1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
from fontTools.misc.roundTools import noRound, otRound
from fontTools.misc.intTools import bit_count
from fontTools.ttLib.tables import otTables as ot
from fontTools.varLib.models import supportScalar
from fontTools.varLib.builder import (
buildVarRegionList,
buildVarStore,
buildVarRegion,
buildVarData,
)
from functools import partial
from collections import defaultdict
from heapq import heappush, heappop
NO_VARIATION_INDEX = ot.NO_VARIATION_INDEX
ot.VarStore.NO_VARIATION_INDEX = NO_VARIATION_INDEX
def _getLocationKey(loc):
return tuple(sorted(loc.items(), key=lambda kv: kv[0]))
class OnlineVarStoreBuilder(object):
def __init__(self, axisTags):
self._axisTags = axisTags
self._regionMap = {}
self._regionList = buildVarRegionList([], axisTags)
self._store = buildVarStore(self._regionList, [])
self._data = None
self._model = None
self._supports = None
self._varDataIndices = {}
self._varDataCaches = {}
self._cache = {}
def setModel(self, model):
self.setSupports(model.supports)
self._model = model
def setSupports(self, supports):
self._model = None
self._supports = list(supports)
if not self._supports[0]:
del self._supports[0] # Drop base master support
self._cache = {}
self._data = None
def finish(self, optimize=True):
self._regionList.RegionCount = len(self._regionList.Region)
self._store.VarDataCount = len(self._store.VarData)
for data in self._store.VarData:
data.ItemCount = len(data.Item)
data.calculateNumShorts(optimize=optimize)
return self._store
def _add_VarData(self):
regionMap = self._regionMap
regionList = self._regionList
regions = self._supports
regionIndices = []
for region in regions:
key = _getLocationKey(region)
idx = regionMap.get(key)
if idx is None:
varRegion = buildVarRegion(region, self._axisTags)
idx = regionMap[key] = len(regionList.Region)
regionList.Region.append(varRegion)
regionIndices.append(idx)
# Check if we have one already...
key = tuple(regionIndices)
varDataIdx = self._varDataIndices.get(key)
if varDataIdx is not None:
self._outer = varDataIdx
self._data = self._store.VarData[varDataIdx]
self._cache = self._varDataCaches[key]
if len(self._data.Item) == 0xFFFF:
# This is full. Need new one.
varDataIdx = None
if varDataIdx is None:
self._data = buildVarData(regionIndices, [], optimize=False)
self._outer = len(self._store.VarData)
self._store.VarData.append(self._data)
self._varDataIndices[key] = self._outer
if key not in self._varDataCaches:
self._varDataCaches[key] = {}
self._cache = self._varDataCaches[key]
def storeMasters(self, master_values, *, round=round):
deltas = self._model.getDeltas(master_values, round=round)
base = deltas.pop(0)
return base, self.storeDeltas(deltas, round=noRound)
def storeDeltas(self, deltas, *, round=round):
deltas = [round(d) for d in deltas]
if len(deltas) == len(self._supports) + 1:
deltas = tuple(deltas[1:])
else:
assert len(deltas) == len(self._supports)
deltas = tuple(deltas)
varIdx = self._cache.get(deltas)
if varIdx is not None:
return varIdx
if not self._data:
self._add_VarData()
inner = len(self._data.Item)
if inner == 0xFFFF:
