aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/fonttools/fontTools/varLib/interpolatable.py
blob: 05ed3f768ebd15c3ffb1311534c0d74784b4d073 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
"""
Tool to find wrong contour order between different masters, and
other interpolatability (or lack thereof) issues.

Call as:
$ fonttools varLib.interpolatable font1 font2 ...
"""

from fontTools.pens.basePen import AbstractPen, BasePen
from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen
from fontTools.pens.recordingPen import RecordingPen
from fontTools.pens.statisticsPen import StatisticsPen
from fontTools.pens.momentsPen import OpenContourError
from fontTools.varLib.models import piecewiseLinearMap
from collections import defaultdict
import math
import itertools
import sys
import logging

log = logging.getLogger("fontTools.varLib.interpolatable")


def _rot_list(l, k):
    """Rotate list by k items forward.  Ie. item at position 0 will be
    at position k in returned list.  Negative k is allowed."""
    return l[-k:] + l[:-k]


class PerContourPen(BasePen):
    def __init__(self, Pen, glyphset=None):
        BasePen.__init__(self, glyphset)
        self._glyphset = glyphset
        self._Pen = Pen
        self._pen = None
        self.value = []

    def _moveTo(self, p0):
        self._newItem()
        self._pen.moveTo(p0)

    def _lineTo(self, p1):
        self._pen.lineTo(p1)

    def _qCurveToOne(self, p1, p2):
        self._pen.qCurveTo(p1, p2)

    def _curveToOne(self, p1, p2, p3):
        self._pen.curveTo(p1, p2, p3)

    def _closePath(self):
        self._pen.closePath()
        self._pen = None

    def _endPath(self):
        self._pen.endPath()
        self._pen = None

    def _newItem(self):
        self._pen = pen = self._Pen()
        self.value.append(pen)


class PerContourOrComponentPen(PerContourPen):
    def addComponent(self, glyphName, transformation):
        self._newItem()
        self.value[-1].addComponent(glyphName, transformation)


class RecordingPointPen(AbstractPointPen):
    def __init__(self):
        self.value = []

    def beginPath(self, identifier=None, **kwargs):
        pass

    def endPath(self) -> None:
        pass

    def addPoint(self, pt, segmentType=None):
        self.value.append((pt, False if segmentType is None else True))


def _vdiff_hypot2(v0, v1):
    s = 0
    for x0, x1 in zip(v0, v1):
        d = x1 - x0
        s += d * d
    return s


def _vdiff_hypot2_complex(v0, v1):
    s = 0
    for x0, x1 in zip(v0, v1):
        d = x1 - x0
        s += d.real * d.real + d.imag * d.imag
    return s


def _matching_cost(G, matching):
    return sum(G[i][j] for i, j in enumerate(matching))


def min_cost_perfect_bipartite_matching_scipy(G):
    n = len(G)
    rows, cols = linear_sum_assignment(G)
    assert (rows == list(range(n))).all()
    return list(cols), _matching_cost(G, cols)


def min_cost_perfect_bipartite_matching_munkres(G):
    n = len(G)
    cols = [None] * n
    for row, col in Munkres().compute(G):
        cols[row] = col
    return cols, _matching_cost(G, cols)


def min_cost_perfect_bipartite_matching_bruteforce(G):
    n = len(G)

    if n > 6:
        raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'")

    # Otherwise just brute-force
    permutations = itertools.permutations(range(n))
    best = list(next(permutations))
    best_cost = _matching_cost(G, best)
    for p in permutations:
        cost = _matching_cost(G, p)
        if cost < best_cost:
            best, best_cost = list(p), cost
    return best, best_cost


try:
    from scipy.optimize import linear_sum_assignment

    min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy
except ImportError:
    try:
        from munkres import Munkres

        min_cost_perfect_bipartite_matching = (
            min_cost_perfect_bipartite_matching_munkres
        )
    except ImportError:
        min_cost_perfect_bipartite_matching = (
            min_cost_perfect_bipartite_matching_bruteforce
        )


