1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2023 Google Inc. All Rights Reserved.
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
from fontTools.misc.bezierTools import splitCubicAtTC
from collections import namedtuple
import math
from typing import (
List,
Tuple,
Union,
)
__all__ = ["quadratic_to_curves"]
# Copied from cu2qu
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p1_2_3=cython.complex,
)
def elevate_quadratic(p0, p1, p2):
"""Given a quadratic bezier curve, return its degree-elevated cubic."""
# https://pomax.github.io/bezierinfo/#reordering
p1_2_3 = p1 * (2 / 3)
return (
p0,
(p0 * (1 / 3) + p1_2_3),
(p2 * (1 / 3) + p1_2_3),
p2,
)
@cython.cfunc
@cython.locals(
start=cython.int,
n=cython.int,
k=cython.int,
prod_ratio=cython.double,
sum_ratio=cython.double,
ratio=cython.double,
t=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
def merge_curves(curves, start, n):
"""Give a cubic-Bezier spline, reconstruct one cubic-Bezier
that has the same endpoints and tangents and approxmates
the spline."""
# Reconstruct the t values of the cut segments
prod_ratio = 1.0
sum_ratio = 1.0
ts = [1]
for k in range(1, n):
ck = curves[start + k]
c_before = curves[start + k - 1]
# |t_(k+1) - t_k| / |t_k - t_(k - 1)| = ratio
assert ck[0] == c_before[3]
ratio = abs(ck[1] - ck[0]) / abs(c_before[3] - c_before[2])
prod_ratio *= ratio
sum_ratio += prod_ratio
ts.append(sum_ratio)
# (t(n) - t(n - 1)) / (t_(1) - t(0)) = prod_ratio
ts = [t / sum_ratio for t in ts[:-1]]
p0 = curves[start][0]
p1 = curves[start][1]
p2 = curves[start + n - 1][2]
p3 = curves[start + n - 1][3]
# Build the curve by scaling the control-points.
p1 = p0 + (p1 - p0) / (ts[0] if ts else 1)
p2 = p3 + (p2 - p3) / ((1 - ts[-1]) if ts else 1)
curve = (p0, p1, p2, p3)
return curve, ts
@cython.locals(
count=cython.int,
num_offcurves=cython.int,
i=cython.int,
off1=cython.complex,
off2=cython.complex,
on=cython.complex,
)
def add_implicit_on_curves(p):
q = list(p)
count = 0
num_offcurves = len(p) - 2
for i in range(1, num_offcurves):
off1 = p[i]
off2 = p[i + 1]
on = off1 + (off2 - off1) * 0.5
q.insert(i + 1 + count, on)
count += 1
return q
Point = Union[Tuple[float, float], complex]
@cython.locals(
cost=cython.int,
is_complex=cython.int,
)
def quadratic_to_curves(
quads: List[List[Point]],
max_err: float = 0.5,
all_cubic: bool = False,
) -> List[Tuple[Point, ...]]:
"""Converts a connecting list of quadratic splines to a list of quadratic
and cubic curves.
A quadratic spline is specified as a list of points. Either each point is
a 2-tuple of X,Y coordinates, or each point is a complex number with
real/imaginary components representing X,Y coordinates.
The first and last points are on-curve points and the rest are off-curve
points, with an implied on-curve point in the middle between every two
consequtive off-curve points.
Returns:
The output is a list of tuples of points. Points are represented
in the same format as the input, either as 2-tuples or complex numbers.
Each tuple is either of length three, for a quadratic curve, or four,
for a cubic curve. Each curve's last point is the same as the next
curve's first point.
Args:
quads: quadratic splines
max_err: absolute error tolerance; defaults to 0.5
all_cubic: if True, only cubic curves are generated; defaults to False
"""
is_complex = type(quads[0][0]) is complex
if not is_complex:
quads = [[complex(x, y) for (x, y) in p] for p in quads]
q = [quads[0][0]]
costs = [1]
cost = 1
for p in quads:
assert q[-1] == p[0]
for i in range(len(p) - 2):
cost += 1
costs.append(cost)
costs.append(cost)
qq = add_implicit_on_curves(p)[1:]
costs.pop()
q.extend(qq)
cost += 1
costs.append(cost)
curves = spline_to_curves(q, costs, max_err, all_cubic)
if not is_complex:
curves = [tuple((c.real, c.imag) for c in curve) for curve in curves]
return curves
Solution = namedtuple("Solution", ["num_points", "error", "start_index", "is_cubic"])
@cython.locals(
i=cython.int,
j=cython.int,
k=cython.int,
start=cython.int,
i_sol_count=cython.int,
j_sol_count=cython.int,
this_sol_count=cython.int,
tolerance=cython.double,
err=cython.double,
error=cython.double,
i_sol_error=cython.double,
j_sol_error=cython.double,
all_cubic=cython.int,
is_cubic=cython.int,
count=cython.int,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
v=cython.complex,
u=cython.complex,
)
def spline_to_curves(q, costs, tolerance=0.5, all_cubic=False):
"""
q: quadratic spline with alternating on-curve / off-curve points.
costs: cumulative list of encoding cost of q in terms of number of
points that need to be encoded. Implied on-curve points do not
contribute to the cost. If all points need to be encoded, then
costs will be range(1, len(q)+1).