# Full array. Start new one.
self._add_VarData()
return self.storeDeltas(deltas)
self._data.addItem(deltas, round=noRound)
varIdx = (self._outer << 16) + inner
self._cache[deltas] = varIdx
return varIdx
def VarData_addItem(self, deltas, *, round=round):
deltas = [round(d) for d in deltas]
countUs = self.VarRegionCount
countThem = len(deltas)
if countUs + 1 == countThem:
deltas = list(deltas[1:])
else:
assert countUs == countThem, (countUs, countThem)
deltas = list(deltas)
self.Item.append(deltas)
self.ItemCount = len(self.Item)
ot.VarData.addItem = VarData_addItem
def VarRegion_get_support(self, fvar_axes):
return {
fvar_axes[i].axisTag: (reg.StartCoord, reg.PeakCoord, reg.EndCoord)
for i, reg in enumerate(self.VarRegionAxis)
if reg.PeakCoord != 0
}
ot.VarRegion.get_support = VarRegion_get_support
def VarStore___bool__(self):
return bool(self.VarData)
ot.VarStore.__bool__ = VarStore___bool__
class VarStoreInstancer(object):
def __init__(self, varstore, fvar_axes, location={}):
self.fvar_axes = fvar_axes
assert varstore is None or varstore.Format == 1
self._varData = varstore.VarData if varstore else []
self._regions = varstore.VarRegionList.Region if varstore else []
self.setLocation(location)
def setLocation(self, location):
self.location = dict(location)
self._clearCaches()
def _clearCaches(self):
self._scalars = {}
def _getScalar(self, regionIdx):
scalar = self._scalars.get(regionIdx)
if scalar is None:
support = self._regions[regionIdx].get_support(self.fvar_axes)
scalar = supportScalar(self.location, support)
self._scalars[regionIdx] = scalar
return scalar
@staticmethod
def interpolateFromDeltasAndScalars(deltas, scalars):
delta = 0.0
for d, s in zip(deltas, scalars):
if not s:
continue
delta += d * s
return delta
def __getitem__(self, varidx):
major, minor = varidx >> 16, varidx & 0xFFFF
if varidx == NO_VARIATION_INDEX:
return 0.0
varData = self._varData
scalars = [self._getScalar(ri) for ri in varData[major].VarRegionIndex]
deltas = varData[major].Item[minor]
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def interpolateFromDeltas(self, varDataIndex, deltas):
varData = self._varData
scalars = [self._getScalar(ri) for ri in varData[varDataIndex].VarRegionIndex]
return self.interpolateFromDeltasAndScalars(deltas, scalars)
#
# Optimizations
#
# retainFirstMap - If true, major 0 mappings are retained. Deltas for unused indices are zeroed
# advIdxes - Set of major 0 indices for advance deltas to be listed first. Other major 0 indices follow.
def VarStore_subset_varidxes(
self, varIdxes, optimize=True, retainFirstMap=False, advIdxes=set()
):
# Sort out used varIdxes by major/minor.
used = {}
for varIdx in varIdxes:
if varIdx == NO_VARIATION_INDEX:
continue
major = varIdx >> 16
minor = varIdx & 0xFFFF
d = used.get(major)
if d is None:
d = used[major] = set()
d.add(minor)
del varIdxes
#
# Subset VarData
#
varData = self.VarData
newVarData = []
varDataMap = {NO_VARIATION_INDEX: NO_VARIATION_INDEX}
for major, data in enumerate(varData):
usedMinors = used.get(major)
if usedMinors is None:
continue
newMajor = len(newVarData)
newVarData.append(data)
items = data.Item
newItems = []
if major == 0 and retainFirstMap:
for minor in range(len(items)):
newItems.append(
items[minor] if minor in usedMinors else [0] * len(items[minor])
)
varDataMap[minor] = minor
else:
if major == 0:
minors = sorted(advIdxes) + sorted(usedMinors - advIdxes)
else:
minors = sorted(usedMinors)
for minor in minors:
newMinor = len(newItems)
newItems.append(items[minor])
varDataMap[(major << 16) + minor] = (newMajor << 16) + newMinor
data.Item = newItems
data.ItemCount = len(data.Item)
data.calculateNumShorts(optimize=optimize)
self.VarData = newVarData
self.VarDataCount = len(self.VarData)
self.prune_regions()
return varDataMap
ot.VarStore.subset_varidxes = VarStore_subset_varidxes
def VarStore_prune_regions(self):
"""Remove unused VarRegions."""