def test_gen(glyphsets, glyphs=None, names=None, ignore_missing=False):
    if names is None:
        names = glyphsets
    if glyphs is None:
        # `glyphs = glyphsets[0].keys()` is faster, certainly, but doesn't allow for sparse TTFs/OTFs given out of order
        # ... risks the sparse master being the first one, and only processing a subset of the glyphs
        glyphs = {g for glyphset in glyphsets for g in glyphset.keys()}

    hist = []

    for glyph_name in glyphs:
        try:
            m0idx = 0
            allVectors = []
            allNodeTypes = []
            allContourIsomorphisms = []
            allGlyphs = [glyphset[glyph_name] for glyphset in glyphsets]
            if len([1 for glyph in allGlyphs if glyph is not None]) <= 1:
                continue
            for glyph, glyphset, name in zip(allGlyphs, glyphsets, names):
                if glyph is None:
                    if not ignore_missing:
                        yield (glyph_name, {"type": "missing", "master": name})
                    allNodeTypes.append(None)
                    allVectors.append(None)
                    allContourIsomorphisms.append(None)
                    continue

                perContourPen = PerContourOrComponentPen(
                    RecordingPen, glyphset=glyphset
                )
                try:
                    glyph.draw(perContourPen, outputImpliedClosingLine=True)
                except TypeError:
                    glyph.draw(perContourPen)
                contourPens = perContourPen.value
                del perContourPen

                contourVectors = []
                contourIsomorphisms = []
                nodeTypes = []
                allNodeTypes.append(nodeTypes)
                allVectors.append(contourVectors)
                allContourIsomorphisms.append(contourIsomorphisms)
                for ix, contour in enumerate(contourPens):
                    nodeVecs = tuple(instruction[0] for instruction in contour.value)
                    nodeTypes.append(nodeVecs)

                    stats = StatisticsPen(glyphset=glyphset)
                    try:
                        contour.replay(stats)
                    except OpenContourError as e:
                        yield (
                            glyph_name,
                            {"master": name, "contour": ix, "type": "open_path"},
                        )
                        continue
                    size = math.sqrt(abs(stats.area)) * 0.5
                    vector = (
                        int(size),
                        int(stats.meanX),
                        int(stats.meanY),
                        int(stats.stddevX * 2),
                        int(stats.stddevY * 2),
                        int(stats.correlation * size),
                    )
                    contourVectors.append(vector)
                    # print(vector)

                    # Check starting point
                    if nodeVecs[0] == "addComponent":
                        continue
                    assert nodeVecs[0] == "moveTo"
                    assert nodeVecs[-1] in ("closePath", "endPath")
                    points = RecordingPointPen()
                    converter = SegmentToPointPen(points, False)
                    contour.replay(converter)
                    # points.value is a list of pt,bool where bool is true if on-curve and false if off-curve;
                    # now check all rotations and mirror-rotations of the contour and build list of isomorphic
                    # possible starting points.
                    bits = 0
                    for pt, b in points.value:
                        bits = (bits << 1) | b
                    n = len(points.value)
                    mask = (1 << n) - 1
                    isomorphisms = []
                    contourIsomorphisms.append(isomorphisms)
                    complexPoints = [complex(*pt) for pt, bl in points.value]
                    for i in range(n):
                        b = ((bits << i) & mask) | ((bits >> (n - i)))
                        if b == bits:
                            isomorphisms.append(_rot_list(complexPoints, i))
                    # Add mirrored rotations
                    mirrored = list(reversed(points.value))
                    reversed_bits = 0
                    for pt, b in mirrored:
                        reversed_bits = (reversed_bits << 1) | b
                    complexPoints = list(reversed(complexPoints))
                    for i in range(n):
                        b = ((reversed_bits << i) & mask) | ((reversed_bits >> (n - i)))
                        if b == bits:
                            isomorphisms.append(_rot_list(complexPoints, i))

