1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import annotations
import typing
from cryptography.exceptions import (
InvalidSignature,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm,
_evp_pkey_derive,
)
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import ec
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
def _check_signature_algorithm(
signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
) -> None:
if not isinstance(signature_algorithm, ec.ECDSA):
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
def _ec_key_curve_sn(backend: Backend, ec_key) -> str:
group = backend._lib.EC_KEY_get0_group(ec_key)
backend.openssl_assert(group != backend._ffi.NULL)
nid = backend._lib.EC_GROUP_get_curve_name(group)
# The following check is to find EC keys with unnamed curves and raise
# an error for now.
if nid == backend._lib.NID_undef:
raise ValueError(
"ECDSA keys with explicit parameters are unsupported at this time"
)
# This is like the above check, but it also catches the case where you
# explicitly encoded a curve with the same parameters as a named curve.
# Don't do that.
if (
not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL
and backend._lib.EC_GROUP_get_asn1_flag(group) == 0
):
raise ValueError(
"ECDSA keys with explicit parameters are unsupported at this time"
)
curve_name = backend._lib.OBJ_nid2sn(nid)
backend.openssl_assert(curve_name != backend._ffi.NULL)
sn = backend._ffi.string(curve_name).decode("ascii")
return sn
def _mark_asn1_named_ec_curve(backend: Backend, ec_cdata):
"""
Set the named curve flag on the EC_KEY. This causes OpenSSL to
serialize EC keys along with their curve OID which makes
deserialization easier.
"""
backend._lib.EC_KEY_set_asn1_flag(
ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
)
def _check_key_infinity(backend: Backend, ec_cdata) -> None:
point = backend._lib.EC_KEY_get0_public_key(ec_cdata)
backend.openssl_assert(point != backend._ffi.NULL)
group = backend._lib.EC_KEY_get0_group(ec_cdata)
backend.openssl_assert(group != backend._ffi.NULL)
if backend._lib.EC_POINT_is_at_infinity(group, point):
raise ValueError(
"Cannot load an EC public key where the point is at infinity"
)
def _sn_to_elliptic_curve(backend: Backend, sn: str) -> ec.EllipticCurve:
try:
return ec._CURVE_TYPES[sn]()
except KeyError:
raise UnsupportedAlgorithm(
f"{sn} is not a supported elliptic curve",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
)
def _ecdsa_sig_sign(
backend: Backend, private_key: _EllipticCurvePrivateKey, data: bytes
) -> bytes:
max_size = backend._lib.ECDSA_size(private_key._ec_key)
backend.openssl_assert(max_size > 0)
sigbuf = backend._ffi.new("unsigned char[]", max_size)
siglen_ptr = backend._ffi.new("unsigned int[]", 1)
res = backend._lib.ECDSA_sign(
0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key
)
backend.openssl_assert(res == 1)
return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]]
def _ecdsa_sig_verify(
backend: Backend,
public_key: _EllipticCurvePublicKey,
signature: bytes,
data: bytes,
) -> None:
res = backend._lib.ECDSA_verify(
0, data, len(data), signature, len(signature), public_key._ec_key
)
if res != 1:
backend._consume_errors()
raise InvalidSignature
class _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey):
def __init__(self, backend: Backend, ec_key_cdata, evp_pkey):
self._backend = backend
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
_check_key_infinity(backend, ec_key_cdata)
@property
def curve(self) -> ec.EllipticCurve:
return self._curve
@property
def key_size(self) -> int:
return self.curve.key_size
def exchange(
self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey
) -> bytes:
if not (
self._backend.elliptic_curve_exchange_algorithm_supported(
algorithm, self.curve
)
):
raise UnsupportedAlgorithm(
"This backend does not support the ECDH algorithm.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
if peer_public_key.curve.name != self.curve.name:
raise ValueError(
"peer_public_key and self are not on the same curve"
)
return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)
def public_key(self) -> ec.EllipticCurvePublicKey:
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)
return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)
def private_numbers(self) -> ec.EllipticCurvePrivateNumbers:
bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
private_value = self._backend._bn_to_int(bn)
return ec.EllipticCurvePrivateNumbers(
private_value=private_value,
public_numbers=self.public_key().public_numbers(),
)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self,
self._evp_pkey,
self._ec_key,
)
def sign(
self,
data: bytes,
signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
) -> bytes:
_check_signature_algorithm(signature_algorithm)
data, _ = _calculate_digest_and_algorithm(
data,
signature_algorithm.algorithm,
)
return _ecdsa_sig_sign(self._backend, self, data)
class _EllipticCurvePublicKey(ec.EllipticCurvePublicKey):
def __init__(self, backend: Backend, ec_key_cdata, evp_pkey):
self._backend = backend
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
_check_key_infinity(backend, ec_key_cdata)
@property
def curve(self) -> ec.EllipticCurve:
return self._curve
@property
def key_size(self) -> int:
return self.curve.key_size
def __eq__(self, other: object) -> bool:
if not isinstance(other, _EllipticCurvePublicKey):
return NotImplemented
return (
self._backend._lib.EVP_PKEY_cmp(self._evp_pkey, other._evp_pkey)
== 1
)
def public_numbers(self) -> ec.EllipticCurvePublicNumbers:
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
bn_y = self._backend._lib.BN_CTX_get(bn_ctx)
res = self._backend._lib.EC_POINT_get_affine_coordinates(
group, point, bn_x, bn_y, bn_ctx
)
self._backend.openssl_assert(res == 1)
x = self._backend._bn_to_int(bn_x)
y = self._backend._bn_to_int(bn_y)
return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve)
def _encode_point(self, format: serialization.PublicFormat) -> bytes:
if format is serialization.PublicFormat.CompressedPoint:
conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED
else:
assert format is serialization.PublicFormat.UncompressedPoint
conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
buflen = self._backend._lib.EC_POINT_point2oct(
group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx
)
self._backend.openssl_assert(buflen > 0)
buf = self._backend._ffi.new("char[]", buflen)
res = self._backend._lib.EC_POINT_point2oct(
group, point, conversion, buf, buflen, bn_ctx
)
self._backend.openssl_assert(buflen == res)
return self._backend._ffi.buffer(buf)[:]
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if (
encoding is serialization.Encoding.X962
or format is serialization.PublicFormat.CompressedPoint
or format is serialization.PublicFormat.UncompressedPoint
):
if encoding is not serialization.Encoding.X962 or format not in (
serialization.PublicFormat.CompressedPoint,
serialization.PublicFormat.UncompressedPoint,
):
raise ValueError(
"X962 encoding must be used with CompressedPoint or "
"UncompressedPoint format"
)
return self._encode_point(format)
else:
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def verify(
self,
signature: bytes,
data: bytes,
signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
) -> None:
_check_signature_algorithm(signature_algorithm)
data, _ = _calculate_digest_and_algorithm(
data,
signature_algorithm.algorithm,
)
_ecdsa_sig_verify(self._backend, self, signature, data)
|