1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
|
#ifndef CONTOURPY_BASE_IMPL_H
#define CONTOURPY_BASE_IMPL_H
#include "base.h"
#include "converter.h"
#include <iostream>
namespace contourpy {
// Point indices from current quad index.
#define POINT_NE (quad)
#define POINT_NW (quad-1)
#define POINT_SE (quad-_nx)
#define POINT_SW (quad-_nx-1)
// CacheItem masks, only accessed directly to set. To read, use accessors detailed below.
// 1 and 2 refer to level indices (lower and upper).
#define MASK_Z_LEVEL_1 (0x1 << 0) // z > lower_level.
#define MASK_Z_LEVEL_2 (0x1 << 1) // z > upper_level.
#define MASK_Z_LEVEL (MASK_Z_LEVEL_1 | MASK_Z_LEVEL_2)
#define MASK_MIDDLE_Z_LEVEL_1 (0x1 << 2) // middle z > lower_level
#define MASK_MIDDLE_Z_LEVEL_2 (0x1 << 3) // middle z > upper_level
#define MASK_MIDDLE (MASK_MIDDLE_Z_LEVEL_1 | MASK_MIDDLE_Z_LEVEL_2)
#define MASK_BOUNDARY_E (0x1 << 4) // E edge of quad is a boundary.
#define MASK_BOUNDARY_N (0x1 << 5) // N edge of quad is a boundary.
// EXISTS_QUAD bit is always used, but the 4 EXISTS_CORNER are only used if _corner_mask is true.
// Only one of EXISTS_QUAD or EXISTS_??_CORNER is ever set per quad.
#define MASK_EXISTS_QUAD (0x1 << 6) // All of quad exists (is not masked).
#define MASK_EXISTS_NE_CORNER (0x1 << 7) // NE corner exists, SW corner is masked.
#define MASK_EXISTS_NW_CORNER (0x1 << 8)
#define MASK_EXISTS_SE_CORNER (0x1 << 9)
#define MASK_EXISTS_SW_CORNER (0x1 << 10)
#define MASK_EXISTS_ANY_CORNER (MASK_EXISTS_NE_CORNER | MASK_EXISTS_NW_CORNER | MASK_EXISTS_SE_CORNER | MASK_EXISTS_SW_CORNER)
#define MASK_EXISTS_ANY (MASK_EXISTS_QUAD | MASK_EXISTS_ANY_CORNER)
#define MASK_START_E (0x1 << 11) // E to N, filled and lines.
#define MASK_START_N (0x1 << 12) // N to E, filled and lines.
#define MASK_START_BOUNDARY_E (0x1 << 13) // Lines only.
#define MASK_START_BOUNDARY_N (0x1 << 14) // Lines only.
#define MASK_START_BOUNDARY_S (0x1 << 15) // Filled and lines.
#define MASK_START_BOUNDARY_W (0x1 << 16) // Filled and lines.
#define MASK_START_CORNER (0x1 << 18) // Filled and lines.
#define MASK_START_HOLE_N (0x1 << 17) // N boundary of EXISTS, E to W, filled only.
#define MASK_ANY_START (MASK_START_N | MASK_START_E | MASK_START_BOUNDARY_N | MASK_START_BOUNDARY_E | MASK_START_BOUNDARY_S | MASK_START_BOUNDARY_W | MASK_START_HOLE_N | MASK_START_CORNER)
#define MASK_LOOK_N (0x1 << 19)
#define MASK_LOOK_S (0x1 << 20)
#define MASK_NO_STARTS_IN_ROW (0x1 << 21)
#define MASK_NO_MORE_STARTS (0x1 << 22)
// Accessors for various CacheItem masks.