            # m0idx should be the index of the first non-None item in allNodeTypes,
            # else give it the last item.
            m0idx = next(
                (i for i, x in enumerate(allNodeTypes) if x is not None),
                len(allNodeTypes) - 1,
            )
            # m0 is the first non-None item in allNodeTypes, or last one if all None
            m0 = allNodeTypes[m0idx]
            for i, m1 in enumerate(allNodeTypes[m0idx + 1 :]):
                if m1 is None:
                    continue
                if len(m0) != len(m1):
                    yield (
                        glyph_name,
                        {
                            "type": "path_count",
                            "master_1": names[m0idx],
                            "master_2": names[m0idx + i + 1],
                            "value_1": len(m0),
                            "value_2": len(m1),
                        },
                    )
                if m0 == m1:
                    continue
                for pathIx, (nodes1, nodes2) in enumerate(zip(m0, m1)):
                    if nodes1 == nodes2:
                        continue
                    if len(nodes1) != len(nodes2):
                        yield (
                            glyph_name,
                            {
                                "type": "node_count",
                                "path": pathIx,
                                "master_1": names[m0idx],
                                "master_2": names[m0idx + i + 1],
                                "value_1": len(nodes1),
                                "value_2": len(nodes2),
                            },
                        )
                        continue
                    for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)):
                        if n1 != n2:
                            yield (
                                glyph_name,
                                {
                                    "type": "node_incompatibility",
                                    "path": pathIx,
                                    "node": nodeIx,
                                    "master_1": names[m0idx],
                                    "master_2": names[m0idx + i + 1],
                                    "value_1": n1,
                                    "value_2": n2,
                                },
                            )
                            continue

            # m0idx should be the index of the first non-None item in allVectors,
            # else give it the last item.
            m0idx = next(
                (i for i, x in enumerate(allVectors) if x is not None),
                len(allVectors) - 1,
            )
            # m0 is the first non-None item in allVectors, or last one if all None
            m0 = allVectors[m0idx]
            if m0 is not None and len(m0) > 1:
                for i, m1 in enumerate(allVectors[m0idx + 1 :]):
                    if m1 is None:
                        continue
                    if len(m0) != len(m1):
                        # We already reported this
                        continue
                    costs = [[_vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0]
                    matching, matching_cost = min_cost_perfect_bipartite_matching(costs)
                    identity_matching = list(range(len(m0)))
                    identity_cost = sum(costs[i][i] for i in range(len(m0)))
                    if (
                        matching != identity_matching
                        and matching_cost < identity_cost * 0.95
                    ):
                        yield (
                            glyph_name,
                            {
                                "type": "contour_order",
                                "master_1": names[m0idx],
                                "master_2": names[m0idx + i + 1],
                                "value_1": list(range(len(m0))),
                                "value_2": matching,
                            },
                        )
                        break

            # m0idx should be the index of the first non-None item in allContourIsomorphisms,
            # else give it the last item.
            m0idx = next(
                (i for i, x in enumerate(allContourIsomorphisms) if x is not None),
                len(allVectors) - 1,
            )
            # m0 is the first non-None item in allContourIsomorphisms, or last one if all None
            m0 = allContourIsomorphisms[m0idx]
            if m0:
                for i, m1 in enumerate(allContourIsomorphisms[m0idx + 1 :]):
                    if m1 is None:
                        continue
                    if len(m0) != len(m1):
                        # We already reported this
                        continue
                    for ix, (contour0, contour1) in enumerate(zip(m0, m1)):
                        c0 = contour0[0]
                        costs = [_vdiff_hypot2_complex(c0, c1) for c1 in contour1]
                        min_cost = min(costs)
                        first_cost = costs[0]
                        if min_cost < first_cost * 0.95:
                            yield (
                                glyph_name,
                                {
                                    "type": "wrong_start_point",
                                    "contour": ix,
                                    "master_1": names[m0idx],
                                    "master_2": names[m0idx + i + 1],
                                },
                            )

        except ValueError as e:
            yield (
                glyph_name,
                {"type": "math_error", "master": name, "error": e},
            )


