errminus;
					row->insert( errplus, -1.0 ); // v = eplus - eminus
					row->insert( errminus, 1.0 ); // v - eplus + eminus = 0
					m_objective->insert( errplus, constraint.strength() );
					m_objective->insert( errminus, constraint.strength() );
				}
				else
				{
					Symbol dummy( Symbol::Dummy, m_id_tick++ );
					tag.marker = dummy;
					row->insert( dummy );
				}
				break;
			}
		}

		// Ensure the row as a positive constant.
		if( row->constant() < 0.0 )
			row->reverseSign();

		return row;
	}

	/* Choose the subject for solving for the row.

	This method will choose the best subject for using as the solve
	target for the row. An invalid symbol will be returned if there
	is no valid target.

	The symbols are chosen according to the following precedence:

	1) The first symbol representing an external variable.
	2) A negative slack or error tag variable.

	If a subject cannot be found, an invalid symbol will be returned.

	*/
	Symbol chooseSubject( const Row& row, const Tag& tag ) const
	{
		for (const auto &cellPair : row.cells())
		{
			if( cellPair.first.type() == Symbol::External )
				return cellPair.first;
		}
		if( tag.marker.type() == Symbol::Slack || tag.marker.type() == Symbol::Error )
		{
			if( row.coefficientFor( tag.marker ) < 0.0 )
				return tag.marker;
		}
		if( tag.other.type() == Symbol::Slack || tag.other.type() == Symbol::Error )
		{
			if( row.coefficientFor( tag.other ) < 0.0 )
				return tag.other;
		}
		return Symbol();
	}

 	/* Add the row to the tableau using an artificial variable.

	This will return false if the constraint cannot be satisfied.

 	*/
 	bool addWithArtificialVariable( const Row& row )
 	{
		// Create and add the artificial variable to the tableau
		Symbol art( Symbol::Slack, m_id_tick++ );
		m_rows[ art ] = new Row( row );
		m_artificial.reset( new Row( row ) );

		// Optimize the artificial objective. This is successful
		// only if the artificial objective is optimized to zero.
		optimize( *m_artificial );
		bool success = nearZero( m_artificial->constant() );
		m_artificial.reset();

		// If the artificial variable is not basic, pivot the row so that
		// it becomes basic. If the row is constant, exit early.
		auto it = m_rows.find( art );
		if( it != m_rows.end() )
		{
			std::unique_ptr<Row> rowptr( it->second );
			m_rows.erase( it );
			if( rowptr->cells().empty() )
				return success;
			Symbol entering( anyPivotableSymbol( *rowptr ) );
			if( entering.type() == Symbol::Invalid )
				return false;  // unsatisfiable (will this ever happen?)
			rowptr->solveFor( art, entering );
			substitute( entering, *rowptr );
			m_rows[ entering ] = rowptr.release();
		}

		// Remove the artificial variable from the tableau.
		for (auto &rowPair : m_rows)
			rowPair.second->remove(art);

		m_objective->remove( art );
		return success;
 	}

	/* Substitute the parametric symbol with the given row.

	This method will substitute all instances of the parametric symbol
	in the tableau and the objective function with the given row.

	*/
	void substitute( const Symbol& symbol, const Row& row )
	{
		for( auto& rowPair : m_rows )
		{
			rowPair.second->substitute( symbol, row );
			if( rowPair.first.type() != Symbol::External &&
				rowPair.second->constant() < 0.0 )
				m_infeasible_rows.push_back( rowPair.first );
		}
		m_objective->substitute( symbol, row );
		if( m_artificial.get() )
			m_artificial->substitute( symbol, row );
	}

	/* Optimize the system for the given objective function.

	This method performs iterations of Phase 2 of the simplex method
	until the objective function reaches a minimum.

	Throws
	------
	InternalSolverError
		The value of the objective function is unbounded.

	*/
	void optimize( const Row& objective )
	{
		while( true )
		{
			Symbol entering( getEnteringSymbol( objective ) );
			if( entering.type() == Symbol::Invalid )
				return;
			auto it = getLeavingRow( entering );
			if( it == m_rows.end() )
				throw InternalSolverError( "The objective is unbounded." );
			// pivot the entering symbol into the basis
			Symbol leaving( it->first );
			Row* row = it->second;
			m_rows.erase( it );
			row->solveFor( leaving, entering );
			substitute( entering, *row );
			m_rows[ entering ] = row;
		}
	}

	/* Optimize the system using the dual of the simplex method.

	The current state of the system should be such that the objective
	function is optimal, but not feasible. This method will perform
	an iteration of the dual simplex method to make the solution both
	optimal and feasible.

	Throws
	------
	InternalSolverError
		The system cannot be dual optimized.

	*/
	void dualOptimize()
	{
		while( !m_infeasible_rows.empty() )
		{

			Symbol leaving( m_infeasible_rows.back() );
			m_infeasible_rows.pop_back();
			auto it = m_rows.find( leaving );
			if( it != m_rows.end() && !nearZero( it->second->constant() ) &&
				it->second->constant() < 0.0 )
			{
				Symbol entering( getDualEnteringSymbol( *it->second ) );
				if( entering.type() == Symbol::Invalid )
					throw InternalSolverError( "Dual optimize failed." );
				// pivot the entering symbol into the basis
				Row* row = it->second;
				m_rows.erase( it );
				row->solveFor( leaving, entering );
				substitute( entering, *row );
				m_rows[ entering ] = row;
			}
		}
	}

	/* Compute the entering variable for a pivot operation.