#define Z_LEVEL(quad) (_cache[quad] & MASK_Z_LEVEL)
#define Z_NE Z_LEVEL(POINT_NE)
#define Z_NW Z_LEVEL(POINT_NW)
#define Z_SE Z_LEVEL(POINT_SE)
#define Z_SW Z_LEVEL(POINT_SW)
#define MIDDLE_Z_LEVEL(quad) ((_cache[quad] & MASK_MIDDLE) >> 2)
#define BOUNDARY_E(quad) (_cache[quad] & MASK_BOUNDARY_E)
#define BOUNDARY_N(quad) (_cache[quad] & MASK_BOUNDARY_N)
#define BOUNDARY_S(quad) (_cache[quad-_nx] & MASK_BOUNDARY_N)
#define BOUNDARY_W(quad) (_cache[quad-1] & MASK_BOUNDARY_E)
#define EXISTS_QUAD(quad) (_cache[quad] & MASK_EXISTS_QUAD)
#define EXISTS_NE_CORNER(quad) (_cache[quad] & MASK_EXISTS_NE_CORNER)
#define EXISTS_NW_CORNER(quad) (_cache[quad] & MASK_EXISTS_NW_CORNER)
#define EXISTS_SE_CORNER(quad) (_cache[quad] & MASK_EXISTS_SE_CORNER)
#define EXISTS_SW_CORNER(quad) (_cache[quad] & MASK_EXISTS_SW_CORNER)
#define EXISTS_ANY(quad) (_cache[quad] & MASK_EXISTS_ANY)
#define EXISTS_ANY_CORNER(quad) (_cache[quad] & MASK_EXISTS_ANY_CORNER)
#define EXISTS_E_EDGE(quad) (_cache[quad] & (MASK_EXISTS_QUAD | MASK_EXISTS_NE_CORNER | MASK_EXISTS_SE_CORNER))
#define EXISTS_N_EDGE(quad) (_cache[quad] & (MASK_EXISTS_QUAD | MASK_EXISTS_NW_CORNER | MASK_EXISTS_NE_CORNER))
#define EXISTS_S_EDGE(quad) (_cache[quad] & (MASK_EXISTS_QUAD | MASK_EXISTS_SW_CORNER | MASK_EXISTS_SE_CORNER))
#define EXISTS_W_EDGE(quad) (_cache[quad] & (MASK_EXISTS_QUAD | MASK_EXISTS_NW_CORNER | MASK_EXISTS_SW_CORNER))
// Note that EXISTS_NE_CORNER(quad) is equivalent to BOUNDARY_SW(quad), etc.
#define START_E(quad) (_cache[quad] & MASK_START_E)
#define START_N(quad) (_cache[quad] & MASK_START_N)
#define START_BOUNDARY_E(quad) (_cache[quad] & MASK_START_BOUNDARY_E)
#define START_BOUNDARY_N(quad) (_cache[quad] & MASK_START_BOUNDARY_N)
#define START_BOUNDARY_S(quad) (_cache[quad] & MASK_START_BOUNDARY_S)
#define START_BOUNDARY_W(quad) (_cache[quad] & MASK_START_BOUNDARY_W)
#define START_CORNER(quad) (_cache[quad] & MASK_START_CORNER)
#define START_HOLE_N(quad) (_cache[quad] & MASK_START_HOLE_N)
#define ANY_START(quad) ((_cache[quad] & MASK_ANY_START) != 0)
#define LOOK_N(quad) (_cache[quad] & MASK_LOOK_N)
#define LOOK_S(quad) (_cache[quad] & MASK_LOOK_S)
#define NO_STARTS_IN_ROW(quad) (_cache[quad] & MASK_NO_STARTS_IN_ROW)
#define NO_MORE_STARTS(quad) (_cache[quad] & MASK_NO_MORE_STARTS)
// Contour line/fill goes to the left or right of quad middle (quad_as_tri only).
#define LEFT_OF_MIDDLE(quad, is_upper) (MIDDLE_Z_LEVEL(quad) == (is_upper ? 2 : 0))
template <typename Derived>
BaseContourGenerator<Derived>::BaseContourGenerator(
const CoordinateArray& x, const CoordinateArray& y, const CoordinateArray& z,
const MaskArray& mask, bool corner_mask, LineType line_type, FillType fill_type,
bool quad_as_tri, ZInterp z_interp, index_t x_chunk_size, index_t y_chunk_size)
: _x(x),
_y(y),
_z(z),
_xptr(_x.data()),
_yptr(_y.data()),
_zptr(_z.data()),
_nx(_z.ndim() > 1 ? _z.shape(1) : 0),
_ny(_z.ndim() > 0 ? _z.shape(0) : 0),
_n(_nx*_ny),
_x_chunk_size(x_chunk_size > 0 ? std::min(x_chunk_size, _nx-1) : _nx-1),
_y_chunk_size(y_chunk_size > 0 ? std::min(y_chunk_size, _ny-1) : _ny-1),
_nx_chunks(static_cast<index_t>(std::ceil((_nx-1.0) / _x_chunk_size))),
_ny_chunks(static_cast<index_t>(std::ceil((_ny-1.0) / _y_chunk_size))),
_n_chunks(_nx_chunks*_ny_chunks),
_corner_mask(corner_mask),
_line_type(line_type),
_fill_type(fill_type),
_quad_as_tri(quad_as_tri),
_z_interp(z_interp),
_cache(new CacheItem[_n]),
_filled(false),
_lower_level(0.0),
_upper_level(0.0),
_identify_holes(false),
_output_chunked(false),
_direct_points(false),
_direct_line_offsets(false),
_direct_outer_offsets(false),
_outer_offsets_into_points(false),
_return_list_count(0)
{
if (_x.ndim() != 2 || _y.ndim() != 2 || _z.ndim() != 2)
throw std::invalid_argument("x, y and z must all be 2D arrays");
if (_x.shape(1) != _nx || _x.shape(0) != _ny ||
_y.shape(1) != _nx || _y.shape(0) != _ny)
throw std::invalid_argument("x, y and z arrays must have the same shape");
if (_nx < 2 || _ny < 2)
throw std::invalid_argument("x, y and z must all be at least 2x2 arrays");
if (mask.ndim() != 0) { // ndim == 0 if mask is not set, which is valid.
