1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
|
/*
cntr.c
General purpose contour tracer for quadrilateral meshes.
Handles single level contours, or region between a pair of levels.
The routines that do all the work, as well as the explanatory
comments, came from gcntr.c, part of the GIST package. The
original mpl interface was also based on GIST. The present
interface uses parts of the original, but places them in
the entirely different framework of a Python type. It
was written by following the Python "Extending and Embedding"
tutorial.
*/
#include "mpl2005_original.h"
#include "mpl_kind_code.h"
/* Note that all arrays in these routines are Fortran-style,
in the sense that the "i" index varies fastest; the dimensions
of the corresponding C array are z[jmax][imax] in the notation
used here. We can identify i and j with the x and y dimensions,
respectively.
*/
/* What is a contour?
*
* Given a quadrilateral mesh (x,y), and values of a z at the points
* of that mesh, we seek a set of polylines connecting points at a
* particular value of z. Each point on such a contour curve lies
* on an edge of the mesh, at a point linearly interpolated to the
* contour level z0 between the given values of z at the endpoints
* of the edge.
*
* Identifying these points is easy. Figuring out how to connect them
* into a curve -- or possibly a set of disjoint curves -- is difficult.
* Each disjoint curve may be either a closed circuit, or it may begin
* and end on a mesh boundary.
*
* One of the problems with a quadrilateral mesh is that when the z
* values at one pair of diagonally opposite points lie below z0, and
* the values at the other diagonal pair of the same zone lie above z0,
* all four edges of the zone are cut, and there is an ambiguity in
* how we should connect the points. I call this a saddle zone.
* The problem is that two disjoint curves cut through a saddle zone
* (I reject the alternative of connecting the opposite points to make
* a single self-intersecting curve, since those make ugly contour plots
* -- I've tried it). The solution is to determine the z value of the
* centre of the zone, which is the mean of the z values of the four
* corner points. If the centre z is higher than the contour level of
* interest and you are moving along the line with higher values on the
* left, turn right to leave the saddle zone. If the centre z is lower
* than the contour level turn left. Whether the centre z is higher
* than the 1 or 2 contour levels is stored in the saddle array so that
* it does not need to be recalculated in subsequent passes.
*
* Another complicating factor is that there may be logical holes in
* the mesh -- zones which do not exist. We want our contours to stop
* if they hit the edge of such a zone, just as if they'd hit the edge
* of the whole mesh. The input region array addresses this issue.
*
* Yet another complication: We may want a list of closed polygons which
* outline the region between two contour levels z0 and z1. These may
* include sections of the mesh boundary (including edges of logical
* holes defined by the region array), in addition to sections of the
* contour curves at one or both levels. This introduces a huge
* topological problem -- if one of the closed contours (possibly
* including an interior logical hole in the mesh, but not any part of
* the boundary of the whole mesh) encloses a region which is not
* between z0 and z1, that curve must be connected by a slit (or "branch
* cut") to the enclosing curve, so that the list of disjoint polygons
* we return is each simply connected.
*
* Okay, one final stunning difficulty: For the two level case, no
* individual polygon should have more than a few thousand sides, since
* huge filled polygons place an inordinate load on rendering software,
* which needs an amount of scratch space proportional to the number
* of sides it needs to fill. So in the two level case, we want to
* chunk the mesh into rectangular pieces of no more than, say, 30x30
* zones, which keeps each returned polygon to less than a few thousand
* sides (the worst case is very very bad -- you can easily write down
* a function and two level values which produce a polygon that cuts
* every edge of the mesh twice).
*/
/*
* Here is the numbering scheme for points, edges, and zones in
* the mesh -- note that each ij corresponds to one point, one zone,
* one i-edge (i=constant edge) and one j-edge (j=constant edge):
*
* (ij-1)-------(ij)-------(ij)
* | |
* | |
* | |
* (ij-1) (ij) (ij)
* | |
* | |
* | |
* (ij-iX-1)----(ij-iX)----(ij-iX)
*
* At each point, the function value is either 0, 1, or 2, depending
* on whether it is below z0, between z0 and z1, or above z1.
* Each zone either exists (1) or not (0).
* From these three bits of data, all of the curve connectivity follows.
*
* The tracing algorithm is naturally edge-based: Either you are at a
* point where a level cuts an edge, ready to step across a zone to
* another edge, or you are drawing the edge itself, if it happens to
* be a boundary with at least one section between z0 and z1.
*
* In either case, the edge is a directed edge -- either the zone
* you are advancing into is to its left or right, or you are actually
* drawing it. I always trace curves keeping the region between z0 and
* z1 to the left of the curve. If I'm tracing a boundary, I'm always
* moving CCW (counter clockwise) around the zone that exists. And if
* I'm about to cross a zone, I'll make the direction of the edge I'm
* sitting on be such that the zone I'm crossing is to its left.
*
* I start tracing each curve near its lower left corner (mesh oriented
* as above), which is the first point I encounter scanning through the
* mesh in order. When I figure the 012 z values and zonal existence,
* I also mark the potential starting points: Each edge may harbor a
* potential starting point corresponding to either direction, so there
* are four start possibilities at each ij point. Only the following
* possibilities need to be marked as potential starting edges:
*
* +-+-+-+
* | | | |
* A-0-C-+ One or both levels cut E and have z=1 above them, and
* | EZ| | 0A is cut and either 0C is cut or CD is cut.
* +-B-D-+ Or, one or both levels cut E and E is a boundary edge.
