1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
from fontTools.varLib.models import supportScalar
from fontTools.misc.fixedTools import MAX_F2DOT14
from functools import lru_cache
__all__ = ["rebaseTent"]
EPSILON = 1 / (1 << 14)
def _reverse_negate(v):
return (-v[2], -v[1], -v[0])
def _solve(tent, axisLimit, negative=False):
axisMin, axisDef, axisMax, _distanceNegative, _distancePositive = axisLimit
lower, peak, upper = tent
# Mirror the problem such that axisDef <= peak
if axisDef > peak:
return [
(scalar, _reverse_negate(t) if t is not None else None)
for scalar, t in _solve(
_reverse_negate(tent),
axisLimit.reverse_negate(),
not negative,
)
]
# axisDef <= peak
# case 1: The whole deltaset falls outside the new limit; we can drop it
#
# peak
# 1.........................................o..........
# / \
# / \
# / \
# / \
# 0---|-----------|----------|-------- o o----1
# axisMin axisDef axisMax lower upper
#
if axisMax <= lower and axisMax < peak:
return [] # No overlap
# case 2: Only the peak and outermost bound fall outside the new limit;
# we keep the deltaset, update peak and outermost bound and and scale deltas
# by the scalar value for the restricted axis at the new limit, and solve
# recursively.
#
# |peak
# 1...............................|.o..........
# |/ \
# / \
# /| \
# / | \
# 0--------------------------- o | o----1
# lower | upper
# |
# axisMax
#
# Convert to:
#
# 1............................................
# |
# o peak
# /|
# /x|
# 0--------------------------- o o upper ----1
# lower |
# |
# axisMax
if axisMax < peak:
mult = supportScalar({"tag": axisMax}, {"tag": tent})
tent = (lower, axisMax, axisMax)
return [(scalar * mult, t) for scalar, t in _solve(tent, axisLimit)]
# lower <= axisDef <= peak <= axisMax
gain = supportScalar({"tag": axisDef}, {"tag": tent})
out = [(gain, None)]
# First, the positive side
# outGain is the scalar of axisMax at the tent.
outGain = supportScalar({"tag": axisMax}, {"tag": tent})
# Case 3a: Gain is more than outGain. The tent down-slope crosses
# the axis into negative. We have to split it into multiples.
#
# | peak |
# 1...................|.o.....|..............
# |/x\_ |
# gain................+....+_.|..............
# /| |y\|
# ................../.|....|..+_......outGain
# / | | | \
# 0---|-----------o | | | o----------1
# axisMin lower | | | upper
# | | |
# axisDef | axisMax
# |
# crossing
if gain >= outGain:
# Note that this is the branch taken if both gain and outGain are 0.
# Crossing point on the axis.
crossing = peak + (1 - gain) * (upper - peak)
loc = (max(lower, axisDef), peak, crossing)
scalar = 1
# The part before the crossing point.
out.append((scalar - gain, loc))
# The part after the crossing point may use one or two tents,
# depending on whether upper is before axisMax or not, in one
# case we need to keep it down to eternity.
# Case 3a1, similar to case 1neg; just one tent needed, as in
# the drawing above.
if upper >= axisMax:
loc = (crossing, axisMax, axisMax)
scalar = outGain
out.append((scalar - gain, loc))
# Case 3a2: Similar to case 2neg; two tents needed, to keep
# down to eternity.
#
# | peak |
# 1...................|.o................|...
# |/ \_ |
# gain................+....+_............|...
# /| | \xxxxxxxxxxy|
# / | | \_xxxxxyyyy|
# / | | \xxyyyyyy|
# 0---|-----------o | | o-------|--1
# axisMin lower | | upper |
# | | |
# axisDef | axisMax
# |
# crossing
else:
# A tent's peak cannot fall on axis default. Nudge it.
if upper == axisDef:
upper += EPSILON
# Downslope.
loc1 = (crossing, upper, axisMax)
scalar1 = 0
# Eternity justify.
loc2 = (upper, axisMax, axisMax)
scalar2 = 0
out.append((scalar1 - gain, loc1))
out.append((scalar2 - gain, loc2))
else:
# Special-case if peak is at axisMax.
if axisMax == peak:
