aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/fonttools/fontTools/ttLib/tables/TupleVariation.py
blob: a98bca2e0e117fb0c8c4ec07e9e0977428652d92 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
from fontTools.misc.fixedTools import (
    fixedToFloat as fi2fl,
    floatToFixed as fl2fi,
    floatToFixedToStr as fl2str,
    strToFixedToFloat as str2fl,
    otRound,
)
from fontTools.misc.textTools import safeEval
import array
from collections import Counter, defaultdict
import io
import logging
import struct
import sys


# https://www.microsoft.com/typography/otspec/otvarcommonformats.htm

EMBEDDED_PEAK_TUPLE = 0x8000
INTERMEDIATE_REGION = 0x4000
PRIVATE_POINT_NUMBERS = 0x2000

DELTAS_ARE_ZERO = 0x80
DELTAS_ARE_WORDS = 0x40
DELTAS_ARE_LONGS = 0xC0
DELTAS_SIZE_MASK = 0xC0
DELTA_RUN_COUNT_MASK = 0x3F

POINTS_ARE_WORDS = 0x80
POINT_RUN_COUNT_MASK = 0x7F

TUPLES_SHARE_POINT_NUMBERS = 0x8000
TUPLE_COUNT_MASK = 0x0FFF
TUPLE_INDEX_MASK = 0x0FFF

log = logging.getLogger(__name__)


class TupleVariation(object):
    def __init__(self, axes, coordinates):
        self.axes = axes.copy()
        self.coordinates = list(coordinates)

    def __repr__(self):
        axes = ",".join(
            sorted(["%s=%s" % (name, value) for (name, value) in self.axes.items()])
        )
        return "<TupleVariation %s %s>" % (axes, self.coordinates)

    def __eq__(self, other):
        return self.coordinates == other.coordinates and self.axes == other.axes

    def getUsedPoints(self):
        # Empty set means "all points used".
        if None not in self.coordinates:
            return frozenset()
        used = frozenset([i for i, p in enumerate(self.coordinates) if p is not None])
        # Return None if no points used.
        return used if used else None

    def hasImpact(self):
        """Returns True if this TupleVariation has any visible impact.

        If the result is False, the TupleVariation can be omitted from the font
        without making any visible difference.
        """
        return any(c is not None for c in self.coordinates)

    def toXML(self, writer, axisTags):
        writer.begintag("tuple")
        writer.newline()
        for axis in axisTags:
            value = self.axes.get(axis)
            if value is not None:
                minValue, value, maxValue = value
                defaultMinValue = min(value, 0.0)  # -0.3 --> -0.3; 0.7 --> 0.0
                defaultMaxValue = max(value, 0.0)  # -0.3 -->  0.0; 0.7 --> 0.7
                if minValue == defaultMinValue and maxValue == defaultMaxValue:
                    writer.simpletag("coord", axis=axis, value=fl2str(value, 14))
                else:
                    attrs = [
                        ("axis", axis),
                        ("min", fl2str(minValue, 14)),
                        ("value", fl2str(value, 14)),
                        ("max", fl2str(maxValue, 14)),
                    ]
                    writer.simpletag("coord", attrs)
                writer.newline()
        wrote_any_deltas = False
        for i, delta in enumerate(self.coordinates):
            if type(delta) == tuple and len(delta) == 2:
                writer.simpletag("delta", pt=i, x=delta[0], y=delta[1])
                writer.newline()
                wrote_any_deltas = True
            elif type(delta) == int:
                writer.simpletag("delta", cvt=i, value=delta)
                writer.newline()
                wrote_any_deltas = True
            elif delta is not None:
                log.error("bad delta format")
                writer.comment("bad delta #%d" % i)
                writer.newline()
                wrote_any_deltas = True
        if not wrote_any_deltas:
            writer.comment("no deltas")
            writer.newline()
        writer.endtag("tuple")
        writer.newline()