"""
assert len(q) >= 3, "quadratic spline requires at least 3 points"
# Elevate quadratic segments to cubic
elevated_quadratics = [
elevate_quadratic(*q[i : i + 3]) for i in range(0, len(q) - 2, 2)
]
# Find sharp corners; they have to be oncurves for sure.
forced = set()
for i in range(1, len(elevated_quadratics)):
p0 = elevated_quadratics[i - 1][2]
p1 = elevated_quadratics[i][0]
p2 = elevated_quadratics[i][1]
if abs(p1 - p0) + abs(p2 - p1) > tolerance + abs(p2 - p0):
forced.add(i)
# Dynamic-Programming to find the solution with fewest number of
# cubic curves, and within those the one with smallest error.
sols = [Solution(0, 0, 0, False)]
impossible = Solution(len(elevated_quadratics) * 3 + 1, 0, 1, False)
start = 0
for i in range(1, len(elevated_quadratics) + 1):
best_sol = impossible
for j in range(start, i):
j_sol_count, j_sol_error = sols[j].num_points, sols[j].error
if not all_cubic:
# Solution with quadratics between j:i
this_count = costs[2 * i - 1] - costs[2 * j] + 1
i_sol_count = j_sol_count + this_count
i_sol_error = j_sol_error
i_sol = Solution(i_sol_count, i_sol_error, i - j, False)
if i_sol < best_sol:
best_sol = i_sol
if this_count <= 3:
# Can't get any better than this in the path below
continue
# Fit elevated_quadratics[j:i] into one cubic
try:
curve, ts = merge_curves(elevated_quadratics, j, i - j)
except ZeroDivisionError:
continue
# Now reconstruct the segments from the fitted curve
reconstructed_iter = splitCubicAtTC(*curve, *ts)
reconstructed = []
# Knot errors
error = 0
for k, reconst in enumerate(reconstructed_iter):
orig = elevated_quadratics[j + k]
err = abs(reconst[3] - orig[3])
error = max(error, err)
if error > tolerance:
break
reconstructed.append(reconst)
if error > tolerance:
# Not feasible
continue
# Interior errors
for k, reconst in enumerate(reconstructed):
orig = elevated_quadratics[j + k]
p0, p1, p2, p3 = tuple(v - u for v, u in zip(reconst, orig))
if not cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
error = tolerance + 1
break
if error > tolerance:
# Not feasible
continue
# Save best solution
i_sol_count = j_sol_count + 3
i_sol_error = max(j_sol_error, error)
i_sol = Solution(i_sol_count, i_sol_error, i - j, True)
if i_sol < best_sol:
best_sol = i_sol
if i_sol_count == 3:
# Can't get any better than this
break
sols.append(best_sol)
if i in forced:
start = i
# Reconstruct solution
splits = []
cubic = []
i = len(sols) - 1
while i:
count, is_cubic = sols[i].start_index, sols[i].is_cubic
splits.append(i)
cubic.append(is_cubic)
i -= count
curves = []
j = 0
for i, is_cubic in reversed(list(zip(splits, cubic))):
if is_cubic:
curves.append(merge_curves(elevated_quadratics, j, i - j)[0])
else:
for k in range(j, i):
curves.append(q[k * 2 : k * 2 + 3])
j = i
return curves
def main():
from fontTools.cu2qu.benchmark import generate_curve
from fontTools.cu2qu import curve_to_quadratic
tolerance = 0.05
reconstruct_tolerance = tolerance * 1
curve = generate_curve()
quadratics = curve_to_quadratic(curve, tolerance)
print(
"cu2qu tolerance %g. qu2cu tolerance %g." % (tolerance, reconstruct_tolerance)
)
print("One random cubic turned into %d quadratics." % len(quadratics))
curves = quadratic_to_curves([quadratics], reconstruct_tolerance)
print("Those quadratics turned back into %d cubics. " % len(curves))
print("Original curve:", curve)
print("Reconstructed curve(s):", curves)
if __name__ == "__main__":
main()
|