#
# Subset VarRegionList
#
# Collect.
usedRegions = set()
for data in self.VarData:
usedRegions.update(data.VarRegionIndex)
# Subset.
regionList = self.VarRegionList
regions = regionList.Region
newRegions = []
regionMap = {}
for i in sorted(usedRegions):
regionMap[i] = len(newRegions)
newRegions.append(regions[i])
regionList.Region = newRegions
regionList.RegionCount = len(regionList.Region)
# Map.
for data in self.VarData:
data.VarRegionIndex = [regionMap[i] for i in data.VarRegionIndex]
ot.VarStore.prune_regions = VarStore_prune_regions
def _visit(self, func):
"""Recurse down from self, if type of an object is ot.Device,
call func() on it. Works on otData-style classes."""
if type(self) == ot.Device:
func(self)
elif isinstance(self, list):
for that in self:
_visit(that, func)
elif hasattr(self, "getConverters") and not hasattr(self, "postRead"):
for conv in self.getConverters():
that = getattr(self, conv.name, None)
if that is not None:
_visit(that, func)
elif isinstance(self, ot.ValueRecord):
for that in self.__dict__.values():
_visit(that, func)
def _Device_recordVarIdx(self, s):
"""Add VarIdx in this Device table (if any) to the set s."""
if self.DeltaFormat == 0x8000:
s.add((self.StartSize << 16) + self.EndSize)
def Object_collect_device_varidxes(self, varidxes):
adder = partial(_Device_recordVarIdx, s=varidxes)
_visit(self, adder)
ot.GDEF.collect_device_varidxes = Object_collect_device_varidxes
ot.GPOS.collect_device_varidxes = Object_collect_device_varidxes
def _Device_mapVarIdx(self, mapping, done):
"""Map VarIdx in this Device table (if any) through mapping."""
if id(self) in done:
return
done.add(id(self))
if self.DeltaFormat == 0x8000:
varIdx = mapping[(self.StartSize << 16) + self.EndSize]
self.StartSize = varIdx >> 16
self.EndSize = varIdx & 0xFFFF
def Object_remap_device_varidxes(self, varidxes_map):
mapper = partial(_Device_mapVarIdx, mapping=varidxes_map, done=set())
_visit(self, mapper)
ot.GDEF.remap_device_varidxes = Object_remap_device_varidxes
ot.GPOS.remap_device_varidxes = Object_remap_device_varidxes
class _Encoding(object):
def __init__(self, chars):
self.chars = chars
self.width = bit_count(chars)
self.columns = self._columns(chars)
self.overhead = self._characteristic_overhead(self.columns)
self.items = set()
def append(self, row):
self.items.add(row)
def extend(self, lst):
self.items.update(lst)
def get_room(self):
"""Maximum number of bytes that can be added to characteristic
while still being beneficial to merge it into another one."""
count = len(self.items)
return max(0, (self.overhead - 1) // count - self.width)
room = property(get_room)
def get_gain(self):
"""Maximum possible byte gain from merging this into another
characteristic."""
count = len(self.items)
return max(0, self.overhead - count)
gain = property(get_gain)
def gain_sort_key(self):
return self.gain, self.chars
def width_sort_key(self):
return self.width, self.chars
@staticmethod
def _characteristic_overhead(columns):
"""Returns overhead in bytes of encoding this characteristic
as a VarData."""
c = 4 + 6 # 4 bytes for LOffset, 6 bytes for VarData header
c += bit_count(columns) * 2
return c
@staticmethod
def _columns(chars):
cols = 0
i = 1
while chars:
if chars & 0b1111:
cols |= i
chars >>= 4
i <<= 1
return cols
def gain_from_merging(self, other_encoding):
combined_chars = other_encoding.chars | self.chars
combined_width = bit_count(combined_chars)
combined_columns = self.columns | other_encoding.columns
combined_overhead = _Encoding._characteristic_overhead(combined_columns)
combined_gain = (
+self.overhead
+ other_encoding.overhead
- combined_overhead
- (combined_width - self.width) * len(self.items)
- (combined_width - other_encoding.width) * len(other_encoding.items)
)
return combined_gain
class _EncodingDict(dict):
def __missing__(self, chars):
r = self[chars] = _Encoding(chars)
return r
def add_row(self, row):
chars = self._row_characteristics(row)
self[chars].append(row)
@staticmethod
def _row_characteristics(row):
"""Returns encoding characteristics for a row."""
longWords = False
chars = 0
i = 1
for v in row:
if v:
chars += i
if not (-128 <= v <= 127):
chars += i * 0b0010
if not (-32768 <= v <= 32767):
longWords = True
break
i <<= 4
if longWords:
# Redo; only allow 2byte/4byte encoding
chars = 0
i = 1
for v in row:
if v:
chars += i * 0b0011
if not (-32768 <= v <= 32767):
chars += i * 0b1100
i <<= 4
return chars
def VarStore_optimize(self, use_NO_VARIATION_INDEX=True, quantization=1):
"""Optimize storage. Returns mapping from old VarIdxes to new ones."""