if (mask.ndim() != 2)
throw std::invalid_argument("mask array must be a 2D array");
if (mask.shape(1) != _nx || mask.shape(0) != _ny)
throw std::invalid_argument(
"If mask is set it must be a 2D array with the same shape as z");
}
if (!supports_line_type(line_type))
throw std::invalid_argument("Unsupported LineType");
if (!supports_fill_type(fill_type))
throw std::invalid_argument("Unsupported FillType");
if (x_chunk_size < 0 || y_chunk_size < 0)
throw std::invalid_argument("x_chunk_size and y_chunk_size cannot be negative");
if (_z_interp == ZInterp::Log) {
const bool* mask_ptr = (mask.ndim() == 0 ? nullptr : mask.data());
for (index_t point = 0; point < _n; ++point) {
if ( (mask_ptr == nullptr || !mask_ptr[point]) && _zptr[point] <= 0.0)
throw std::invalid_argument("z values must be positive if using ZInterp.Log");
}
}
init_cache_grid(mask);
}
template <typename Derived>
BaseContourGenerator<Derived>::~BaseContourGenerator()
{
delete [] _cache;
}
template <typename Derived>
typename BaseContourGenerator<Derived>::ZLevel
BaseContourGenerator<Derived>::calc_and_set_middle_z_level(index_t quad)
{
ZLevel zlevel = z_to_zlevel(calc_middle_z(quad));
_cache[quad] |= (zlevel << 2);
return zlevel;
}
template <typename Derived>
double BaseContourGenerator<Derived>::calc_middle_z(index_t quad) const
{
assert(quad >= 0 && quad < _n);
switch (_z_interp) {
case ZInterp::Log:
return exp(0.25*(log(get_point_z(POINT_SW)) +
log(get_point_z(POINT_SE)) +
log(get_point_z(POINT_NW)) +
log(get_point_z(POINT_NE))));
default: // ZInterp::Linear
return 0.25*(get_point_z(POINT_SW) +
get_point_z(POINT_SE) +
get_point_z(POINT_NW) +
get_point_z(POINT_NE));
}
}
template <typename Derived>
void BaseContourGenerator<Derived>::check_consistent_counts(const ChunkLocal& local) const
{
if (local.total_point_count > 0) {
if (local.points.size != 2*local.total_point_count ||
local.points.current != local.points.start + 2*local.total_point_count) {
throw std::runtime_error(
"Inconsistent total_point_count for chunk " + std::to_string(local.chunk) +
". This may indicate a bug in ContourPy.");
}
}
else {
if (local.points.size != 0 ||
local.points.start != nullptr || local.points.current != nullptr) {
throw std::runtime_error(
"Inconsistent zero total_point_count for chunk " + std::to_string(local.chunk) +
". This may indicate a bug in ContourPy.");
}
}
if (local.line_count > 0) {
if (local.line_offsets.size != local.line_count + 1 ||
local.line_offsets.current == nullptr ||
local.line_offsets.current != local.line_offsets.start + local.line_count + 1) {
throw std::runtime_error(
"Inconsistent line_count for chunk " + std::to_string(local.chunk) +
". This may indicate a bug in ContourPy.");
}
}
else {
if (local.line_offsets.size != 0 ||
local.line_offsets.start != nullptr || local.line_offsets.current != nullptr) {
throw std::runtime_error(
"Inconsistent zero line_count for chunk " + std::to_string(local.chunk) +
". This may indicate a bug in ContourPy.");
}
}
if (_identify_holes && local.line_count > 0) {
if (local.outer_offsets.size != local.line_count - local.hole_count + 1 ||
local.outer_offsets.current == nullptr ||
local.outer_offsets.current != local.outer_offsets.start + local.line_count -
local.hole_count + 1) {
throw std::runtime_error(
"Inconsistent hole_count for chunk " + std::to_string(local.chunk) +
". This may indicate a bug in ContourPy.");
}
}
else {
if (local.outer_offsets.size != 0 ||
local.outer_offsets.start != nullptr || local.outer_offsets.current != nullptr) {
throw std::runtime_error(
"Inconsistent zero hole_count for chunk " + std::to_string(local.chunk) +
". This may indicate a bug in ContourPy.");
}
}
}
template <typename Derived>
void BaseContourGenerator<Derived>::closed_line(
const Location& start_location, OuterOrHole outer_or_hole, ChunkLocal& local)