	This method will return first symbol in the objective function which
	is non-dummy and has a coefficient less than zero. If no symbol meets
	the criteria, it means the objective function is at a minimum, and an
	invalid symbol is returned.

	*/
	Symbol getEnteringSymbol( const Row& objective ) const
	{
		for (const auto &cellPair : objective.cells())
		{
			if( cellPair.first.type() != Symbol::Dummy && cellPair.second < 0.0 )
				return cellPair.first;
		}
		return Symbol();
	}

	/* Compute the entering symbol for the dual optimize operation.

	This method will return the symbol in the row which has a positive
	coefficient and yields the minimum ratio for its respective symbol
	in the objective function. The provided row *must* be infeasible.
	If no symbol is found which meats the criteria, an invalid symbol
	is returned.

	*/
	Symbol getDualEnteringSymbol( const Row& row ) const
	{
		Symbol entering;
		double ratio = std::numeric_limits<double>::max();
		for (const auto &cellPair : row.cells())
		{
			if( cellPair.second > 0.0 && cellPair.first.type() != Symbol::Dummy )
			{
				double coeff = m_objective->coefficientFor( cellPair.first );
				double r = coeff / cellPair.second;
				if( r < ratio )
				{
					ratio = r;
					entering = cellPair.first;
				}
			}
		}
		return entering;
	}

	/* Get the first Slack or Error symbol in the row.

	If no such symbol is present, and Invalid symbol will be returned.

	*/
	Symbol anyPivotableSymbol( const Row& row ) const
	{
		for (const auto &cellPair : row.cells())
		{
			const Symbol& sym( cellPair.first );
			if( sym.type() == Symbol::Slack || sym.type() == Symbol::Error )
				return sym;
		}
		return Symbol();
	}

	/* Compute the row which holds the exit symbol for a pivot.

	This method will return an iterator to the row in the row map
	which holds the exit symbol. If no appropriate exit symbol is
	found, the end() iterator will be returned. This indicates that
	the objective function is unbounded.

	*/
	RowMap::iterator getLeavingRow( const Symbol& entering )
	{
		double ratio = std::numeric_limits<double>::max();
		auto end = m_rows.end();
		auto found = m_rows.end();
		for( auto it = m_rows.begin(); it != end; ++it )
		{
			if( it->first.type() != Symbol::External )
			{
				double temp = it->second->coefficientFor( entering );
				if( temp < 0.0 )
				{
					double temp_ratio = -it->second->constant() / temp;
					if( temp_ratio < ratio )
					{
						ratio = temp_ratio;
						found = it;
					}
				}
			}
		}
		return found;
	}

	/* Compute the leaving row for a marker variable.

	This method will return an iterator to the row in the row map
	which holds the given marker variable. The row will be chosen
	according to the following precedence:

	1) The row with a restricted basic varible and a negative coefficient
	   for the marker with the smallest ratio of -constant / coefficient.

	2) The row with a restricted basic variable and the smallest ratio
	   of constant / coefficient.

	3) The last unrestricted row which contains the marker.

	If the marker does not exist in any row, the row map end() iterator
	will be returned. This indicates an internal solver error since
	the marker *should* exist somewhere in the tableau.

	*/
	RowMap::iterator getMarkerLeavingRow( const Symbol& marker )
	{
		const double dmax = std::numeric_limits<double>::max();
		double r1 = dmax;
		double r2 = dmax;
		auto end = m_rows.end();
		auto first = end;
		auto second = end;
		auto third = end;
		for( auto it = m_rows.begin(); it != end; ++it )
		{
			double c = it->second->coefficientFor( marker );
			if( c == 0.0 )
				continue;
			if( it->first.type() == Symbol::External )
			{
				third = it;
			}
			else if( c < 0.0 )
			{
				double r = -it->second->constant() / c;
				if( r < r1 )
				{
					r1 = r;
					first = it;
				}
			}
			else
			{
				double r = it->second->constant() / c;
				if( r < r2 )
				{
					r2 = r;
					second = it;
				}
			}
		}
		if( first != end )
			return first;
		if( second != end )
			return second;
		return third;
	}

	/* Remove the effects of a constraint on the objective function.

	*/
	void removeConstraintEffects( const Constraint& cn, const Tag& tag )
	{
		if( tag.marker.type() == Symbol::Error )
			removeMarkerEffects( tag.marker, cn.strength() );
		if( tag.other.type() == Symbol::Error )
			removeMarkerEffects( tag.other, cn.strength() );
	}

	/* Remove the effects of an error marker on the objective function.

	*/
	void removeMarkerEffects( const Symbol& marker, double strength )
	{
		auto row_it = m_rows.find( marker );
		if( row_it != m_rows.end() )
			m_objective->insert( *row_it->second, -strength );
		else
			m_objective->insert( marker, -strength );
	}

	/* Test whether a row is composed of all dummy variables.

	*/
	bool allDummies( const Row& row ) const
	{
		for (const auto &rowPair : row.cells())
		{
			if( rowPair.first.type() != Symbol::Dummy )
				return false;
		}
		return true;
	}

	CnMap m_cns;
	RowMap m_rows;
	VarMap m_vars;
	EditMap m_edits;
	std::vector<Symbol> m_infeasible_rows;
	std::unique_ptr<Row> m_objective;
	std::unique_ptr<Row> m_artificial;
	Symbol::Id m_id_tick;
};

} // namespace impl

} // namespace kiwi