# Overview:
#
# For each VarData row, we first extend it with zeroes to have
# one column per region in VarRegionList. We then group the
# rows into _Encoding objects, by their "characteristic" bitmap.
# The characteristic bitmap is a binary number representing how
# many bytes each column of the data takes up to encode. Each
# column is encoded in four bits. For example, if a column has
# only values in the range -128..127, it would only have a single
# bit set in the characteristic bitmap for that column. If it has
# values in the range -32768..32767, it would have two bits set.
# The number of ones in the characteristic bitmap is the "width"
# of the encoding.
#
# Each encoding as such has a number of "active" (ie. non-zero)
# columns. The overhead of encoding the characteristic bitmap
# is 10 bytes, plus 2 bytes per active column.
#
# When an encoding is merged into another one, if the characteristic
# of the old encoding is a subset of the new one, then the overhead
# of the old encoding is completely eliminated. However, each row
# now would require more bytes to encode, to the tune of one byte
# per characteristic bit that is active in the new encoding but not
# in the old one. The number of bits that can be added to an encoding
# while still beneficial to merge it into another encoding is called
# the "room" for that encoding.
#
# The "gain" of an encodings is the maximum number of bytes we can
# save by merging it into another encoding. The "gain" of merging
# two encodings is how many bytes we save by doing so.
#
# High-level algorithm:
#
# - Each encoding has a minimal way to encode it. However, because
# of the overhead of encoding the characteristic bitmap, it may
# be beneficial to merge two encodings together, if there is
# gain in doing so. As such, we need to search for the best
# such successive merges.
#
# Algorithm:
#
# - Put all encodings into a "todo" list.
#
# - Sort todo list by decreasing gain (for stability).
#
# - Make a priority-queue of the gain from combining each two
# encodings in the todo list. The priority queue is sorted by
# decreasing gain. Only positive gains are included.
#
# - While priority queue is not empty:
# - Pop the first item from the priority queue,
# - Merge the two encodings it represents,
# - Remove the two encodings from the todo list,
# - Insert positive gains from combining the new encoding with
# all existing todo list items into the priority queue,
# - If a todo list item with the same characteristic bitmap as
# the new encoding exists, remove it from the todo list and
# merge it into the new encoding.
# - Insert the new encoding into the todo list,
#
# - Encode all remaining items in the todo list.
#
# The output is then sorted for stability, in the following way:
# - The VarRegionList of the input is kept intact.
# - All encodings are sorted before the main algorithm, by
# gain_key_sort(), which is a tuple of the following items:
# * The gain of the encoding.
# * The characteristic bitmap of the encoding, with higher-numbered
# columns compared first.
# - The VarData is sorted by width_sort_key(), which is a tuple
# of the following items:
# * The "width" of the encoding.
# * The characteristic bitmap of the encoding, with higher-numbered
# columns compared first.
# - Within each VarData, the items are sorted as vectors of numbers.
#
# Finally, each VarData is optimized to remove the empty columns and
# reorder columns as needed.
# TODO
# Check that no two VarRegions are the same; if they are, fold them.
n = len(self.VarRegionList.Region) # Number of columns
zeroes = [0] * n
front_mapping = {} # Map from old VarIdxes to full row tuples
encodings = _EncodingDict()
# Collect all items into a set of full rows (with lots of zeroes.)
for major, data in enumerate(self.VarData):
regionIndices = data.VarRegionIndex
for minor, item in enumerate(data.Item):
row = list(zeroes)
if quantization == 1:
for regionIdx, v in zip(regionIndices, item):
row[regionIdx] += v
else:
for regionIdx, v in zip(regionIndices, item):
row[regionIdx] += (
round(v / quantization) * quantization
) # TODO https://github.com/fonttools/fonttools/pull/3126#discussion_r1205439785
row = tuple(row)
if use_NO_VARIATION_INDEX and not any(row):
front_mapping[(major << 16) + minor] = None
continue
encodings.add_row(row)
