aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/fonttools/fontTools/varLib/models.py
blob: 52433a66a82804453a9a15de043bf85709f4d60a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
"""Variation fonts interpolation models."""

__all__ = [
    "normalizeValue",
    "normalizeLocation",
    "supportScalar",
    "piecewiseLinearMap",
    "VariationModel",
]

from fontTools.misc.roundTools import noRound
from .errors import VariationModelError


def nonNone(lst):
    return [l for l in lst if l is not None]


def allNone(lst):
    return all(l is None for l in lst)


def allEqualTo(ref, lst, mapper=None):
    if mapper is None:
        return all(ref == item for item in lst)

    mapped = mapper(ref)
    return all(mapped == mapper(item) for item in lst)


def allEqual(lst, mapper=None):
    if not lst:
        return True
    it = iter(lst)
    try:
        first = next(it)
    except StopIteration:
        return True
    return allEqualTo(first, it, mapper=mapper)


def subList(truth, lst):
    assert len(truth) == len(lst)
    return [l for l, t in zip(lst, truth) if t]


def normalizeValue(v, triple, extrapolate=False):
    """Normalizes value based on a min/default/max triple.

    >>> normalizeValue(400, (100, 400, 900))
    0.0
    >>> normalizeValue(100, (100, 400, 900))
    -1.0
    >>> normalizeValue(650, (100, 400, 900))
    0.5
    """
    lower, default, upper = triple
    if not (lower <= default <= upper):
        raise ValueError(
            f"Invalid axis values, must be minimum, default, maximum: "
            f"{lower:3.3f}, {default:3.3f}, {upper:3.3f}"
        )
    if not extrapolate:
        v = max(min(v, upper), lower)

    if v == default or lower == upper:
        return 0.0

    if (v < default and lower != default) or (v > default and upper == default):
        return (v - default) / (default - lower)
    else:
        assert (v > default and upper != default) or (
            v < default and lower == default
        ), f"Ooops... v={v}, triple=({lower}, {default}, {upper})"
        return (v - default) / (upper - default)


def normalizeLocation(location, axes, extrapolate=False, *, validate=False):
    """Normalizes location based on axis min/default/max values from axes.

    >>> axes = {"wght": (100, 400, 900)}
    >>> normalizeLocation({"wght": 400}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": 100}, axes)
    {'wght': -1.0}
    >>> normalizeLocation({"wght": 900}, axes)
    {'wght': 1.0}
    >>> normalizeLocation({"wght": 650}, axes)
    {'wght': 0.5}
    >>> normalizeLocation({"wght": 1000}, axes)
    {'wght': 1.0}
    >>> normalizeLocation({"wght": 0}, axes)
    {'wght': -1.0}
    >>> axes = {"wght": (0, 0, 1000)}
    >>> normalizeLocation({"wght": 0}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": -1}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": 1000}, axes)
    {'wght': 1.0}
    >>> normalizeLocation({"wght": 500}, axes)
    {'wght': 0.5}
    >>> normalizeLocation({"wght": 1001}, axes)
    {'wght': 1.0}
    >>> axes = {"wght": (0, 1000, 1000)}
    >>> normalizeLocation({"wght": 0}, axes)
    {'wght': -1.0}
    >>> normalizeLocation({"wght": -1}, axes)
    {'wght': -1.0}
    >>> normalizeLocation({"wght": 500}, axes)
    {'wght': -0.5}
    >>> normalizeLocation({"wght": 1000}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": 1001}, axes)
    {'wght': 0.0}
    """
    if validate:
        assert set(location.keys()) <= set(axes.keys()), set(location.keys()) - set(
            axes.keys()
        )
    out = {}
    for tag, triple in axes.items():
        v = location.get(tag, triple[1])
        out[tag] = normalizeValue(v, triple, extrapolate=extrapolate)
    return out


def supportScalar(location, support, ot=True, extrapolate=False, axisRanges=None):
    """Returns the scalar multiplier at location, for a master
    with support.  If ot is True, then a peak value of zero
    for support of an axis means "axis does not participate".  That
    is how OpenType Variation Font technology works.