* | | | | (and Z exists)
* +-+-+-+
*
* +-+-+-+
* | | | |
* +-A-0-C One or both levels cut E and have z=1 below them, and
* | |ZE | 0A is cut and either 0C is cut or CD is cut.
* +-+-B-D Or, one or both levels cut E and E is a boundary edge.
* | | | | (and Z exists)
* +-+-+-+
*
* +-+-+-+
* | | | |
* +-+-+-+ E is a boundary edge, Z exists, at some point on E
* | |Z| | lies between the levels.
* +-+E+-+
* | | | |
* +-+-+-+
*
* +-+-+-+
* | | | |
* +-+E+-+ E is a boundary edge, Z exists, at some point on E
* | |Z| | lies between the levels.
* +-+-+-+
* | | | |
* +-+-+-+
*
* During the first tracing pass, the start mark is erased whenever
* any non-starting edge is encountered, reducing the number of points
* that need to be considered for the second pass. The first pass
* makes the basic connectivity decisions. It figures out how many
* disjoint curves there will be, and identifies slits for the two level
* case or open contours for the single level case, and removes all but
* the actual start markers. A second tracing pass can perform the
* actual final trace.
*/
/* ------------------------------------------------------------------------ */
namespace contourpy {
void print_Csite(Csite *Csite)
{
Cdata *data = Csite->data;
int i, j, ij;
int nd = Csite->imax * (Csite->jmax + 1) + 1;
printf("zlevels: %8.2lg %8.2lg\n", Csite->zlevel[0], Csite->zlevel[1]);
printf("edge %ld, left %ld, n %ld, count %ld, edge0 %ld, left0 %ld\n",
Csite->edge, Csite->left, Csite->n, Csite->count,
Csite->edge0, Csite->left0);
printf(" level0 %d, edge00 %ld\n", Csite->level0, Csite->edge00);
printf("%04x\n", data[nd-1]);
for (j = Csite->jmax; j >= 0; j--)
{
for (i=0; i < Csite->imax; i++)
{
ij = i + j * Csite->imax;
printf("%04x ", data[ij]);
}
printf("\n");
}
printf("\n");
}
/* the Cdata array consists of the following bits:
* Z_VALUE (2 bits) 0, 1, or 2 function value at point
* ZONE_EX 1 zone exists, 0 zone doesn't exist
* I_BNDY this i-edge (i=constant edge) is a mesh boundary
* J_BNDY this j-edge (i=constant edge) is a mesh boundary
* I0_START this i-edge is a start point into zone to left
* I1_START this i-edge is a start point into zone to right
* J0_START this j-edge is a start point into zone below
* J1_START this j-edge is a start point into zone above
* START_ROW next start point is in current row (accelerates 2nd pass)
* SLIT_UP marks this i-edge as the beginning of a slit upstroke
* SLIT_DN marks this i-edge as the beginning of a slit downstroke
* OPEN_END marks an i-edge start point whose other endpoint is
* on a boundary for the single level case
* ALL_DONE marks final start point
* SLIT_DN_VISITED this slit downstroke hasn't/has been visited in pass 2
*/
#define Z_VALUE 0x0003
#define ZONE_EX 0x0004
#define I_BNDY 0x0008
#define J_BNDY 0x0010
#define I0_START 0x0020
#define I1_START 0x0040
#define J0_START 0x0080
#define J1_START 0x0100
#define START_ROW 0x0200
#define SLIT_UP 0x0400
#define SLIT_DN 0x0800
#define OPEN_END 0x1000
#define ALL_DONE 0x2000
#define SLIT_DN_VISITED 0x4000
/* some helpful macros to find points relative to a given directed
* edge -- points are designated 0, 1, 2, 3 CCW around zone with 0 and
* 1 the endpoints of the current edge */
#define FORWARD(left,ix) ((left)>0?((left)>1?1:-(ix)):((left)<-1?-1:(ix)))
#define POINT0(edge,fwd) ((edge)-((fwd)>0?fwd:0))
#define POINT1(edge,fwd) ((edge)+((fwd)<0?fwd:0))
#define IS_JEDGE(edge,left) ((left)>0?((left)>1?1:0):((left)<-1?1:0))
#define ANY_START (I0_START|I1_START|J0_START|J1_START)
#define START_MARK(left) \
((left)>0?((left)>1?J1_START:I1_START):((left)<-1?J0_START:I0_START))
enum {kind_zone, kind_edge1, kind_edge2,
kind_slit_up, kind_slit_down, kind_start_slit=16};
/* Saddle zone array consists of the following bits:
* SADDLE_SET whether zone's saddle data has been set.
* SADDLE_GT0 whether z of centre of zone is higher than site->level[0].
* SADDLE_GT1 whether z of centre of zone is higher than site->level[1].