    def fromXML(self, name, attrs, _content):
        if name == "coord":
            axis = attrs["axis"]
            value = str2fl(attrs["value"], 14)
            defaultMinValue = min(value, 0.0)  # -0.3 --> -0.3; 0.7 --> 0.0
            defaultMaxValue = max(value, 0.0)  # -0.3 -->  0.0; 0.7 --> 0.7
            minValue = str2fl(attrs.get("min", defaultMinValue), 14)
            maxValue = str2fl(attrs.get("max", defaultMaxValue), 14)
            self.axes[axis] = (minValue, value, maxValue)
        elif name == "delta":
            if "pt" in attrs:
                point = safeEval(attrs["pt"])
                x = safeEval(attrs["x"])
                y = safeEval(attrs["y"])
                self.coordinates[point] = (x, y)
            elif "cvt" in attrs:
                cvt = safeEval(attrs["cvt"])
                value = safeEval(attrs["value"])
                self.coordinates[cvt] = value
            else:
                log.warning("bad delta format: %s" % ", ".join(sorted(attrs.keys())))

    def compile(self, axisTags, sharedCoordIndices={}, pointData=None):
        assert set(self.axes.keys()) <= set(axisTags), (
            "Unknown axis tag found.",
            self.axes.keys(),
            axisTags,
        )

        tupleData = []
        auxData = []

        if pointData is None:
            usedPoints = self.getUsedPoints()
            if usedPoints is None:  # Nothing to encode
                return b"", b""
            pointData = self.compilePoints(usedPoints)

        coord = self.compileCoord(axisTags)
        flags = sharedCoordIndices.get(coord)
        if flags is None:
            flags = EMBEDDED_PEAK_TUPLE
            tupleData.append(coord)

        intermediateCoord = self.compileIntermediateCoord(axisTags)
        if intermediateCoord is not None:
            flags |= INTERMEDIATE_REGION
            tupleData.append(intermediateCoord)

        # pointData of b'' implies "use shared points".
        if pointData:
            flags |= PRIVATE_POINT_NUMBERS
            auxData.append(pointData)

        auxData.append(self.compileDeltas())
        auxData = b"".join(auxData)

        tupleData.insert(0, struct.pack(">HH", len(auxData), flags))
        return b"".join(tupleData), auxData

    def compileCoord(self, axisTags):
        result = []
        axes = self.axes
        for axis in axisTags:
            triple = axes.get(axis)
            if triple is None:
                result.append(b"\0\0")
            else:
                result.append(struct.pack(">h", fl2fi(triple[1], 14)))
        return b"".join(result)

    def compileIntermediateCoord(self, axisTags):
        needed = False
        for axis in axisTags:
            minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0))
            defaultMinValue = min(value, 0.0)  # -0.3 --> -0.3; 0.7 --> 0.0
            defaultMaxValue = max(value, 0.0)  # -0.3 -->  0.0; 0.7 --> 0.7
            if (minValue != defaultMinValue) or (maxValue != defaultMaxValue):
                needed = True
                break
        if not needed:
            return None
        minCoords = []
        maxCoords = []
        for axis in axisTags:
            minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0))
            minCoords.append(struct.pack(">h", fl2fi(minValue, 14)))
            maxCoords.append(struct.pack(">h", fl2fi(maxValue, 14)))
        return b"".join(minCoords + maxCoords)

    @staticmethod
    def decompileCoord_(axisTags, data, offset):
        coord = {}
        pos = offset
        for axis in axisTags:
            coord[axis] = fi2fl(struct.unpack(">h", data[pos : pos + 2])[0], 14)
            pos += 2
        return coord, pos

    @staticmethod
    def compilePoints(points):
        # If the set consists of all points in the glyph, it gets encoded with
        # a special encoding: a single zero byte.
        #
        # To use this optimization, points passed in must be empty set.
        # The following two lines are not strictly necessary as the main code
        # below would emit the same. But this is most common and faster.
        if not points:
            return b"\0"

        # In the 'gvar' table, the packing of point numbers is a little surprising.
        # It consists of multiple runs, each being a delta-encoded list of integers.
        # For example, the point set {17, 18, 19, 20, 21, 22, 23} gets encoded as
        # [6, 17, 1, 1, 1, 1, 1, 1]. The first value (6) is the run length minus 1.
        # There are two types of runs, with values being either 8 or 16 bit unsigned
        # integers.
        points = list(points)
        points.sort()
        numPoints = len(points)

        result = bytearray()
        # The binary representation starts with the total number of points in the set,
        # encoded into one or two bytes depending on the value.
        if numPoints < 0x80:
            result.append(numPoints)
        else:
            result.append((numPoints >> 8) | 0x80)
            result.append(numPoints & 0xFF)