    If extrapolate is True, axisRanges must be a dict that maps axis
    names to (axisMin, axisMax) tuples.

      >>> supportScalar({}, {})
      1.0
      >>> supportScalar({'wght':.2}, {})
      1.0
      >>> supportScalar({'wght':.2}, {'wght':(0,2,3)})
      0.1
      >>> supportScalar({'wght':2.5}, {'wght':(0,2,4)})
      0.75
      >>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
      0.75
      >>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False)
      0.375
      >>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
      0.75
      >>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
      0.75
      >>> supportScalar({'wght':3}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      -1.0
      >>> supportScalar({'wght':-1}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      -1.0
      >>> supportScalar({'wght':3}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      1.5
      >>> supportScalar({'wght':-1}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      -0.5
    """
    if extrapolate and axisRanges is None:
        raise TypeError("axisRanges must be passed when extrapolate is True")
    scalar = 1.0
    for axis, (lower, peak, upper) in support.items():
        if ot:
            # OpenType-specific case handling
            if peak == 0.0:
                continue
            if lower > peak or peak > upper:
                continue
            if lower < 0.0 and upper > 0.0:
                continue
            v = location.get(axis, 0.0)
        else:
            assert axis in location
            v = location[axis]
        if v == peak:
            continue

        if extrapolate:
            axisMin, axisMax = axisRanges[axis]
            if v < axisMin and lower <= axisMin:
                if peak <= axisMin and peak < upper:
                    scalar *= (v - upper) / (peak - upper)
                    continue
                elif axisMin < peak:
                    scalar *= (v - lower) / (peak - lower)
                    continue
            elif axisMax < v and axisMax <= upper:
                if axisMax <= peak and lower < peak:
                    scalar *= (v - lower) / (peak - lower)
                    continue
                elif peak < axisMax:
                    scalar *= (v - upper) / (peak - upper)
                    continue

        if v <= lower or upper <= v:
            scalar = 0.0
            break

        if v < peak:
            scalar *= (v - lower) / (peak - lower)
        else:  # v > peak
            scalar *= (v - upper) / (peak - upper)
    return scalar


class VariationModel(object):
    """Locations must have the base master at the origin (ie. 0).

    If axis-ranges are not provided, values are assumed to be normalized to
    the range [-1, 1].

    If the extrapolate argument is set to True, then values are extrapolated
    outside the axis range.

      >>> from pprint import pprint
      >>> axisRanges = {'wght': (-180, +180), 'wdth': (-1, +1)}
      >>> locations = [ \
      {'wght':100}, \
      {'wght':-100}, \
      {'wght':-180}, \
      {'wdth':+.3}, \
      {'wght':+120,'wdth':.3}, \
      {'wght':+120,'wdth':.2}, \
      {}, \
      {'wght':+180,'wdth':.3}, \
      {'wght':+180}, \
      ]
      >>> model = VariationModel(locations, axisOrder=['wght'], axisRanges=axisRanges)
      >>> pprint(model.locations)
      [{},
       {'wght': -100},
       {'wght': -180},
       {'wght': 100},
       {'wght': 180},
       {'wdth': 0.3},
       {'wdth': 0.3, 'wght': 180},
       {'wdth': 0.3, 'wght': 120},
       {'wdth': 0.2, 'wght': 120}]
      >>> pprint(model.deltaWeights)
      [{},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0, 4: 1.0, 5: 1.0},
       {0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.6666666666666666},
       {0: 1.0,
        3: 0.75,
        4: 0.25,
        5: 0.6666666666666667,
        6: 0.4444444444444445,
        7: 0.6666666666666667}]
    """

    def __init__(
        self, locations, axisOrder=None, extrapolate=False, *, axisRanges=None
    ):
        if len(set(tuple(sorted(l.items())) for l in locations)) != len(locations):
            raise VariationModelError("Locations must be unique.")