{
assert(is_quad_in_chunk(start_location.quad, local));
Location location = start_location;
bool finished = false;
count_t point_count = 0;
if (outer_or_hole == Hole && local.pass == 0 && _identify_holes)
set_look_flags(start_location.quad);
while (!finished) {
if (location.on_boundary)
finished = follow_boundary(location, start_location, local, point_count);
else
finished = follow_interior(location, start_location, local, point_count);
location.on_boundary = !location.on_boundary;
}
if (local.pass > 0) {
assert(local.line_offsets.current = local.line_offsets.start + local.line_count);
*local.line_offsets.current++ = local.total_point_count;
if (outer_or_hole == Outer && _identify_holes) {
assert(local.outer_offsets.current ==
local.outer_offsets.start + local.line_count - local.hole_count);
if (_outer_offsets_into_points)
*local.outer_offsets.current++ = local.total_point_count;
else
*local.outer_offsets.current++ = local.line_count;
}
}
local.total_point_count += point_count;
local.line_count++;
if (outer_or_hole == Hole)
local.hole_count++;
}
template <typename Derived>
void BaseContourGenerator<Derived>::closed_line_wrapper(
const Location& start_location, OuterOrHole outer_or_hole, ChunkLocal& local)
{
assert(is_quad_in_chunk(start_location.quad, local));
if (local.pass == 0 || !_identify_holes) {
closed_line(start_location, outer_or_hole, local);
}
else {
assert(outer_or_hole == Outer);
local.look_up_quads.clear();
closed_line(start_location, outer_or_hole, local);
for (py::size_t i = 0; i < local.look_up_quads.size(); ++i) {
// Note that the collection can increase in size during this loop.
index_t quad = local.look_up_quads[i];
// Walk N to corresponding look S flag is reached.
quad = find_look_S(quad);
// Only 3 possible types of hole start: START_E, START_HOLE_N or START_CORNER for SW
// corner.
if (START_E(quad)) {
closed_line(Location(quad, -1, -_nx, Z_NE > 0, false), Hole, local);
}
else if (START_HOLE_N(quad)) {
closed_line(Location(quad, -1, -_nx, false, true), Hole, local);
}
else {
assert(START_CORNER(quad) && EXISTS_SW_CORNER(quad));
closed_line(Location(quad, _nx-1, -_nx-1, false, true), Hole, local);
}
}
}
}
template <typename Derived>
FillType BaseContourGenerator<Derived>::default_fill_type()
{
FillType fill_type = FillType::OuterOffset;
assert(supports_fill_type(fill_type));
return fill_type;
}
template <typename Derived>
LineType BaseContourGenerator<Derived>::default_line_type()
{
LineType line_type = LineType::Separate;
assert(supports_line_type(line_type));
return line_type;
}
template <typename Derived>
py::sequence BaseContourGenerator<Derived>::filled(double lower_level, double upper_level)
{
if (lower_level > upper_level)
throw std::invalid_argument("upper and lower levels are the wrong way round");
_filled = true;
_lower_level = lower_level;
_upper_level = upper_level;
_identify_holes = !(_fill_type == FillType::ChunkCombinedCode ||
_fill_type == FillType::ChunkCombinedOffset);
_output_chunked = !(_fill_type == FillType::OuterCode || _fill_type == FillType::OuterOffset);
_direct_points = _output_chunked;
_direct_line_offsets = (_fill_type == FillType::ChunkCombinedOffset||
_fill_type == FillType::ChunkCombinedOffsetOffset);
_direct_outer_offsets = (_fill_type == FillType::ChunkCombinedCodeOffset ||
_fill_type == FillType::ChunkCombinedOffsetOffset);
_outer_offsets_into_points = (_fill_type == FillType::ChunkCombinedCodeOffset);
_return_list_count = (_fill_type == FillType::ChunkCombinedCodeOffset ||
_fill_type == FillType::ChunkCombinedOffsetOffset) ? 3 : 2;
return march_wrapper();
}
template <typename Derived>
index_t BaseContourGenerator<Derived>::find_look_S(index_t look_N_quad) const
{
assert(_identify_holes);
// Might need to be careful when looking in the same quad as the LOOK_UP.