        MAX_RUN_LENGTH = 127
        pos = 0
        lastValue = 0
        while pos < numPoints:
            runLength = 0

            headerPos = len(result)
            result.append(0)

            useByteEncoding = None
            while pos < numPoints and runLength <= MAX_RUN_LENGTH:
                curValue = points[pos]
                delta = curValue - lastValue
                if useByteEncoding is None:
                    useByteEncoding = 0 <= delta <= 0xFF
                if useByteEncoding and (delta > 0xFF or delta < 0):
                    # we need to start a new run (which will not use byte encoding)
                    break
                # TODO This never switches back to a byte-encoding from a short-encoding.
                # That's suboptimal.
                if useByteEncoding:
                    result.append(delta)
                else:
                    result.append(delta >> 8)
                    result.append(delta & 0xFF)
                lastValue = curValue
                pos += 1
                runLength += 1
            if useByteEncoding:
                result[headerPos] = runLength - 1
            else:
                result[headerPos] = (runLength - 1) | POINTS_ARE_WORDS

        return result

    @staticmethod
    def decompilePoints_(numPoints, data, offset, tableTag):
        """(numPoints, data, offset, tableTag) --> ([point1, point2, ...], newOffset)"""
        assert tableTag in ("cvar", "gvar")
        pos = offset
        numPointsInData = data[pos]
        pos += 1
        if (numPointsInData & POINTS_ARE_WORDS) != 0:
            numPointsInData = (numPointsInData & POINT_RUN_COUNT_MASK) << 8 | data[pos]
            pos += 1
        if numPointsInData == 0:
            return (range(numPoints), pos)

        result = []
        while len(result) < numPointsInData:
            runHeader = data[pos]
            pos += 1
            numPointsInRun = (runHeader & POINT_RUN_COUNT_MASK) + 1
            point = 0
            if (runHeader & POINTS_ARE_WORDS) != 0:
                points = array.array("H")
                pointsSize = numPointsInRun * 2
            else:
                points = array.array("B")
                pointsSize = numPointsInRun
            points.frombytes(data[pos : pos + pointsSize])
            if sys.byteorder != "big":
                points.byteswap()

            assert len(points) == numPointsInRun
            pos += pointsSize

            result.extend(points)

        # Convert relative to absolute
        absolute = []
        current = 0
        for delta in result:
            current += delta
            absolute.append(current)
        result = absolute
        del absolute

        badPoints = {str(p) for p in result if p < 0 or p >= numPoints}
        if badPoints:
            log.warning(
                "point %s out of range in '%s' table"
                % (",".join(sorted(badPoints)), tableTag)
            )
        return (result, pos)

    def compileDeltas(self):
        deltaX = []
        deltaY = []
        if self.getCoordWidth() == 2:
            for c in self.coordinates:
                if c is None:
                    continue
                deltaX.append(c[0])
                deltaY.append(c[1])
        else:
            for c in self.coordinates:
                if c is None:
                    continue
                deltaX.append(c)
        bytearr = bytearray()
        self.compileDeltaValues_(deltaX, bytearr)
        self.compileDeltaValues_(deltaY, bytearr)
        return bytearr

    @staticmethod
    def compileDeltaValues_(deltas, bytearr=None):
        """[value1, value2, value3, ...] --> bytearray

        Emits a sequence of runs. Each run starts with a
        byte-sized header whose 6 least significant bits
        (header & 0x3F) indicate how many values are encoded
        in this run. The stored length is the actual length
        minus one; run lengths are thus in the range [1..64].
        If the header byte has its most significant bit (0x80)
        set, all values in this run are zero, and no data
        follows. Otherwise, the header byte is followed by
        ((header & 0x3F) + 1) signed values.  If (header &
        0x40) is clear, the delta values are stored as signed
        bytes; if (header & 0x40) is set, the delta values are
        signed 16-bit integers.
        """  # Explaining the format because the 'gvar' spec is hard to understand.
        if bytearr is None:
            bytearr = bytearray()
        pos = 0
        numDeltas = len(deltas)
        while pos < numDeltas:
            value = deltas[pos]
            if value == 0:
                pos = TupleVariation.encodeDeltaRunAsZeroes_(deltas, pos, bytearr)
            elif -128 <= value <= 127:
                pos = TupleVariation.encodeDeltaRunAsBytes_(deltas, pos, bytearr)
            elif -32768 <= value <= 32767:
                pos = TupleVariation.encodeDeltaRunAsWords_(deltas, pos, bytearr)
            else:
                pos = TupleVariation.encodeDeltaRunAsLongs_(deltas, pos, bytearr)
        return bytearr