def test(glyphsets, glyphs=None, names=None, ignore_missing=False):
    problems = defaultdict(list)
    for glyphname, problem in test_gen(glyphsets, glyphs, names, ignore_missing):
        problems[glyphname].append(problem)
    return problems


def recursivelyAddGlyph(glyphname, glyphset, ttGlyphSet, glyf):
    if glyphname in glyphset:
        return
    glyphset[glyphname] = ttGlyphSet[glyphname]

    for component in getattr(glyf[glyphname], "components", []):
        recursivelyAddGlyph(component.glyphName, glyphset, ttGlyphSet, glyf)


def main(args=None):
    """Test for interpolatability issues between fonts"""
    import argparse

    parser = argparse.ArgumentParser(
        "fonttools varLib.interpolatable",
        description=main.__doc__,
    )
    parser.add_argument(
        "--glyphs",
        action="store",
        help="Space-separate name of glyphs to check",
    )
    parser.add_argument(
        "--json",
        action="store_true",
        help="Output report in JSON format",
    )
    parser.add_argument(
        "--quiet",
        action="store_true",
        help="Only exit with code 1 or 0, no output",
    )
    parser.add_argument(
        "--ignore-missing",
        action="store_true",
        help="Will not report glyphs missing from sparse masters as errors",
    )
    parser.add_argument(
        "inputs",
        metavar="FILE",
        type=str,
        nargs="+",
        help="Input a single variable font / DesignSpace / Glyphs file, or multiple TTF/UFO files",
    )
    parser.add_argument("-v", "--verbose", action="store_true", help="Run verbosely.")

    args = parser.parse_args(args)

    from fontTools import configLogger

    configLogger(level=("INFO" if args.verbose else "ERROR"))

    glyphs = args.glyphs.split() if args.glyphs else None

    from os.path import basename

    fonts = []
    names = []

    if len(args.inputs) == 1:
        if args.inputs[0].endswith(".designspace"):
            from fontTools.designspaceLib import DesignSpaceDocument

            designspace = DesignSpaceDocument.fromfile(args.inputs[0])
            args.inputs = [master.path for master in designspace.sources]

        elif args.inputs[0].endswith(".glyphs"):
            from glyphsLib import GSFont, to_ufos

            gsfont = GSFont(args.inputs[0])
            fonts.extend(to_ufos(gsfont))
            names = ["%s-%s" % (f.info.familyName, f.info.styleName) for f in fonts]
            args.inputs = []

        elif args.inputs[0].endswith(".ttf"):
            from fontTools.ttLib import TTFont

            font = TTFont(args.inputs[0])
            if "gvar" in font:
                # Is variable font

                axisMapping = {}
                fvar = font["fvar"]
                for axis in fvar.axes:
                    axisMapping[axis.axisTag] = {
                        -1: axis.minValue,
                        0: axis.defaultValue,
                        1: axis.maxValue,
                    }
                if "avar" in font:
                    avar = font["avar"]
                    for axisTag, segments in avar.segments.items():
                        fvarMapping = axisMapping[axisTag].copy()
                        for location, value in segments.items():
                            axisMapping[axisTag][value] = piecewiseLinearMap(
                                location, fvarMapping
                            )

                gvar = font["gvar"]
                glyf = font["glyf"]
                # Gather all glyphs at their "master" locations
                ttGlyphSets = {}
                glyphsets = defaultdict(dict)

                if glyphs is None:
                    glyphs = sorted(gvar.variations.keys())
                for glyphname in glyphs:
                    for var in gvar.variations[glyphname]:
                        locDict = {}
                        loc = []
                        for tag, val in sorted(var.axes.items()):
                            locDict[tag] = val[1]
                            loc.append((tag, val[1]))

                        locTuple = tuple(loc)
                        if locTuple not in ttGlyphSets:
                            ttGlyphSets[locTuple] = font.getGlyphSet(
                                location=locDict, normalized=True
                            )