front_mapping[(major << 16) + minor] = row
# Prepare for the main algorithm.
todo = sorted(encodings.values(), key=_Encoding.gain_sort_key)
del encodings
# Repeatedly pick two best encodings to combine, and combine them.
heap = []
for i, encoding in enumerate(todo):
for j in range(i + 1, len(todo)):
other_encoding = todo[j]
combining_gain = encoding.gain_from_merging(other_encoding)
if combining_gain > 0:
heappush(heap, (-combining_gain, i, j))
while heap:
_, i, j = heappop(heap)
if todo[i] is None or todo[j] is None:
continue
encoding, other_encoding = todo[i], todo[j]
todo[i], todo[j] = None, None
# Combine the two encodings
combined_chars = other_encoding.chars | encoding.chars
combined_encoding = _Encoding(combined_chars)
combined_encoding.extend(encoding.items)
combined_encoding.extend(other_encoding.items)
for k, enc in enumerate(todo):
if enc is None:
continue
# In the unlikely event that the same encoding exists already,
# combine it.
if enc.chars == combined_chars:
combined_encoding.extend(enc.items)
todo[k] = None
continue
combining_gain = combined_encoding.gain_from_merging(enc)
if combining_gain > 0:
heappush(heap, (-combining_gain, k, len(todo)))
todo.append(combined_encoding)
encodings = [encoding for encoding in todo if encoding is not None]
# Assemble final store.
back_mapping = {} # Mapping from full rows to new VarIdxes
encodings.sort(key=_Encoding.width_sort_key)
self.VarData = []
for encoding in encodings:
items = sorted(encoding.items)
while items:
major = len(self.VarData)
data = ot.VarData()
self.VarData.append(data)
data.VarRegionIndex = range(n)
data.VarRegionCount = len(data.VarRegionIndex)
# Each major can only encode up to 0xFFFF entries.
data.Item, items = items[:0xFFFF], items[0xFFFF:]
for minor, item in enumerate(data.Item):
back_mapping[item] = (major << 16) + minor
# Compile final mapping.
varidx_map = {NO_VARIATION_INDEX: NO_VARIATION_INDEX}
for k, v in front_mapping.items():
varidx_map[k] = back_mapping[v] if v is not None else NO_VARIATION_INDEX
# Recalculate things and go home.
self.VarRegionList.RegionCount = len(self.VarRegionList.Region)
self.VarDataCount = len(self.VarData)
for data in self.VarData:
data.ItemCount = len(data.Item)
data.optimize()
# Remove unused regions.
self.prune_regions()
return varidx_map
ot.VarStore.optimize = VarStore_optimize
def main(args=None):
"""Optimize a font's GDEF variation store"""
from argparse import ArgumentParser
from fontTools import configLogger
from fontTools.ttLib import TTFont
from fontTools.ttLib.tables.otBase import OTTableWriter
parser = ArgumentParser(prog="varLib.varStore", description=main.__doc__)
parser.add_argument("--quantization", type=int, default=1)
parser.add_argument("fontfile")
parser.add_argument("outfile", nargs="?")
options = parser.parse_args(args)
# TODO: allow user to configure logging via command-line options
configLogger(level="INFO")
quantization = options.quantization
fontfile = options.fontfile
outfile = options.outfile
font = TTFont(fontfile)
gdef = font["GDEF"]
store = gdef.table.VarStore
writer = OTTableWriter()
store.compile(writer, font)
size = len(writer.getAllData())
print("Before: %7d bytes" % size)
varidx_map = store.optimize(quantization=quantization)
writer = OTTableWriter()
store.compile(writer, font)
size = len(writer.getAllData())
print("After: %7d bytes" % size)
if outfile is not None:
gdef.table.remap_device_varidxes(varidx_map)
if "GPOS" in font:
font["GPOS"].table.remap_device_varidxes(varidx_map)
font.save(outfile)
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
sys.exit(main())
import doctest
sys.exit(doctest.testmod().failed)
|