    @staticmethod
    def encodeDeltaRunAsZeroes_(deltas, offset, bytearr):
        pos = offset
        numDeltas = len(deltas)
        while pos < numDeltas and deltas[pos] == 0:
            pos += 1
        runLength = pos - offset
        while runLength >= 64:
            bytearr.append(DELTAS_ARE_ZERO | 63)
            runLength -= 64
        if runLength:
            bytearr.append(DELTAS_ARE_ZERO | (runLength - 1))
        return pos

    @staticmethod
    def encodeDeltaRunAsBytes_(deltas, offset, bytearr):
        pos = offset
        numDeltas = len(deltas)
        while pos < numDeltas:
            value = deltas[pos]
            if not (-128 <= value <= 127):
                break
            # Within a byte-encoded run of deltas, a single zero
            # is best stored literally as 0x00 value. However,
            # if are two or more zeroes in a sequence, it is
            # better to start a new run. For example, the sequence
            # of deltas [15, 15, 0, 15, 15] becomes 6 bytes
            # (04 0F 0F 00 0F 0F) when storing the zero value
            # literally, but 7 bytes (01 0F 0F 80 01 0F 0F)
            # when starting a new run.
            if value == 0 and pos + 1 < numDeltas and deltas[pos + 1] == 0:
                break
            pos += 1
        runLength = pos - offset
        while runLength >= 64:
            bytearr.append(63)
            bytearr.extend(array.array("b", deltas[offset : offset + 64]))
            offset += 64
            runLength -= 64
        if runLength:
            bytearr.append(runLength - 1)
            bytearr.extend(array.array("b", deltas[offset:pos]))
        return pos

    @staticmethod
    def encodeDeltaRunAsWords_(deltas, offset, bytearr):
        pos = offset
        numDeltas = len(deltas)
        while pos < numDeltas:
            value = deltas[pos]

            # Within a word-encoded run of deltas, it is easiest
            # to start a new run (with a different encoding)
            # whenever we encounter a zero value. For example,
            # the sequence [0x6666, 0, 0x7777] needs 7 bytes when
            # storing the zero literally (42 66 66 00 00 77 77),
            # and equally 7 bytes when starting a new run
            # (40 66 66 80 40 77 77).
            if value == 0:
                break

            # Within a word-encoded run of deltas, a single value
            # in the range (-128..127) should be encoded literally
            # because it is more compact. For example, the sequence
            # [0x6666, 2, 0x7777] becomes 7 bytes when storing
            # the value literally (42 66 66 00 02 77 77), but 8 bytes
            # when starting a new run (40 66 66 00 02 40 77 77).
            if (
                (-128 <= value <= 127)
                and pos + 1 < numDeltas
                and (-128 <= deltas[pos + 1] <= 127)
            ):
                break

            if not (-32768 <= value <= 32767):
                break

            pos += 1
        runLength = pos - offset
        while runLength >= 64:
            bytearr.append(DELTAS_ARE_WORDS | 63)
            a = array.array("h", deltas[offset : offset + 64])
            if sys.byteorder != "big":
                a.byteswap()
            bytearr.extend(a)
            offset += 64
            runLength -= 64
        if runLength:
            bytearr.append(DELTAS_ARE_WORDS | (runLength - 1))
            a = array.array("h", deltas[offset:pos])
            if sys.byteorder != "big":
                a.byteswap()
            bytearr.extend(a)
        return pos

    @staticmethod
    def encodeDeltaRunAsLongs_(deltas, offset, bytearr):
        pos = offset
        numDeltas = len(deltas)
        while pos < numDeltas:
            value = deltas[pos]
            if -32768 <= value <= 32767:
                break
            pos += 1
        runLength = pos - offset
        while runLength >= 64:
            bytearr.append(DELTAS_ARE_LONGS | 63)
            a = array.array("i", deltas[offset : offset + 64])
            if sys.byteorder != "big":
                a.byteswap()
            bytearr.extend(a)
            offset += 64
            runLength -= 64
        if runLength:
            bytearr.append(DELTAS_ARE_LONGS | (runLength - 1))
            a = array.array("i", deltas[offset:pos])
            if sys.byteorder != "big":
                a.byteswap()
            bytearr.extend(a)
        return pos

