aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/fonttools/fontTools/misc/transform.py
blob: f85b54b73121589cb8de284a5e8efe9d20fefa17 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
"""Affine 2D transformation matrix class.

The Transform class implements various transformation matrix operations,
both on the matrix itself, as well as on 2D coordinates.

Transform instances are effectively immutable: all methods that operate on the
transformation itself always return a new instance. This has as the
interesting side effect that Transform instances are hashable, ie. they can be
used as dictionary keys.

This module exports the following symbols:

Transform
	this is the main class
Identity
	Transform instance set to the identity transformation
Offset
	Convenience function that returns a translating transformation
Scale
	Convenience function that returns a scaling transformation

The DecomposedTransform class implements a transformation with separate
translate, rotation, scale, skew, and transformation-center components.

:Example:

	>>> t = Transform(2, 0, 0, 3, 0, 0)
	>>> t.transformPoint((100, 100))
	(200, 300)
	>>> t = Scale(2, 3)
	>>> t.transformPoint((100, 100))
	(200, 300)
	>>> t.transformPoint((0, 0))
	(0, 0)
	>>> t = Offset(2, 3)
	>>> t.transformPoint((100, 100))
	(102, 103)
	>>> t.transformPoint((0, 0))
	(2, 3)
	>>> t2 = t.scale(0.5)
	>>> t2.transformPoint((100, 100))
	(52.0, 53.0)
	>>> import math
	>>> t3 = t2.rotate(math.pi / 2)
	>>> t3.transformPoint((0, 0))
	(2.0, 3.0)
	>>> t3.transformPoint((100, 100))
	(-48.0, 53.0)
	>>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2)
	>>> t.transformPoints([(0, 0), (1, 1), (100, 100)])
	[(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)]
	>>>
"""

import math
from typing import NamedTuple
from dataclasses import dataclass


__all__ = ["Transform", "Identity", "Offset", "Scale", "DecomposedTransform"]


_EPSILON = 1e-15
_ONE_EPSILON = 1 - _EPSILON
_MINUS_ONE_EPSILON = -1 + _EPSILON


def _normSinCos(v):
    if abs(v) < _EPSILON:
        v = 0
    elif v > _ONE_EPSILON:
        v = 1
    elif v < _MINUS_ONE_EPSILON:
        v = -1
    return v


class Transform(NamedTuple):

    """2x2 transformation matrix plus offset, a.k.a. Affine transform.
    Transform instances are immutable: all transforming methods, eg.
    rotate(), return a new Transform instance.

    :Example:

            >>> t = Transform()
            >>> t
            <Transform [1 0 0 1 0 0]>
            >>> t.scale(2)
            <Transform [2 0 0 2 0 0]>
            >>> t.scale(2.5, 5.5)
            <Transform [2.5 0 0 5.5 0 0]>
            >>>
            >>> t.scale(2, 3).transformPoint((100, 100))
            (200, 300)

    Transform's constructor takes six arguments, all of which are
    optional, and can be used as keyword arguments::

            >>> Transform(12)
            <Transform [12 0 0 1 0 0]>
            >>> Transform(dx=12)
            <Transform [1 0 0 1 12 0]>
            >>> Transform(yx=12)
            <Transform [1 0 12 1 0 0]>

    Transform instances also behave like sequences of length 6::

            >>> len(Identity)
            6
            >>> list(Identity)
            [1, 0, 0, 1, 0, 0]
            >>> tuple(Identity)
            (1, 0, 0, 1, 0, 0)

    Transform instances are comparable::

            >>> t1 = Identity.scale(2, 3).translate(4, 6)
            >>> t2 = Identity.translate(8, 18).scale(2, 3)
            >>> t1 == t2
            1

    But beware of floating point rounding errors::

            >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
            >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
            >>> t1
            <Transform [0.2 0 0 0.3 0.08 0.18]>
            >>> t2
            <Transform [0.2 0 0 0.3 0.08 0.18]>
            >>> t1 == t2
            0

    Transform instances are hashable, meaning you can use them as
    keys in dictionaries::

            >>> d = {Scale(12, 13): None}
            >>> d
            {<Transform [12 0 0 13 0 0]>: None}

    But again, beware of floating point rounding errors::

            >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
            >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
            >>> t1
            <Transform [0.2 0 0 0.3 0.08 0.18]>
            >>> t2
            <Transform [0.2 0 0 0.3 0.08 0.18]>
            >>> d = {t1: None}
            >>> d
            {<Transform [0.2 0 0 0.3 0.08 0.18]>: None}
            >>> d[t2]
            Traceback (most recent call last):
              File "<stdin>", line 1, in ?
            KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]>
    """

    xx: float = 1
    xy: float = 0
    yx: float = 0
    yy: float = 1
    dx: float = 0
    dy: float = 0

    def transformPoint(self, p):
        """Transform a point.