*/
#define SADDLE_SET 0x01
#define SADDLE_GT0 0x02
#define SADDLE_GT1 0x04
/* ------------------------------------------------------------------------ */
/* these actually mark points */
static int zone_crosser (Csite * site, int level, int pass2);
static int edge_walker (Csite * site, int pass2);
static int slit_cutter (Csite * site, int up, int pass2);
/* this calls the first three to trace the next disjoint curve
* -- return value is number of points on this curve, or
* 0 if there are no more curves this pass
* -(number of points) on first pass if:
* this is two level case, and the curve closed on a hole
* this is single level case, curve is open, and will start from
* a different point on the second pass
* -- in both cases, this curve will be combined with another
* on the second pass */
static long curve_tracer (Csite * site, int pass2);
/* this initializes the data array for curve_tracer */
static void data_init (Csite * site);
/* ------------------------------------------------------------------------ */
/* zone_crosser assumes you are sitting at a cut edge about to cross
* the current zone. It always marks the initial point, crosses at
* least one zone, and marks the final point. On non-boundary i-edges,
* it is responsible for removing start markers on the first pass. */
static int
zone_crosser (Csite * site, int level, int pass2)
{
Cdata * data = site->data;
long edge = site->edge;
long left = site->left;
long n = site->n;
long fwd = FORWARD (left, site->imax);
long p0, p1;
int jedge = IS_JEDGE (edge, left);
long edge0 = site->edge0;
long left0 = site->left0;
int level0 = site->level0 == level;
int two_levels = site->zlevel[1] > site->zlevel[0];
Saddle* saddle = site->saddle;
const double *x = pass2 ? site->x : 0;
const double *y = pass2 ? site->y : 0;
const double *z = site->z;
double zlevel = site->zlevel[level];
double *xcp = pass2 ? site->xcp : 0;
double *ycp = pass2 ? site->ycp : 0;
short *kcp = pass2 ? site->kcp : 0;
int z0, z1, z2, z3;
int done = 0;
int n_kind;
if (level)
level = 2;
for (;;)
{
n_kind = 0;
/* set edge endpoints */
p0 = POINT0 (edge, fwd);
p1 = POINT1 (edge, fwd);
/* always mark cut on current edge */
if (pass2)
{
/* second pass actually computes and stores the point */
double zcp = (zlevel - z[p0]) / (z[p1] - z[p0]);
xcp[n] = zcp * (x[p1] - x[p0]) + x[p0];
ycp[n] = zcp * (y[p1] - y[p0]) + y[p0];
kcp[n] = kind_zone;
n_kind = n;
}
if (!done && !jedge)
{
if (n)
{
/* if this is not the first point on the curve, and we're
* not done, and this is an i-edge, check several things */
if (!two_levels && !pass2 && (data[edge] & OPEN_END))
{
/* reached an OPEN_END mark, skip the n++ */
done = 4; /* same return value 4 used below */
break;
}
/* check for curve closure -- if not, erase any start mark */
if (edge == edge0 && left == left0)
{
/* may signal closure on a downstroke */
if (level0)
done = (!pass2 && two_levels && left < 0) ? 5 : 3;
}
else if (!pass2)
{
Cdata start =
data[edge] & (fwd > 0 ? I0_START : I1_START);
if (start)
{
data[edge] &= ~start;
site->count--;
}
if (!two_levels)
{
start = data[edge] & (fwd > 0 ? I1_START : I0_START);
if (start)
{
data[edge] &= ~start;
site->count--;
}
}
}
}
}
n++;
if (done)
break;
/* cross current zone to another cut edge */
z0 = (data[p0] & Z_VALUE) != level; /* 1 if fill toward p0 */
z1 = !z0; /* know level cuts edge */
z2 = (data[p1 + left] & Z_VALUE) != level;
z3 = (data[p0 + left] & Z_VALUE) != level;
if (z0 == z2)
{
if (z1 == z3)
{
/* this is a saddle zone, determine whether to turn left or
* right depending on height of centre of zone relative to
* contour level. Set saddle[zone] if not already decided. */
int turnRight;
long zone = edge + (left > 0 ? left : 0);
if (!(saddle[zone] & SADDLE_SET))
{
double zcentre;
saddle[zone] = SADDLE_SET;
zcentre = (z[p0] + z[p0+left] + z[p1] + z[p1+left])/4.0;
if (zcentre > site->zlevel[0])
saddle[zone] |=
(two_levels && zcentre > site->zlevel[1])
? SADDLE_GT0 | SADDLE_GT1 : SADDLE_GT0;
}
turnRight = level == 2 ? (saddle[zone] & SADDLE_GT1)
: (saddle[zone] & SADDLE_GT0);
if (z1 ^ (level == 2))
turnRight = !turnRight;
if (!turnRight)
goto bkwd;
}
/* bend forward (right along curve) */
jedge = !jedge;
edge = p1 + (left > 0 ? left : 0);
{
long tmp = fwd;
fwd = -left;
left = tmp;
}
}
else if (z1 == z3)
{
bkwd:
/* bend backward (left along curve) */
jedge = !jedge;
edge = p0 + (left > 0 ? left : 0);
{
long tmp = fwd;
fwd = left;
left = -tmp;
}
}
else
{
/* straight across to opposite edge */
edge += left;
}
/* after crossing zone, edge/left/fwd is oriented CCW relative to
* the next zone, assuming we will step there */
/* now that we've taken a step, check for the downstroke
* of a slit on the second pass (upstroke checked above)
* -- taking step first avoids a race condition */
if (pass2 && two_levels && !jedge)
{
if (left > 0)
{
if (data[edge] & SLIT_UP)
done = 6;
}
else
{
if (data[edge] & SLIT_DN)
done = 5;
}
}
if (!done)
{
/* finally, check if we are on a boundary */
if (data[edge] & (jedge ? J_BNDY : I_BNDY))
{
done = two_levels ? 2 : 4;
/* flip back into the zone that exists */
left = -left;
fwd = -fwd;
if (!pass2 && (edge != edge0 || left != left0))
{
Cdata start = data[edge] & START_MARK (left);
if (start)
{
data[edge] &= ~start;
site->count--;
}
}
}
}
}
site->edge = edge;
site->n = n;
site->left = left;
if (done <= 4)
{
return done;
}
if (pass2 && n_kind)
{
kcp[n_kind] += kind_start_slit;
}
return slit_cutter (site, done - 5, pass2);
}
/* edge_walker assumes that the current edge is being drawn CCW
* around the current zone. Since only boundary edges are drawn
* and we always walk around with the filled region to the left,
* no edge is ever drawn CW. We attempt to advance to the next
* edge on this boundary, but if current second endpoint is not
* between the two contour levels, we exit back to zone_crosser.