    @staticmethod
    def decompileDeltas_(numDeltas, data, offset=0):
        """(numDeltas, data, offset) --> ([delta, delta, ...], newOffset)"""
        result = []
        pos = offset
        while len(result) < numDeltas if numDeltas is not None else pos < len(data):
            runHeader = data[pos]
            pos += 1
            numDeltasInRun = (runHeader & DELTA_RUN_COUNT_MASK) + 1
            if (runHeader & DELTAS_SIZE_MASK) == DELTAS_ARE_ZERO:
                result.extend([0] * numDeltasInRun)
            else:
                if (runHeader & DELTAS_SIZE_MASK) == DELTAS_ARE_LONGS:
                    deltas = array.array("i")
                    deltasSize = numDeltasInRun * 4
                elif (runHeader & DELTAS_SIZE_MASK) == DELTAS_ARE_WORDS:
                    deltas = array.array("h")
                    deltasSize = numDeltasInRun * 2
                else:
                    deltas = array.array("b")
                    deltasSize = numDeltasInRun
                deltas.frombytes(data[pos : pos + deltasSize])
                if sys.byteorder != "big":
                    deltas.byteswap()
                assert len(deltas) == numDeltasInRun, (len(deltas), numDeltasInRun)
                pos += deltasSize
                result.extend(deltas)
        assert numDeltas is None or len(result) == numDeltas
        return (result, pos)

    @staticmethod
    def getTupleSize_(flags, axisCount):
        size = 4
        if (flags & EMBEDDED_PEAK_TUPLE) != 0:
            size += axisCount * 2
        if (flags & INTERMEDIATE_REGION) != 0:
            size += axisCount * 4
        return size

    def getCoordWidth(self):
        """Return 2 if coordinates are (x, y) as in gvar, 1 if single values
        as in cvar, or 0 if empty.
        """
        firstDelta = next((c for c in self.coordinates if c is not None), None)
        if firstDelta is None:
            return 0  # empty or has no impact
        if type(firstDelta) in (int, float):
            return 1
        if type(firstDelta) is tuple and len(firstDelta) == 2:
            return 2
        raise TypeError(
            "invalid type of delta; expected (int or float) number, or "
            "Tuple[number, number]: %r" % firstDelta
        )

    def scaleDeltas(self, scalar):
        if scalar == 1.0:
            return  # no change
        coordWidth = self.getCoordWidth()
        self.coordinates = [
            (
                None
                if d is None
                else d * scalar if coordWidth == 1 else (d[0] * scalar, d[1] * scalar)
            )
            for d in self.coordinates
        ]

    def roundDeltas(self):
        coordWidth = self.getCoordWidth()
        self.coordinates = [
            (
                None
                if d is None
                else otRound(d) if coordWidth == 1 else (otRound(d[0]), otRound(d[1]))
            )
            for d in self.coordinates
        ]

    def calcInferredDeltas(self, origCoords, endPts):
        from fontTools.varLib.iup import iup_delta

        if self.getCoordWidth() == 1:
            raise TypeError("Only 'gvar' TupleVariation can have inferred deltas")
        if None in self.coordinates:
            if len(self.coordinates) != len(origCoords):
                raise ValueError(
                    "Expected len(origCoords) == %d; found %d"
                    % (len(self.coordinates), len(origCoords))
                )
            self.coordinates = iup_delta(self.coordinates, origCoords, endPts)

    def optimize(self, origCoords, endPts, tolerance=0.5, isComposite=False):
        from fontTools.varLib.iup import iup_delta_optimize

        if None in self.coordinates:
            return  # already optimized

        deltaOpt = iup_delta_optimize(
            self.coordinates, origCoords, endPts, tolerance=tolerance
        )
        if None in deltaOpt:
            if isComposite and all(d is None for d in deltaOpt):
                # Fix for macOS composites
                # https://github.com/fonttools/fonttools/issues/1381
                deltaOpt = [(0, 0)] + [None] * (len(deltaOpt) - 1)
            # Use "optimized" version only if smaller...
            varOpt = TupleVariation(self.axes, deltaOpt)