        self.origLocations = locations
        self.axisOrder = axisOrder if axisOrder is not None else []
        self.extrapolate = extrapolate
        if axisRanges is None:
            if extrapolate:
                axisRanges = self.computeAxisRanges(locations)
            else:
                allAxes = {axis for loc in locations for axis in loc.keys()}
                axisRanges = {axis: (-1, 1) for axis in allAxes}
        self.axisRanges = axisRanges

        locations = [{k: v for k, v in loc.items() if v != 0.0} for loc in locations]
        keyFunc = self.getMasterLocationsSortKeyFunc(
            locations, axisOrder=self.axisOrder
        )
        self.locations = sorted(locations, key=keyFunc)

        # Mapping from user's master order to our master order
        self.mapping = [self.locations.index(l) for l in locations]
        self.reverseMapping = [locations.index(l) for l in self.locations]

        self._computeMasterSupports()
        self._subModels = {}

    def getSubModel(self, items):
        """Return a sub-model and the items that are not None.

        The sub-model is necessary for working with the subset
        of items when some are None.

        The sub-model is cached."""
        if None not in items:
            return self, items
        key = tuple(v is not None for v in items)
        subModel = self._subModels.get(key)
        if subModel is None:
            subModel = VariationModel(subList(key, self.origLocations), self.axisOrder)
            self._subModels[key] = subModel
        return subModel, subList(key, items)

    @staticmethod
    def computeAxisRanges(locations):
        axisRanges = {}
        allAxes = {axis for loc in locations for axis in loc.keys()}
        for loc in locations:
            for axis in allAxes:
                value = loc.get(axis, 0)
                axisMin, axisMax = axisRanges.get(axis, (value, value))
                axisRanges[axis] = min(value, axisMin), max(value, axisMax)
        return axisRanges

    @staticmethod
    def getMasterLocationsSortKeyFunc(locations, axisOrder=[]):
        if {} not in locations:
            raise VariationModelError("Base master not found.")
        axisPoints = {}
        for loc in locations:
            if len(loc) != 1:
                continue
            axis = next(iter(loc))
            value = loc[axis]
            if axis not in axisPoints:
                axisPoints[axis] = {0.0}
            assert (
                value not in axisPoints[axis]
            ), 'Value "%s" in axisPoints["%s"] -->  %s' % (value, axis, axisPoints)
            axisPoints[axis].add(value)

        def getKey(axisPoints, axisOrder):
            def sign(v):
                return -1 if v < 0 else +1 if v > 0 else 0

            def key(loc):
                rank = len(loc)
                onPointAxes = [
                    axis
                    for axis, value in loc.items()
                    if axis in axisPoints and value in axisPoints[axis]
                ]
                orderedAxes = [axis for axis in axisOrder if axis in loc]
                orderedAxes.extend(
                    [axis for axis in sorted(loc.keys()) if axis not in axisOrder]
                )
                return (
                    rank,  # First, order by increasing rank
                    -len(onPointAxes),  # Next, by decreasing number of onPoint axes
                    tuple(
                        axisOrder.index(axis) if axis in axisOrder else 0x10000
                        for axis in orderedAxes
                    ),  # Next, by known axes
                    tuple(orderedAxes),  # Next, by all axes
                    tuple(
                        sign(loc[axis]) for axis in orderedAxes
                    ),  # Next, by signs of axis values
                    tuple(
                        abs(loc[axis]) for axis in orderedAxes
                    ),  # Next, by absolute value of axis values
                )

            return key

        ret = getKey(axisPoints, axisOrder)
        return ret

    def reorderMasters(self, master_list, mapping):
        # For changing the master data order without
        # recomputing supports and deltaWeights.
        new_list = [master_list[idx] for idx in mapping]
        self.origLocations = [self.origLocations[idx] for idx in mapping]
        locations = [
            {k: v for k, v in loc.items() if v != 0.0} for loc in self.origLocations
        ]
        self.mapping = [self.locations.index(l) for l in locations]
        self.reverseMapping = [locations.index(l) for l in self.locations]
        self._subModels = {}
        return new_list