* Note that we may wind up marking no points.
* -- edge_walker is never called for single level case */
static int
edge_walker (Csite * site, int pass2)
{
Cdata * data = site->data;
long edge = site->edge;
long left = site->left;
long n = site->n;
long fwd = FORWARD (left, site->imax);
long p0 = POINT0 (edge, fwd);
long p1 = POINT1 (edge, fwd);
int jedge = IS_JEDGE (edge, left);
long edge0 = site->edge0;
long left0 = site->left0;
int level0 = site->level0 == 2;
int marked;
int n_kind = 0;
const double *x = pass2 ? site->x : 0;
const double *y = pass2 ? site->y : 0;
double *xcp = pass2 ? site->xcp : 0;
double *ycp = pass2 ? site->ycp : 0;
short *kcp = pass2 ? site->kcp : 0;
int z0, z1, heads_up = 0;
for (;;)
{
/* mark endpoint 0 only if value is 1 there, and this is a
* two level task */
z0 = data[p0] & Z_VALUE;
z1 = data[p1] & Z_VALUE;
marked = 0;
n_kind = 0;
if (z0 == 1)
{
/* mark current boundary point */
if (pass2)
{
xcp[n] = x[p0];
ycp[n] = y[p0];
kcp[n] = kind_edge1;
n_kind = n;
}
marked = 1;
}
else if (!n)
{
/* if this is the first point is not between the levels
* must do the job of the zone_crosser and mark the first cut here,
* so that it will be marked again by zone_crosser as it closes */
if (pass2)
{
double zcp = site->zlevel[(z0 != 0)];
zcp = (zcp - site->z[p0]) / (site->z[p1] - site->z[p0]);
xcp[n] = zcp * (x[p1] - x[p0]) + x[p0];
ycp[n] = zcp * (y[p1] - y[p0]) + y[p0];
kcp[n] = kind_edge2;
n_kind = n;
}
marked = 1;
}
if (n)
{
/* check for closure */
if (level0 && edge == edge0 && left == left0)
{
site->edge = edge;
site->left = left;
site->n = n + marked;
/* if the curve is closing on a hole, need to make a downslit */
if (fwd < 0 && !(data[edge] & (jedge ? J_BNDY : I_BNDY)))
{
if (n_kind) kcp[n_kind] += kind_start_slit;
return slit_cutter (site, 0, pass2);
}
if (fwd < 0 && level0 && left < 0)
{
/* remove J0_START from this boundary edge as boundary is
* included by the upwards slit from contour line below. */
data[edge] &= ~J0_START;
if (n_kind) kcp[n_kind] += kind_start_slit;
return slit_cutter (site, 0, pass2);
}
return 3;
}
else if (pass2)
{
if (heads_up || (fwd < 0 && (data[edge] & SLIT_DN)))
{
if (!heads_up && !(data[edge] & SLIT_DN_VISITED))
data[edge] |= SLIT_DN_VISITED;
else
{
site->edge = edge;
site->left = left;
site->n = n + marked;
if (n_kind) kcp[n_kind] += kind_start_slit;
return slit_cutter (site, heads_up, pass2);
}
}
}
else
{
/* if this is not first point, clear start mark for this edge */
Cdata start = data[edge] & START_MARK (left);
if (start)
{
data[edge] &= ~start;
site->count--;
}
}
}
if (marked)
n++;
/* if next endpoint not between levels, need to exit to zone_crosser */
if (z1 != 1)
{
site->edge = edge;
site->left = left;
site->n = n;
return (z1 != 0); /* return level closest to p1 */
}
/* step to p1 and find next edge
* -- turn left if possible, else straight, else right
* -- check for upward slit beginning at same time */
edge = p1 + (left > 0 ? left : 0);
if (pass2 && jedge && fwd > 0 && (data[edge] & SLIT_UP))
{
jedge = !jedge;
heads_up = 1;
}
else if (data[edge] & (jedge ? I_BNDY : J_BNDY))
{
long tmp = fwd;
fwd = left;
left = -tmp;
jedge = !jedge;
}
else
{
edge = p1 + (fwd > 0 ? fwd : 0);
if (pass2 && !jedge && fwd > 0 && (data[edge] & SLIT_UP))
{
heads_up = 1;
}
else if (!(data[edge] & (jedge ? J_BNDY : I_BNDY)))
{
edge = p1 - (left < 0 ? left : 0);
jedge = !jedge;
{
long tmp = fwd;
fwd = -left;
left = tmp;
}
}
}
p0 = p1;
p1 = POINT1 (edge, fwd);
}
}
/* -- slit_cutter is never called for single level case */
static int
slit_cutter (Csite * site, int up, int pass2)
{
Cdata * data = site->data;
long imax = site->imax;
long n = site->n;
const double *x = pass2 ? site->x : 0;
const double *y = pass2 ? site->y : 0;
double *xcp = pass2 ? site->xcp : 0;
double *ycp = pass2 ? site->ycp : 0;
short *kcp = pass2 ? site->kcp : 0;
if (up && pass2)
{
/* upward stroke of slit proceeds up left side of slit until
* it hits a boundary or a point not between the contour levels
* -- this never happens on the first pass */
long p1 = site->edge;
int z1;
for (;;)
{
z1 = data[p1] & Z_VALUE;
if (z1 != 1)
{
site->edge = p1;
site->left = -1;
site->n = n;
return (z1 != 0);
}
else if (data[p1] & J_BNDY)
{
/* this is very unusual case of closing on a mesh hole */
site->edge = p1;
site->left = -imax;
site->n = n;
return 2;
}
xcp[n] = x[p1];
ycp[n] = y[p1];
kcp[n] = kind_slit_up;
n++;
p1 += imax;
}
}
else
{
/* downward stroke proceeds down right side of slit until it
* hits a boundary or point not between the contour levels */
long p0 = site->edge;