        :Example:

                >>> t = Transform()
                >>> t = t.scale(2.5, 5.5)
                >>> t.transformPoint((100, 100))
                (250.0, 550.0)
        """
        (x, y) = p
        xx, xy, yx, yy, dx, dy = self
        return (xx * x + yx * y + dx, xy * x + yy * y + dy)

    def transformPoints(self, points):
        """Transform a list of points.

        :Example:

                >>> t = Scale(2, 3)
                >>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)])
                [(0, 0), (0, 300), (200, 300), (200, 0)]
                >>>
        """
        xx, xy, yx, yy, dx, dy = self
        return [(xx * x + yx * y + dx, xy * x + yy * y + dy) for x, y in points]

    def transformVector(self, v):
        """Transform an (dx, dy) vector, treating translation as zero.

        :Example:

                >>> t = Transform(2, 0, 0, 2, 10, 20)
                >>> t.transformVector((3, -4))
                (6, -8)
                >>>
        """
        (dx, dy) = v
        xx, xy, yx, yy = self[:4]
        return (xx * dx + yx * dy, xy * dx + yy * dy)

    def transformVectors(self, vectors):
        """Transform a list of (dx, dy) vector, treating translation as zero.

        :Example:
                >>> t = Transform(2, 0, 0, 2, 10, 20)
                >>> t.transformVectors([(3, -4), (5, -6)])
                [(6, -8), (10, -12)]
                >>>
        """
        xx, xy, yx, yy = self[:4]
        return [(xx * dx + yx * dy, xy * dx + yy * dy) for dx, dy in vectors]

    def translate(self, x=0, y=0):
        """Return a new transformation, translated (offset) by x, y.

        :Example:
                >>> t = Transform()
                >>> t.translate(20, 30)
                <Transform [1 0 0 1 20 30]>
                >>>
        """
        return self.transform((1, 0, 0, 1, x, y))

    def scale(self, x=1, y=None):
        """Return a new transformation, scaled by x, y. The 'y' argument
        may be None, which implies to use the x value for y as well.

        :Example:
                >>> t = Transform()
                >>> t.scale(5)
                <Transform [5 0 0 5 0 0]>
                >>> t.scale(5, 6)
                <Transform [5 0 0 6 0 0]>
                >>>
        """
        if y is None:
            y = x
        return self.transform((x, 0, 0, y, 0, 0))

    def rotate(self, angle):
        """Return a new transformation, rotated by 'angle' (radians).

        :Example:
                >>> import math
                >>> t = Transform()
                >>> t.rotate(math.pi / 2)
                <Transform [0 1 -1 0 0 0]>
                >>>
        """
        import math

        c = _normSinCos(math.cos(angle))
        s = _normSinCos(math.sin(angle))
        return self.transform((c, s, -s, c, 0, 0))

    def skew(self, x=0, y=0):
        """Return a new transformation, skewed by x and y.

        :Example:
                >>> import math
                >>> t = Transform()
                >>> t.skew(math.pi / 4)
                <Transform [1 0 1 1 0 0]>
                >>>
        """
        import math

        return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0))

    def transform(self, other):
        """Return a new transformation, transformed by another
        transformation.

        :Example:
                >>> t = Transform(2, 0, 0, 3, 1, 6)
                >>> t.transform((4, 3, 2, 1, 5, 6))
                <Transform [8 9 4 3 11 24]>
                >>>
        """
        xx1, xy1, yx1, yy1, dx1, dy1 = other
        xx2, xy2, yx2, yy2, dx2, dy2 = self
        return self.__class__(
            xx1 * xx2 + xy1 * yx2,
            xx1 * xy2 + xy1 * yy2,
            yx1 * xx2 + yy1 * yx2,
            yx1 * xy2 + yy1 * yy2,
            xx2 * dx1 + yx2 * dy1 + dx2,
            xy2 * dx1 + yy2 * dy1 + dy2,
        )

    def reverseTransform(self, other):
        """Return a new transformation, which is the other transformation
        transformed by self. self.reverseTransform(other) is equivalent to
        other.transform(self).

        :Example:
                >>> t = Transform(2, 0, 0, 3, 1, 6)
                >>> t.reverseTransform((4, 3, 2, 1, 5, 6))
                <Transform [8 6 6 3 21 15]>
                >>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6))
                <Transform [8 6 6 3 21 15]>
                >>>
        """
        xx1, xy1, yx1, yy1, dx1, dy1 = self
        xx2, xy2, yx2, yy2, dx2, dy2 = other
        return self.__class__(
            xx1 * xx2 + xy1 * yx2,
            xx1 * xy2 + xy1 * yy2,
            yx1 * xx2 + yy1 * yx2,
            yx1 * xy2 + yy1 * yy2,
            xx2 * dx1 + yx2 * dy1 + dx2,
            xy2 * dx1 + yy2 * dy1 + dy2,
        )

    def inverse(self):
        """Return the inverse transformation.