index_t quad = look_N_quad;
// look_S quad must have 1 of only 3 possible types of hole start (START_E, START_HOLE_N,
// START_CORNER for SW corner) but it may have other starts as well.
// Start quad may be both a look_N and look_S quad. Only want to stop search here if look_S
// hole start is N of look_N.
if (!LOOK_S(quad)) {
do
{
quad += _nx;
assert(quad >= 0 && quad < _n);
assert(EXISTS_ANY(quad));
} while (!LOOK_S(quad));
}
return quad;
}
template <typename Derived>
bool BaseContourGenerator<Derived>::follow_boundary(
Location& location, const Location& start_location, ChunkLocal& local, count_t& point_count)
{
// forward values for boundaries:
// -1 = N boundary, E to W.
// 1 = S boundary, W to E.
// -_nx = W boundary, N to S.
// _nx = E boundary, S to N.
// -_nx+1 = NE corner, NW to SE.
// _nx+1 = NW corner, SW to NE.
// -_nx-1 = SE corner, NE to SW.
// _nx-1 = SW corner, SE to NW.
assert(is_quad_in_chunk(start_location.quad, local));
assert(is_quad_in_chunk(location.quad, local));
// Local variables for faster access.
auto quad = location.quad;
auto forward = location.forward;
auto left = location.left;
auto start_quad = start_location.quad;
auto start_forward = start_location.forward;
auto start_left = start_location.left;
auto pass = local.pass;
double*& points = local.points.current;
auto start_point = get_boundary_start_point(location);
auto end_point = start_point + forward;
assert(is_point_in_chunk(start_point, local));
assert(is_point_in_chunk(end_point, local));
auto start_z = Z_LEVEL(start_point);
auto end_z = Z_LEVEL(end_point);
// Add new point, somewhere along start line. May be at start point of edge if this is a
// boundary start.
point_count++;
if (pass > 0) {
if (start_z == 1)
get_point_xy(start_point, points);
else // start_z != 1
interp(start_point, end_point, location.is_upper, points);
}
bool finished = false;
while (true) {
assert(is_quad_in_chunk(quad, local));
if (quad == start_quad && forward == start_forward && left == start_left) {
if (start_location.on_boundary && point_count > 1) {
// Polygon closed.
finished = true;
break;
}
}
else if (pass == 0) {
// Clear unwanted start locations.
if (left == _nx) {
if (START_BOUNDARY_S(quad)) {
assert(forward == 1);
_cache[quad] &= ~MASK_START_BOUNDARY_S;
}
}
else if (forward == -_nx) {
if (START_BOUNDARY_W(quad)) {
assert(left == 1);
_cache[quad] &= ~MASK_START_BOUNDARY_W;
}
}
else if (left == -_nx) {
if (START_HOLE_N(quad)) {
assert(forward == -1);
_cache[quad] &= ~MASK_START_HOLE_N;
}
}
else {
switch (EXISTS_ANY_CORNER(quad)) {
case MASK_EXISTS_NE_CORNER:
if (left == _nx+1) {
assert(forward == -_nx+1);
_cache[quad] &= ~MASK_START_CORNER;
}
break;
case MASK_EXISTS_NW_CORNER:
if (forward == _nx+1) {
assert(left == _nx-1);
_cache[quad] &= ~MASK_START_CORNER;
}
break;
case MASK_EXISTS_SE_CORNER:
if (forward == -_nx-1) {
assert(left == -_nx+1);
_cache[quad] &= ~MASK_START_CORNER;
}
break;
case MASK_EXISTS_SW_CORNER:
if (left == -_nx-1) {
assert(forward == _nx-1);
_cache[quad] &= ~MASK_START_CORNER;
}
break;
default:
// Not a corner.
break;
}
}
}
// Check if need to leave boundary into interior.
if (end_z != 1) {
location.is_upper = (end_z == 2); // Leave via this level.