int z0;
/* at beginning of first pass, mark first i-edge with SLIT_DN */
data[p0] |= SLIT_DN;
p0 -= imax;
for (;;)
{
z0 = data[p0] & Z_VALUE;
if (!pass2)
{
if (z0 != 1 || (data[p0] & I_BNDY) || (data[p0 + 1] & J_BNDY))
{
/* at end of first pass, mark final i-edge with SLIT_UP */
data[p0 + imax] |= SLIT_UP;
/* one extra count for splicing at outer curve */
site->n = n + 1;
return 4; /* return same special value as for OPEN_END */
}
}
else
{
if (z0 != 1)
{
site->edge = p0 + imax;
site->left = 1;
site->n = n;
return (z0 != 0);
}
else if (data[p0 + 1] & J_BNDY)
{
site->edge = p0 + 1;
site->left = imax;
site->n = n;
return 2;
}
else if (data[p0] & I_BNDY)
{
site->edge = p0;
site->left = 1;
site->n = n;
return 2;
}
}
if (pass2)
{
xcp[n] = x[p0];
ycp[n] = y[p0];
kcp[n] = kind_slit_down;
n++;
}
else
{
/* on first pass need to count for upstroke as well */
n += 2;
}
p0 -= imax;
}
}
}
/* ------------------------------------------------------------------------ */
/* curve_tracer finds the next starting point, then traces the curve,
* returning the number of points on this curve
* -- in a two level trace, the return value is negative on the
* first pass if the curve closed on a hole
* -- in a single level trace, the return value is negative on the
* first pass if the curve is an incomplete open curve
* -- a return value of 0 indicates no more curves */
static long
curve_tracer (Csite * site, int pass2)
{
Cdata * data = site->data;
long imax = site->imax;
long edge0 = site->edge0;
long left0 = site->left0;
long edge00 = site->edge00;
int two_levels = site->zlevel[1] > site->zlevel[0];
int level, level0, mark_row;
long n;
/* it is possible for a single i-edge to serve as two actual start
* points, one to the right and one to the left
* -- for the two level case, this happens on the first pass for
* a doubly cut edge, or on a chunking boundary
* -- for single level case, this is impossible, but a similar
* situation involving open curves is handled below
* a second two start possibility is when the edge0 zone does not
* exist and both the i-edge and j-edge boundaries are cut
* yet another possibility is three start points at a junction
* of chunk cuts
* -- sigh, several other rare possibilities,
* allow for general case, just go in order i1, i0, j1, j0 */
int two_starts;
/* printf("curve_tracer pass %d\n", pass2); */
/* print_Csite(site); */
if (left0 == 1)
two_starts = data[edge0] & (I0_START | J1_START | J0_START);
else if (left0 == -1)
two_starts = data[edge0] & (J1_START | J0_START);
else if (left0 == imax)
two_starts = data[edge0] & J0_START;
else
two_starts = 0;
if (pass2 || edge0 == 0)
{
/* zip up to row marked on first pass (or by data_init if edge0==0)
* -- but not for double start case */
if (!two_starts)
{
/* final start point marked by ALL_DONE marker */
int first = (edge0 == 0 && !pass2);
long e0 = edge0;
if (data[edge0] & ALL_DONE)
return 0;
while (!(data[edge0] & START_ROW))
edge0 += imax;
if (e0 == edge0)
edge0++; /* two starts handled specially */
if (first)
/* if this is the very first start point, we want to remove
* the START_ROW marker placed by data_init */
data[edge0 - edge0 % imax] &= ~START_ROW;
}
}
else
{
/* first pass ends when all potential start points visited */
if (site->count <= 0)
{
/* place ALL_DONE marker for second pass */
data[edge00] |= ALL_DONE;
/* reset initial site for second pass */
site->edge0 = site->edge00 = site->left0 = 0;
return 0;
}
if (!two_starts)
edge0++;
}
if (two_starts)
{
/* trace second curve with this start immediately */
if (left0 == 1 && (data[edge0] & I0_START))
{
left0 = -1;
level = (data[edge0] & I_BNDY) ? 2 : 0;
}
else if ((left0 == 1 || left0 == -1) && (data[edge0] & J1_START))
{
left0 = imax;
level = 2;
}
else
{
left0 = -imax;
level = 2;
}
}
else
{
/* usual case is to scan for next start marker
* -- on second pass, this is at most one row of mesh, but first
* pass hits nearly every point of the mesh, since it can't
* know in advance which potential start marks removed */
while (!(data[edge0] & ANY_START))
edge0++;
if (data[edge0] & I1_START)
left0 = 1;
else if (data[edge0] & I0_START)
left0 = -1;
else if (data[edge0] & J1_START)
left0 = imax;
else /*data[edge0]&J0_START */
left0 = -imax;
if (data[edge0] & (I1_START | I0_START))
level = (data[edge0] & I_BNDY) ? 2 : 0;
else
level = 2;
}
/* this start marker will not be unmarked, but it has been visited */
if (!pass2)
site->count--;
/* if this curve starts on a non-boundary i-edge, we need to
* determine the level */
if (!level && two_levels)
level = left0 > 0 ?