        :Example:
                >>> t = Identity.translate(2, 3).scale(4, 5)
                >>> t.transformPoint((10, 20))
                (42, 103)
                >>> it = t.inverse()
                >>> it.transformPoint((42, 103))
                (10.0, 20.0)
                >>>
        """
        if self == Identity:
            return self
        xx, xy, yx, yy, dx, dy = self
        det = xx * yy - yx * xy
        xx, xy, yx, yy = yy / det, -xy / det, -yx / det, xx / det
        dx, dy = -xx * dx - yx * dy, -xy * dx - yy * dy
        return self.__class__(xx, xy, yx, yy, dx, dy)

    def toPS(self):
        """Return a PostScript representation

        :Example:

                >>> t = Identity.scale(2, 3).translate(4, 5)
                >>> t.toPS()
                '[2 0 0 3 8 15]'
                >>>
        """
        return "[%s %s %s %s %s %s]" % self

    def toDecomposed(self) -> "DecomposedTransform":
        """Decompose into a DecomposedTransform."""
        return DecomposedTransform.fromTransform(self)

    def __bool__(self):
        """Returns True if transform is not identity, False otherwise.

        :Example:

                >>> bool(Identity)
                False
                >>> bool(Transform())
                False
                >>> bool(Scale(1.))
                False
                >>> bool(Scale(2))
                True
                >>> bool(Offset())
                False
                >>> bool(Offset(0))
                False
                >>> bool(Offset(2))
                True
        """
        return self != Identity

    def __repr__(self):
        return "<%s [%g %g %g %g %g %g]>" % ((self.__class__.__name__,) + self)


Identity = Transform()


def Offset(x=0, y=0):
    """Return the identity transformation offset by x, y.

    :Example:
            >>> Offset(2, 3)
            <Transform [1 0 0 1 2 3]>
            >>>
    """
    return Transform(1, 0, 0, 1, x, y)


def Scale(x, y=None):
    """Return the identity transformation scaled by x, y. The 'y' argument
    may be None, which implies to use the x value for y as well.

    :Example:
            >>> Scale(2, 3)
            <Transform [2 0 0 3 0 0]>
            >>>
    """
    if y is None:
        y = x
    return Transform(x, 0, 0, y, 0, 0)


@dataclass
class DecomposedTransform:
    """The DecomposedTransform class implements a transformation with separate
    translate, rotation, scale, skew, and transformation-center components.
    """

    translateX: float = 0
    translateY: float = 0
    rotation: float = 0  # in degrees, counter-clockwise
    scaleX: float = 1
    scaleY: float = 1
    skewX: float = 0  # in degrees, clockwise
    skewY: float = 0  # in degrees, counter-clockwise
    tCenterX: float = 0
    tCenterY: float = 0

    @classmethod
    def fromTransform(self, transform):
        # Adapted from an answer on
        # https://math.stackexchange.com/questions/13150/extracting-rotation-scale-values-from-2d-transformation-matrix
        a, b, c, d, x, y = transform

        sx = math.copysign(1, a)
        if sx < 0:
            a *= sx
            b *= sx

        delta = a * d - b * c

        rotation = 0
        scaleX = scaleY = 0
        skewX = skewY = 0

        # Apply the QR-like decomposition.
        if a != 0 or b != 0:
            r = math.sqrt(a * a + b * b)
            rotation = math.acos(a / r) if b >= 0 else -math.acos(a / r)
            scaleX, scaleY = (r, delta / r)
            skewX, skewY = (math.atan((a * c + b * d) / (r * r)), 0)
        elif c != 0 or d != 0:
            s = math.sqrt(c * c + d * d)
            rotation = math.pi / 2 - (
                math.acos(-c / s) if d >= 0 else -math.acos(c / s)
            )
            scaleX, scaleY = (delta / s, s)
            skewX, skewY = (0, math.atan((a * c + b * d) / (s * s)))
        else:
            # a = b = c = d = 0
            pass

        return DecomposedTransform(
            x,
            y,
            math.degrees(rotation),
            scaleX * sx,
            scaleY,
            math.degrees(skewX) * sx,
            math.degrees(skewY),
            0,
            0,
        )

    def toTransform(self):
        """Return the Transform() equivalent of this transformation.

        :Example:
                >>> DecomposedTransform(scaleX=2, scaleY=2).toTransform()
                <Transform [2 0 0 2 0 0]>
                >>>
        """
        t = Transform()
        t = t.translate(
            self.translateX + self.tCenterX, self.translateY + self.tCenterY
        )
        t = t.rotate(math.radians(self.rotation))
        t = t.scale(self.scaleX, self.scaleY)
        t = t.skew(math.radians(self.skewX), math.radians(self.skewY))
        t = t.translate(-self.tCenterX, -self.tCenterY)
        return t


if __name__ == "__main__":
    import sys
    import doctest

    sys.exit(doctest.testmod().failed)