    def _computeMasterSupports(self):
        self.supports = []
        regions = self._locationsToRegions()
        for i, region in enumerate(regions):
            locAxes = set(region.keys())
            # Walk over previous masters now
            for prev_region in regions[:i]:
                # Master with different axes do not participte
                if set(prev_region.keys()) != locAxes:
                    continue
                # If it's NOT in the current box, it does not participate
                relevant = True
                for axis, (lower, peak, upper) in region.items():
                    if not (
                        prev_region[axis][1] == peak
                        or lower < prev_region[axis][1] < upper
                    ):
                        relevant = False
                        break
                if not relevant:
                    continue

                # Split the box for new master; split in whatever direction
                # that has largest range ratio.
                #
                # For symmetry, we actually cut across multiple axes
                # if they have the largest, equal, ratio.
                # https://github.com/fonttools/fonttools/commit/7ee81c8821671157968b097f3e55309a1faa511e#commitcomment-31054804

                bestAxes = {}
                bestRatio = -1
                for axis in prev_region.keys():
                    val = prev_region[axis][1]
                    assert axis in region
                    lower, locV, upper = region[axis]
                    newLower, newUpper = lower, upper
                    if val < locV:
                        newLower = val
                        ratio = (val - locV) / (lower - locV)
                    elif locV < val:
                        newUpper = val
                        ratio = (val - locV) / (upper - locV)
                    else:  # val == locV
                        # Can't split box in this direction.
                        continue
                    if ratio > bestRatio:
                        bestAxes = {}
                        bestRatio = ratio
                    if ratio == bestRatio:
                        bestAxes[axis] = (newLower, locV, newUpper)

                for axis, triple in bestAxes.items():
                    region[axis] = triple
            self.supports.append(region)
        self._computeDeltaWeights()

    def _locationsToRegions(self):
        locations = self.locations
        axisRanges = self.axisRanges

        regions = []
        for loc in locations:
            region = {}
            for axis, locV in loc.items():
                if locV > 0:
                    region[axis] = (0, locV, axisRanges[axis][1])
                else:
                    region[axis] = (axisRanges[axis][0], locV, 0)
            regions.append(region)
        return regions

    def _computeDeltaWeights(self):
        self.deltaWeights = []
        for i, loc in enumerate(self.locations):
            deltaWeight = {}
            # Walk over previous masters now, populate deltaWeight
            for j, support in enumerate(self.supports[:i]):
                scalar = supportScalar(loc, support)
                if scalar:
                    deltaWeight[j] = scalar
            self.deltaWeights.append(deltaWeight)

    def getDeltas(self, masterValues, *, round=noRound):
        assert len(masterValues) == len(self.deltaWeights), (
            len(masterValues),
            len(self.deltaWeights),
        )
        mapping = self.reverseMapping
        out = []
        for i, weights in enumerate(self.deltaWeights):
            delta = masterValues[mapping[i]]
            for j, weight in weights.items():
                if weight == 1:
                    delta -= out[j]
                else:
                    delta -= out[j] * weight
            out.append(round(delta))
        return out

    def getDeltasAndSupports(self, items, *, round=noRound):
        model, items = self.getSubModel(items)
        return model.getDeltas(items, round=round), model.supports

    def getScalars(self, loc):
        """Return scalars for each delta, for the given location.
        If interpolating many master-values at the same location,
        this function allows speed up by fetching the scalars once
        and using them with interpolateFromMastersAndScalars()."""
        return [
            supportScalar(
                loc, support, extrapolate=self.extrapolate, axisRanges=self.axisRanges
            )
            for support in self.supports
        ]

    def getMasterScalars(self, targetLocation):
        """Return multipliers for each master, for the given location.
        If interpolating many master-values at the same location,
        this function allows speed up by fetching the scalars once
        and using them with interpolateFromValuesAndScalars().