((data[edge0 - imax] & Z_VALUE) !=
0) : ((data[edge0] & Z_VALUE) != 0);
/* initialize site for this curve */
site->edge = site->edge0 = edge0;
site->left = site->left0 = left0;
site->level0 = level0 = level; /* for open curve detection only */
/* single level case just uses zone_crosser */
if (!two_levels)
level = 0;
/* to generate the curve, alternate between zone_crosser and
* edge_walker until closure or first call to edge_walker in
* single level case */
site->n = 0;
for (;;)
{
if (level < 2)
level = zone_crosser (site, level, pass2);
else if (level < 3)
level = edge_walker (site, pass2);
else
break;
}
n = site->n;
/* single level case may have ended at a boundary rather than closing
* -- need to recognize this case here in order to place the
* OPEN_END mark for zone_crosser, remove this start marker,
* and be sure not to make a START_ROW mark for this case
* two level case may close with slit_cutter, in which case start
* must also be removed and no START_ROW mark made
* -- change sign of return n to inform caller */
if (!pass2 && level > 3 && (two_levels || level0 == 0))
{
if (!two_levels)
data[edge0] |= OPEN_END;
data[edge0] &= ~(left0 > 0 ? I1_START : I0_START);
mark_row = 0; /* do not mark START_ROW */
n = -n;
}
else
{
if (two_levels)
mark_row = !two_starts;
else
mark_row = 1;
}
/* on first pass, must apply START_ROW mark in column above previous
* start marker
* -- but skip if we just did second of two start case */
if (!pass2 && mark_row)
{
data[edge0 - (edge0 - edge00) % imax] |= START_ROW;
site->edge00 = edge0;
}
return n;
}
/* ------------------------------------------------------------------------ */
static void
data_init (Csite * site)
{
Cdata * data = site->data;
long imax = site->imax;
long jmax = site->jmax;
long ijmax = imax * jmax;
const double *z = site->z;
double zlev0 = site->zlevel[0];
double zlev1 = site->zlevel[1];
int two_levels = zlev1 > zlev0;
char *reg = site->reg;
long count = 0;
int started = 0;
int ibndy, jbndy, i_was_chunk;
long ichunk, jchunk, i, j, ij;
long i_chunk_size = site->i_chunk_size;
long j_chunk_size = site->j_chunk_size;
if (!two_levels)
{
/* Chunking not used for lines as start points are not correct. */
i_chunk_size = imax - 1;
j_chunk_size = jmax - 1;
}
/* do everything in a single pass through the data array to
* minimize cache faulting (z, reg, and data are potentially
* very large arrays)
* access to the z and reg arrays is strictly sequential,
* but we need two rows (+-imax) of the data array at a time */
if (z[0] > zlev0)
data[0] = (two_levels && z[0] > zlev1) ? 2 : 1;
else
data[0] = 0;
jchunk = 0;
for (j = ij = 0; j < jmax; j++)
{
ichunk = i_was_chunk = 0;
for (i = 0; i < imax; i++, ij++)
{
/* transfer zonal existence from reg to data array
* -- get these for next row so we can figure existence of
* points and j-edges for this row */
data[ij + imax + 1] = 0;
if (reg)
{
if (reg[ij + imax + 1] != 0)
data[ij + imax + 1] = ZONE_EX;
}
else
{
if (i < imax - 1 && j < jmax - 1)
data[ij + imax + 1] = ZONE_EX;
}
/* translate z values to 0, 1, 2 flags */
if (ij < imax)
data[ij + 1] = 0;
if (ij < ijmax - 1 && z[ij + 1] > zlev0)
data[ij + 1] |= (two_levels && z[ij + 1] > zlev1) ? 2 : 1;
/* apply edge boundary marks */
ibndy = i == ichunk
|| (data[ij] & ZONE_EX) != (data[ij + 1] & ZONE_EX);
jbndy = j == jchunk
|| (data[ij] & ZONE_EX) != (data[ij + imax] & ZONE_EX);
if (ibndy)
data[ij] |= I_BNDY;
if (jbndy)
data[ij] |= J_BNDY;
/* apply i-edge start marks
* -- i-edges are only marked when actually cut
* -- no mark is necessary if one of the j-edges which share
* the lower endpoint is also cut
* -- no I0 mark necessary unless filled region below some cut,
* no I1 mark necessary unless filled region above some cut */
if (j)
{
int v0 = (data[ij] & Z_VALUE);
int vb = (data[ij - imax] & Z_VALUE);
if (v0 != vb)
{ /* i-edge is cut */
if (ibndy)
{
if (data[ij] & ZONE_EX)
{
data[ij] |= I0_START;
count++;
}
if (data[ij + 1] & ZONE_EX)
{
data[ij] |= I1_START;
count++;
}
}
else
{
int va = (data[ij - 1] & Z_VALUE);
int vc = (data[ij + 1] & Z_VALUE);
int vd = (data[ij - imax + 1] & Z_VALUE);
if (v0 != 1 && va != v0
&& (vc != v0 || vd != v0) && (data[ij] & ZONE_EX))
{
data[ij] |= I0_START;
count++;
}
if (vb != 1 && va == vb
&& (vc == vb || vd == vb)
&& (data[ij + 1] & ZONE_EX))
{
data[ij] |= I1_START;
count++;
}
}
}
}
/* apply j-edge start marks
* -- j-edges are only marked when they are boundaries
* -- all cut boundary edges marked
* -- for two level case, a few uncut edges must be marked
*/
if (i && jbndy)
{
int v0 = (data[ij] & Z_VALUE);