            # Shouldn't matter that this is different from fvar...?
            axisTags = sorted(self.axes.keys())
            tupleData, auxData = self.compile(axisTags)
            unoptimizedLength = len(tupleData) + len(auxData)
            tupleData, auxData = varOpt.compile(axisTags)
            optimizedLength = len(tupleData) + len(auxData)

            if optimizedLength < unoptimizedLength:
                self.coordinates = varOpt.coordinates

    def __imul__(self, scalar):
        self.scaleDeltas(scalar)
        return self

    def __iadd__(self, other):
        if not isinstance(other, TupleVariation):
            return NotImplemented
        deltas1 = self.coordinates
        length = len(deltas1)
        deltas2 = other.coordinates
        if len(deltas2) != length:
            raise ValueError("cannot sum TupleVariation deltas with different lengths")
        # 'None' values have different meanings in gvar vs cvar TupleVariations:
        # within the gvar, when deltas are not provided explicitly for some points,
        # they need to be inferred; whereas for the 'cvar' table, if deltas are not
        # provided for some CVT values, then no adjustments are made (i.e. None == 0).
        # Thus, we cannot sum deltas for gvar TupleVariations if they contain
        # inferred inferred deltas (the latter need to be computed first using
        # 'calcInferredDeltas' method), but we can treat 'None' values in cvar
        # deltas as if they are zeros.
        if self.getCoordWidth() == 2:
            for i, d2 in zip(range(length), deltas2):
                d1 = deltas1[i]
                try:
                    deltas1[i] = (d1[0] + d2[0], d1[1] + d2[1])
                except TypeError:
                    raise ValueError("cannot sum gvar deltas with inferred points")
        else:
            for i, d2 in zip(range(length), deltas2):
                d1 = deltas1[i]
                if d1 is not None and d2 is not None:
                    deltas1[i] = d1 + d2
                elif d1 is None and d2 is not None:
                    deltas1[i] = d2
                # elif d2 is None do nothing
        return self


def decompileSharedTuples(axisTags, sharedTupleCount, data, offset):
    result = []
    for _ in range(sharedTupleCount):
        t, offset = TupleVariation.decompileCoord_(axisTags, data, offset)
        result.append(t)
    return result


def compileSharedTuples(
    axisTags, variations, MAX_NUM_SHARED_COORDS=TUPLE_INDEX_MASK + 1
):
    coordCount = Counter()
    for var in variations:
        coord = var.compileCoord(axisTags)
        coordCount[coord] += 1
    # In python < 3.7, most_common() ordering is non-deterministic
    # so apply a sort to make sure the ordering is consistent.
    sharedCoords = sorted(
        coordCount.most_common(MAX_NUM_SHARED_COORDS),
        key=lambda item: (-item[1], item[0]),
    )
    return [c[0] for c in sharedCoords if c[1] > 1]


def compileTupleVariationStore(
    variations, pointCount, axisTags, sharedTupleIndices, useSharedPoints=True
):
    # pointCount is actually unused. Keeping for API compat.
    del pointCount
    newVariations = []
    pointDatas = []
    # Compile all points and figure out sharing if desired
    sharedPoints = None

    # Collect, count, and compile point-sets for all variation sets
    pointSetCount = defaultdict(int)
    for v in variations:
        points = v.getUsedPoints()
        if points is None:  # Empty variations
            continue
        pointSetCount[points] += 1
        newVariations.append(v)
        pointDatas.append(points)
    variations = newVariations
    del newVariations

    if not variations:
        return (0, b"", b"")

    n = len(variations[0].coordinates)
    assert all(
        len(v.coordinates) == n for v in variations
    ), "Variation sets have different sizes"

    compiledPoints = {
        pointSet: TupleVariation.compilePoints(pointSet) for pointSet in pointSetCount
    }

    tupleVariationCount = len(variations)
    tuples = []
    data = []

    if useSharedPoints:
        # Find point-set which saves most bytes.
        def key(pn):
            pointSet = pn[0]
            count = pn[1]
            return len(compiledPoints[pointSet]) * (count - 1)

        sharedPoints = max(pointSetCount.items(), key=key)[0]

        data.append(compiledPoints[sharedPoints])
        tupleVariationCount |= TUPLES_SHARE_POINT_NUMBERS