upper = peak
# Case 3:
# We keep delta as is and only scale the axis upper to achieve
# the desired new tent if feasible.
#
# peak
# 1.....................o....................
# / \_|
# ..................../....+_.........outGain
# / | \
# gain..............+......|..+_.............
# /| | | \
# 0---|-----------o | | | o----------1
# axisMin lower| | | upper
# | | newUpper
# axisDef axisMax
#
newUpper = peak + (1 - gain) * (upper - peak)
assert axisMax <= newUpper # Because outGain > gain
# Disabled because ots doesn't like us:
# https://github.com/fonttools/fonttools/issues/3350
if False and newUpper <= axisDef + (axisMax - axisDef) * 2:
upper = newUpper
if not negative and axisDef + (axisMax - axisDef) * MAX_F2DOT14 < upper:
# we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience
upper = axisDef + (axisMax - axisDef) * MAX_F2DOT14
assert peak < upper
loc = (max(axisDef, lower), peak, upper)
scalar = 1
out.append((scalar - gain, loc))
# Case 4: New limit doesn't fit; we need to chop into two tents,
# because the shape of a triangle with part of one side cut off
# cannot be represented as a triangle itself.
#
# | peak |
# 1.........|......o.|....................
# ..........|...../x\|.............outGain
# | |xxy|\_
# | /xxxy| \_
# | |xxxxy| \_
# | /xxxxy| \_
# 0---|-----|-oxxxxxx| o----------1
# axisMin | lower | upper
# | |
# axisDef axisMax
#
else:
loc1 = (max(axisDef, lower), peak, axisMax)
scalar1 = 1
loc2 = (peak, axisMax, axisMax)
scalar2 = outGain
out.append((scalar1 - gain, loc1))
# Don't add a dirac delta!
if peak < axisMax:
out.append((scalar2 - gain, loc2))
# Now, the negative side
# Case 1neg: Lower extends beyond axisMin: we chop. Simple.
#
# | |peak
# 1..................|...|.o.................
# | |/ \
# gain...............|...+...\...............
# |x_/| \
# |/ | \
# _/| | \
# 0---------------o | | o----------1
# lower | | upper
# | |
# axisMin axisDef
#
if lower <= axisMin:
loc = (axisMin, axisMin, axisDef)
scalar = supportScalar({"tag": axisMin}, {"tag": tent})
out.append((scalar - gain, loc))
# Case 2neg: Lower is betwen axisMin and axisDef: we add two
# tents to keep it down all the way to eternity.
#
# | |peak
# 1...|...............|.o.................
# | |/ \
# gain|...............+...\...............
# |yxxxxxxxxxxxxx/| \
# |yyyyyyxxxxxxx/ | \
# |yyyyyyyyyyyx/ | \
# 0---|-----------o | o----------1
# axisMin lower | upper
# |
# axisDef
#
else:
# A tent's peak cannot fall on axis default. Nudge it.
if lower == axisDef:
lower -= EPSILON
# Downslope.
loc1 = (axisMin, lower, axisDef)
scalar1 = 0
# Eternity justify.
loc2 = (axisMin, axisMin, lower)
scalar2 = 0
out.append((scalar1 - gain, loc1))
out.append((scalar2 - gain, loc2))
return out
@lru_cache(128)
def rebaseTent(tent, axisLimit):
"""Given a tuple (lower,peak,upper) "tent" and new axis limits
(axisMin,axisDefault,axisMax), solves how to represent the tent
under the new axis configuration. All values are in normalized
-1,0,+1 coordinate system. Tent values can be outside this range.
Return value is a list of tuples. Each tuple is of the form
(scalar,tent), where scalar is a multipler to multiply any
delta-sets by, and tent is a new tent for that output delta-set.
If tent value is None, that is a special deltaset that should
be always-enabled (called "gain")."""
axisMin, axisDef, axisMax, _distanceNegative, _distancePositive = axisLimit
assert -1 <= axisMin <= axisDef <= axisMax <= +1
lower, peak, upper = tent
assert -2 <= lower <= peak <= upper <= +2
assert peak != 0
sols = _solve(tent, axisLimit)
n = lambda v: axisLimit.renormalizeValue(v)
sols = [
(scalar, (n(v[0]), n(v[1]), n(v[2])) if v is not None else None)
for scalar, v in sols
if scalar
]
return sols
|