                        recursivelyAddGlyph(
                            glyphname, glyphsets[locTuple], ttGlyphSets[locTuple], glyf
                        )

                names = ["''"]
                fonts = [font.getGlyphSet()]
                for locTuple in sorted(glyphsets.keys(), key=lambda v: (len(v), v)):
                    name = (
                        "'"
                        + " ".join(
                            "%s=%s" % (k, piecewiseLinearMap(v, axisMapping[k]))
                            for k, v in locTuple
                        )
                        + "'"
                    )
                    names.append(name)
                    fonts.append(glyphsets[locTuple])
                args.ignore_missing = True
                args.inputs = []

    for filename in args.inputs:
        if filename.endswith(".ufo"):
            from fontTools.ufoLib import UFOReader

            fonts.append(UFOReader(filename))
        else:
            from fontTools.ttLib import TTFont

            fonts.append(TTFont(filename))

        names.append(basename(filename).rsplit(".", 1)[0])

    glyphsets = []
    for font in fonts:
        if hasattr(font, "getGlyphSet"):
            glyphset = font.getGlyphSet()
        else:
            glyphset = font
        glyphsets.append({k: glyphset[k] for k in glyphset.keys()})

    if not glyphs:
        glyphs = sorted(set([gn for glyphset in glyphsets for gn in glyphset.keys()]))

    glyphsSet = set(glyphs)
    for glyphset in glyphsets:
        glyphSetGlyphNames = set(glyphset.keys())
        diff = glyphsSet - glyphSetGlyphNames
        if diff:
            for gn in diff:
                glyphset[gn] = None

    log.info("Running on %d glyphsets", len(glyphsets))
    problems_gen = test_gen(
        glyphsets, glyphs=glyphs, names=names, ignore_missing=args.ignore_missing
    )
    problems = defaultdict(list)

    if not args.quiet:
        if args.json:
            import json

            for glyphname, problem in problems_gen:
                problems[glyphname].append(problem)

            print(json.dumps(problems))
        else:
            last_glyphname = None
            for glyphname, p in problems_gen:
                problems[glyphname].append(p)

                if glyphname != last_glyphname:
                    print(f"Glyph {glyphname} was not compatible: ")
                    last_glyphname = glyphname

                if p["type"] == "missing":
                    print("    Glyph was missing in master %s" % p["master"])
                if p["type"] == "open_path":
                    print("    Glyph has an open path in master %s" % p["master"])
                if p["type"] == "path_count":
                    print(
                        "    Path count differs: %i in %s, %i in %s"
                        % (p["value_1"], p["master_1"], p["value_2"], p["master_2"])
                    )
                if p["type"] == "node_count":
                    print(
                        "    Node count differs in path %i: %i in %s, %i in %s"
                        % (
                            p["path"],
                            p["value_1"],
                            p["master_1"],
                            p["value_2"],
                            p["master_2"],
                        )
                    )
                if p["type"] == "node_incompatibility":
                    print(
                        "    Node %o incompatible in path %i: %s in %s, %s in %s"
                        % (
                            p["node"],
                            p["path"],
                            p["value_1"],
                            p["master_1"],
                            p["value_2"],
                            p["master_2"],
                        )
                    )
                if p["type"] == "contour_order":
                    print(
                        "    Contour order differs: %s in %s, %s in %s"
                        % (
                            p["value_1"],
                            p["master_1"],
                            p["value_2"],
                            p["master_2"],
                        )
                    )
                if p["type"] == "wrong_start_point":
                    print(
                        "    Contour %d start point differs: %s, %s"
                        % (
                            p["contour"],
                            p["master_1"],
                            p["master_2"],
                        )
                    )
                if p["type"] == "math_error":
                    print(
                        "    Miscellaneous error in %s: %s"
                        % (
                            p["master"],
                            p["error"],
                        )
                    )
    else:
        for glyphname, problem in problems_gen:
            problems[glyphname].append(problem)

    if problems:
        return problems


if __name__ == "__main__":
    import sys

    problems = main()
    sys.exit(int(bool(problems)))