    # b'' implies "use shared points"
    pointDatas = [
        compiledPoints[points] if points != sharedPoints else b""
        for points in pointDatas
    ]

    for v, p in zip(variations, pointDatas):
        thisTuple, thisData = v.compile(axisTags, sharedTupleIndices, pointData=p)

        tuples.append(thisTuple)
        data.append(thisData)

    tuples = b"".join(tuples)
    data = b"".join(data)
    return tupleVariationCount, tuples, data


def decompileTupleVariationStore(
    tableTag,
    axisTags,
    tupleVariationCount,
    pointCount,
    sharedTuples,
    data,
    pos,
    dataPos,
):
    numAxes = len(axisTags)
    result = []
    if (tupleVariationCount & TUPLES_SHARE_POINT_NUMBERS) != 0:
        sharedPoints, dataPos = TupleVariation.decompilePoints_(
            pointCount, data, dataPos, tableTag
        )
    else:
        sharedPoints = []
    for _ in range(tupleVariationCount & TUPLE_COUNT_MASK):
        dataSize, flags = struct.unpack(">HH", data[pos : pos + 4])
        tupleSize = TupleVariation.getTupleSize_(flags, numAxes)
        tupleData = data[pos : pos + tupleSize]
        pointDeltaData = data[dataPos : dataPos + dataSize]
        result.append(
            decompileTupleVariation_(
                pointCount,
                sharedTuples,
                sharedPoints,
                tableTag,
                axisTags,
                tupleData,
                pointDeltaData,
            )
        )
        pos += tupleSize
        dataPos += dataSize
    return result


def decompileTupleVariation_(
    pointCount, sharedTuples, sharedPoints, tableTag, axisTags, data, tupleData
):
    assert tableTag in ("cvar", "gvar"), tableTag
    flags = struct.unpack(">H", data[2:4])[0]
    pos = 4
    if (flags & EMBEDDED_PEAK_TUPLE) == 0:
        peak = sharedTuples[flags & TUPLE_INDEX_MASK]
    else:
        peak, pos = TupleVariation.decompileCoord_(axisTags, data, pos)
    if (flags & INTERMEDIATE_REGION) != 0:
        start, pos = TupleVariation.decompileCoord_(axisTags, data, pos)
        end, pos = TupleVariation.decompileCoord_(axisTags, data, pos)
    else:
        start, end = inferRegion_(peak)
    axes = {}
    for axis in axisTags:
        region = start[axis], peak[axis], end[axis]
        if region != (0.0, 0.0, 0.0):
            axes[axis] = region
    pos = 0
    if (flags & PRIVATE_POINT_NUMBERS) != 0:
        points, pos = TupleVariation.decompilePoints_(
            pointCount, tupleData, pos, tableTag
        )
    else:
        points = sharedPoints

    deltas = [None] * pointCount

    if tableTag == "cvar":
        deltas_cvt, pos = TupleVariation.decompileDeltas_(len(points), tupleData, pos)
        for p, delta in zip(points, deltas_cvt):
            if 0 <= p < pointCount:
                deltas[p] = delta

    elif tableTag == "gvar":
        deltas_x, pos = TupleVariation.decompileDeltas_(len(points), tupleData, pos)
        deltas_y, pos = TupleVariation.decompileDeltas_(len(points), tupleData, pos)
        for p, x, y in zip(points, deltas_x, deltas_y):
            if 0 <= p < pointCount:
                deltas[p] = (x, y)

    return TupleVariation(axes, deltas)


def inferRegion_(peak):
    """Infer start and end for a (non-intermediate) region

    This helper function computes the applicability region for
    variation tuples whose INTERMEDIATE_REGION flag is not set in the
    TupleVariationHeader structure.  Variation tuples apply only to
    certain regions of the variation space; outside that region, the
    tuple has no effect.  To make the binary encoding more compact,
    TupleVariationHeaders can omit the intermediateStartTuple and
    intermediateEndTuple fields.
    """
    start, end = {}, {}
    for axis, value in peak.items():
        start[axis] = min(value, 0.0)  # -0.3 --> -0.3; 0.7 --> 0.0
        end[axis] = max(value, 0.0)  # -0.3 -->  0.0; 0.7 --> 0.7
    return (start, end)