        Note that the scalars used in interpolateFromMastersAndScalars(),
        are *not* the same as the ones returned here. They are the result
        of getScalars()."""
        out = self.getScalars(targetLocation)
        for i, weights in reversed(list(enumerate(self.deltaWeights))):
            for j, weight in weights.items():
                out[j] -= out[i] * weight

        out = [out[self.mapping[i]] for i in range(len(out))]
        return out

    @staticmethod
    def interpolateFromValuesAndScalars(values, scalars):
        """Interpolate from values and scalars coefficients.

        If the values are master-values, then the scalars should be
        fetched from getMasterScalars().

        If the values are deltas, then the scalars should be fetched
        from getScalars(); in which case this is the same as
        interpolateFromDeltasAndScalars().
        """
        v = None
        assert len(values) == len(scalars)
        for value, scalar in zip(values, scalars):
            if not scalar:
                continue
            contribution = value * scalar
            if v is None:
                v = contribution
            else:
                v += contribution
        return v

    @staticmethod
    def interpolateFromDeltasAndScalars(deltas, scalars):
        """Interpolate from deltas and scalars fetched from getScalars()."""
        return VariationModel.interpolateFromValuesAndScalars(deltas, scalars)

    def interpolateFromDeltas(self, loc, deltas):
        """Interpolate from deltas, at location loc."""
        scalars = self.getScalars(loc)
        return self.interpolateFromDeltasAndScalars(deltas, scalars)

    def interpolateFromMasters(self, loc, masterValues, *, round=noRound):
        """Interpolate from master-values, at location loc."""
        scalars = self.getMasterScalars(loc)
        return self.interpolateFromValuesAndScalars(masterValues, scalars)

    def interpolateFromMastersAndScalars(self, masterValues, scalars, *, round=noRound):
        """Interpolate from master-values, and scalars fetched from
        getScalars(), which is useful when you want to interpolate
        multiple master-values with the same location."""
        deltas = self.getDeltas(masterValues, round=round)
        return self.interpolateFromDeltasAndScalars(deltas, scalars)


def piecewiseLinearMap(v, mapping):
    keys = mapping.keys()
    if not keys:
        return v
    if v in keys:
        return mapping[v]
    k = min(keys)
    if v < k:
        return v + mapping[k] - k
    k = max(keys)
    if v > k:
        return v + mapping[k] - k
    # Interpolate
    a = max(k for k in keys if k < v)
    b = min(k for k in keys if k > v)
    va = mapping[a]
    vb = mapping[b]
    return va + (vb - va) * (v - a) / (b - a)


def main(args=None):
    """Normalize locations on a given designspace"""
    from fontTools import configLogger
    import argparse

    parser = argparse.ArgumentParser(
        "fonttools varLib.models",
        description=main.__doc__,
    )
    parser.add_argument(
        "--loglevel",
        metavar="LEVEL",
        default="INFO",
        help="Logging level (defaults to INFO)",
    )

    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument("-d", "--designspace", metavar="DESIGNSPACE", type=str)
    group.add_argument(
        "-l",
        "--locations",
        metavar="LOCATION",
        nargs="+",
        help="Master locations as comma-separate coordinates. One must be all zeros.",
    )

    args = parser.parse_args(args)

    configLogger(level=args.loglevel)
    from pprint import pprint

    if args.designspace:
        from fontTools.designspaceLib import DesignSpaceDocument

        doc = DesignSpaceDocument()
        doc.read(args.designspace)
        locs = [s.location for s in doc.sources]
        print("Original locations:")
        pprint(locs)
        doc.normalize()
        print("Normalized locations:")
        locs = [s.location for s in doc.sources]
        pprint(locs)
    else:
        axes = [chr(c) for c in range(ord("A"), ord("Z") + 1)]
        locs = [
            dict(zip(axes, (float(v) for v in s.split(",")))) for s in args.locations
        ]

    model = VariationModel(locs)
    print("Sorted locations:")
    pprint(model.locations)
    print("Supports:")
    pprint(model.supports)


if __name__ == "__main__":
    import doctest, sys

    if len(sys.argv) > 1:
        sys.exit(main())

    sys.exit(doctest.testmod().failed)