int vb = (data[ij - 1] & Z_VALUE);
if (v0 != vb)
{
if (data[ij] & ZONE_EX)
{
data[ij] |= J0_START;
count++;
}
if (data[ij + imax] & ZONE_EX)
{
data[ij] |= J1_START;
count++;
}
}
else if (two_levels && v0 == 1)
{
if (data[ij + imax] & ZONE_EX)
{
if (i_was_chunk || !(data[ij + imax - 1] & ZONE_EX))
{
/* lower left is a drawn part of boundary */
data[ij] |= J1_START;
count++;
}
}
else if (data[ij] & ZONE_EX)
{
if (data[ij + imax - 1] & ZONE_EX)
{
/* weird case of open hole at lower left */
data[ij] |= J0_START;
count++;
}
}
}
}
i_was_chunk = (i == ichunk);
if (i_was_chunk)
ichunk += i_chunk_size;
}
if (j == jchunk)
jchunk += j_chunk_size;
/* place first START_ROW marker */
if (count && !started)
{
data[ij - imax] |= START_ROW;
started = 1;
}
}
/* place immediate stop mark if nothing found */
if (!count)
data[0] |= ALL_DONE;
else
for (i = 0; i < ijmax; ++i) site->saddle[i] = 0;
/* initialize site */
site->edge0 = site->edge00 = site->edge = 0;
site->left0 = site->left = 0;
site->n = 0;
site->count = count;
}
/* ------------------------------------------------------------------------
Original (slightly modified) core contour generation routines are above;
below are new routines for interfacing to mpl.
------------------------------------------------------------------------ */
/* Note: index order gets switched in the Python interface;
python Z[i,j] -> C z[j,i]
so if the array has shape Mi, Nj in python,
we have iMax = Nj, jMax = Mi in gcntr.c.
On the Python side: Ny, Nx = shape(z),
so in C, the x-dimension is the first index, the y-dimension
the second.
*/
/* reg should have the same dimensions as data, which
has an extra iMax + 1 points relative to Z.
It differs from mask in being the opposite (True
where a region exists, versus the mask, which is True
where a data point is bad), and in that it marks
zones, not points. All four zones sharing a bad
point must be marked as not existing.
*/
static void
mask_zones (long iMax, long jMax, const bool *mask, char *reg)
{
long i, j, ij;
long nreg = iMax * jMax + iMax + 1;
for (ij = iMax+1; ij < iMax*jMax; ij++)
{
reg[ij] = 1;
}
ij = 0;
for (j = 0; j < jMax; j++)
{
for (i = 0; i < iMax; i++, ij++)
{
if (i == 0 || j == 0) reg[ij] = 0;
if (mask[ij])
{
reg[ij] = 0;
reg[ij + 1] = 0;
reg[ij + iMax] = 0;
reg[ij + iMax + 1] = 0;
}
}
}
for (; ij < nreg; ij++)
{
reg[ij] = 0;
}
}
Csite *
cntr_new()
{
Csite *site = new Csite;
if (site == nullptr) return nullptr;
site->data = nullptr;
site->reg = nullptr;
site->saddle = nullptr;
site->xcp = nullptr;
site->ycp = nullptr;
site->kcp = nullptr;
site->x = nullptr;
site->y = nullptr;
site->z = nullptr;
return site;
}
void
cntr_init(Csite *site, long iMax, long jMax, const double *x, const double *y,
const double *z, const bool *mask, long i_chunk_size, long j_chunk_size)
{
long ijmax = iMax * jMax;
long nreg = iMax * jMax + iMax + 1;
site->imax = iMax;
site->jmax = jMax;
site->data = new Cdata[nreg];
site->saddle = new Saddle[ijmax];
if (mask != nullptr)
{
site->reg = new char[nreg];
mask_zones(iMax, jMax, mask, site->reg);
}
/* I don't think we need to initialize site->data. */
site->x = x;
site->y = y;
site->z = z;
site->xcp = nullptr;
site->ycp = nullptr;
site->kcp = nullptr;
/* Store correct chunk sizes for filled contours. Chunking not used for
line contours. */
if (i_chunk_size <= 0 || i_chunk_size > iMax - 1)
i_chunk_size = iMax - 1;
site->i_chunk_size = i_chunk_size;
if (j_chunk_size <= 0 || j_chunk_size > jMax - 1)
j_chunk_size = jMax - 1;
site->j_chunk_size = j_chunk_size;
}
void cntr_del(Csite *site)
{
delete [] site->saddle;
delete [] site->reg;
delete [] site->data;
delete site;
site = nullptr;
}
static int
reorder(double *xpp, double *ypp, short *kpp, double *xy, unsigned char *c, int npts, int nlevels)
{
std::vector<int> subp;
int isp, nsp;
int iseg, nsegs;
int isegplus;
int i;
int k;
int started;
int maxnsegs = npts/2 + 1;
/* allocate maximum possible size--gross overkill */
std::vector<int> i0(maxnsegs);
std::vector<int> i1(maxnsegs);
/* Find the segments. */
iseg = 0;
started = 0;
for (i=0; i<npts; i++)
{
if (started)
{
if ((kpp[i] >= kind_slit_up) || (i == npts-1))
{
i1[iseg] = i;
started = 0;
iseg++;
if (iseg == maxnsegs)
{
k = -1;
return k;
}
}
}
else if ((kpp[i] < kind_slit_up) && (i < npts-1))
{
i0[iseg] = i;
started = 1;
}
}
nsegs = iseg;
/* Find the subpaths as sets of connected segments. */
subp.resize(nsegs, false);
for (i=0; i<nsegs; i++) subp[i] = -1;
nsp = 0;
for (iseg=0; iseg<nsegs; iseg++)
{
/* For each segment, if it is not closed, look ahead for
the next connected segment.
*/
double xend, yend;
xend = xpp[i1[iseg]];
yend = ypp[i1[iseg]];
if (subp[iseg] >= 0) continue;
subp[iseg] = nsp;
nsp++;
if (iseg == nsegs-1) continue;
for (isegplus = iseg+1; isegplus < nsegs; isegplus++)
{
if (subp[isegplus] >= 0) continue;
if (xend == xpp[i0[isegplus]] && yend == ypp[i0[isegplus]])
{
subp[isegplus] = subp[iseg];
xend = xpp[i1[isegplus]];
yend = ypp[i1[isegplus]];
}
}
}
/* Generate the verts and codes from the subpaths. */
k = 0;
for (isp=0; isp<nsp; isp++)
{
int first = 1;
int kstart = k;
for (iseg=0; iseg<nsegs; iseg++)
{
int istart, iend;
if (subp[iseg] != isp) continue;
iend = i1[iseg];
if (first)
{
istart = i0[iseg];
}
else
{
istart = i0[iseg]+1; /* skip duplicate */
}
for (i=istart; i<=iend; i++)
{
xy[2*k] = xpp[i];
xy[2*k+1] = ypp[i];
if (first) c[k] = MOVETO;
else c[k] = LINETO;
first = 0;
k++;
if (k > npts) /* should never happen */
{
k = -1;
return k;
}
}
}
if (nlevels == 2 ||
(xy[2*kstart] == xy[2*k-2] && xy[2*kstart+1] == xy[2*k-1]))
{
c[k-1] = CLOSEPOLY;
}
}
return k;
}
/* Build a list of XY 2-D arrays, shape (N,2), to which a list of path
code arrays is concatenated.
*/
static py::tuple
build_cntr_list_v2(long *np, double *xp, double *yp, short *kp,
int nparts, long ntotal, int nlevels)
{
int i;
long k;
py::ssize_t dims[2];
py::ssize_t kdims[1];
py::list all_verts(nparts);
py::list all_codes(nparts);
for (i=0, k=0; i < nparts; k+= np[i], i++)
{
double *xpp = xp+k;
double *ypp = yp+k;
short *kpp = kp+k;
int n;
dims[0] = np[i];
dims[1] = 2;
kdims[0] = np[i];
PointArray xyv(dims);
CodeArray kv(kdims);
n = reorder(xpp, ypp, kpp, xyv.mutable_data(), kv.mutable_data(), np[i], nlevels);
if (n == -1)
{
throw std::runtime_error("Error reordering vertices");
}
dims[0] = n;
xyv.resize(dims, false);
all_verts[i] = xyv;
kdims[0] = n;
kv.resize(kdims, false);
all_codes[i] = kv;
}
return py::make_tuple(all_verts, all_codes);
}
/* cntr_trace is called once per contour level or level pair.
If nlevels is 1, a set of contour lines will be returned; if nlevels
is 2, the set of polygons bounded by the levels will be returned.
If points is True, the lines will be returned as a list of list
of points; otherwise, as a list of tuples of vectors.
*/
py::tuple
cntr_trace(Csite *site, double levels[], int nlevels)
{
int iseg;
long n;
long nparts = 0;
long ntotal = 0;
long ntotal2 = 0;
site->zlevel[0] = levels[0];
site->zlevel[1] = levels[0];
if (nlevels == 2)
{
site->zlevel[1] = levels[1];
}
site->n = site->count = 0;
data_init (site);
/* make first pass to compute required sizes for second pass */
for (;;)
{
n = curve_tracer (site, 0);
if (!n)
break;
if (n > 0)
{
nparts++;
ntotal += n;
}
else
{
ntotal -= n;
}
}
std::vector<double> xp0(ntotal);
std::vector<double> yp0(ntotal);
std::vector<short> kp0(ntotal);
std::vector<long> nseg0(nparts);
/* second pass */
site->xcp = xp0.data();
site->ycp = yp0.data();
site->kcp = kp0.data();
iseg = 0;
for (;;iseg++)
{
n = curve_tracer (site, 1);
if (ntotal2 + n > ntotal)
{
throw std::runtime_error("curve_tracer: ntotal2, pass 2 exceeds ntotal, pass 1");
}
if (n == 0)
break;
if (n > 0)
{
/* could add array bounds checking */
nseg0[iseg] = n;
site->xcp += n;
site->ycp += n;
site->kcp += n;
ntotal2 += n;
}
else
{
throw std::runtime_error("Negative n from curve_tracer in pass 2");
}
}
site->xcp = nullptr;
site->ycp = nullptr;
site->kcp = nullptr;
return build_cntr_list_v2(
nseg0.data(), xp0.data(), yp0.data(), kp0.data(), nparts, ntotal, nlevels);
}
} // namespace contourpy
|