auto temp = forward;
forward = left;
left = -temp;
break;
}
// Add end point.
point_count++;
if (pass > 0) {
get_point_xy(end_point, points);
if (LOOK_N(quad) && _identify_holes &&
(left == _nx || left == _nx+1 || forward == _nx+1)) {
assert(BOUNDARY_N(quad-_nx) || EXISTS_NE_CORNER(quad) || EXISTS_NW_CORNER(quad));
local.look_up_quads.push_back(quad);
}
}
move_to_next_boundary_edge(quad, forward, left);
start_point = end_point;
start_z = end_z;
end_point = start_point + forward;
end_z = Z_LEVEL(end_point);
}
location.quad = quad;
location.forward = forward;
location.left = left;
return finished;
}
template <typename Derived>
bool BaseContourGenerator<Derived>::follow_interior(
Location& location, const Location& start_location, ChunkLocal& local, count_t& point_count)
{
// Adds the start point in each quad visited, but not the end point unless closing the polygon.
// Only need to consider a single level of course.
assert(is_quad_in_chunk(start_location.quad, local));
assert(is_quad_in_chunk(location.quad, local));
// Local variables for faster access.
auto quad = location.quad;
auto forward = location.forward;
auto left = location.left;
auto is_upper = location.is_upper;
auto start_quad = start_location.quad;
auto start_forward = start_location.forward;
auto start_left = start_location.left;
auto pass = local.pass;
double*& points = local.points.current;
// left direction, and indices of points on entry edge.
bool start_corner_diagonal = false;
auto left_point = get_interior_start_left_point(location, start_corner_diagonal);
auto right_point = left_point - left;
bool want_look_N = _identify_holes && pass > 0;
bool finished = false; // Whether finished line, i.e. returned to start.
while (true) {
assert(is_quad_in_chunk(quad, local));
assert(is_point_in_chunk(left_point, local));
assert(is_point_in_chunk(right_point, local));
if (pass > 0)
interp(left_point, right_point, is_upper, points);
point_count++;
if (quad == start_quad && forward == start_forward &&
left == start_left && is_upper == start_location.is_upper &&
!start_location.on_boundary && point_count > 1) {
finished = true; // Polygon closed, exit immediately.
break;
}
// Indices of the opposite points.
auto opposite_left_point = left_point + forward;
auto opposite_right_point = right_point + forward;
bool corner_opposite_is_right = false; // Only used for corners.
if (start_corner_diagonal) {
// To avoid dealing with diagonal forward and left below, switch to direction 45 degrees
// to left, e.g. NW corner faces west using forward == -1.
corner_opposite_is_right = true;
switch (EXISTS_ANY_CORNER(quad)) {
case MASK_EXISTS_NW_CORNER:
forward = -1;
left = -_nx;
opposite_left_point = opposite_right_point = quad-1;
break;
case MASK_EXISTS_NE_CORNER:
forward = _nx;
left = -1;
opposite_left_point = opposite_right_point = quad;
break;
case MASK_EXISTS_SW_CORNER:
forward = -_nx;
left = 1;
opposite_left_point = opposite_right_point = quad-_nx-1;
break;
default:
assert(EXISTS_SE_CORNER(quad));
forward = 1;
left = _nx;
opposite_left_point = opposite_right_point = quad-_nx;
break;
}
}
// z-levels of the opposite points.
ZLevel z_opposite_left = Z_LEVEL(opposite_left_point);
ZLevel z_opposite_right = Z_LEVEL(opposite_right_point);
Direction direction = Direction::Right;
ZLevel z_test = is_upper ? 2 : 0;
if (EXISTS_QUAD(quad)) {
if (z_opposite_left == z_test) {
if (z_opposite_right == z_test || MIDDLE_Z_LEVEL(quad) == z_test)
direction = Direction::Left;
}
else if (z_opposite_right == z_test)
direction = Direction::Straight;
}
else if (start_corner_diagonal) {
direction = (z_opposite_left == z_test) ? Direction::Straight : Direction::Right;
}
else {
switch (EXISTS_ANY_CORNER(quad)) {
case MASK_EXISTS_NW_CORNER:
corner_opposite_is_right = (forward == -_nx);
break;
case MASK_EXISTS_NE_CORNER:
corner_opposite_is_right = (forward == -1);
break;
case MASK_EXISTS_SW_CORNER:
corner_opposite_is_right = (forward == 1);
break;
default:
assert(EXISTS_SE_CORNER(quad));
corner_opposite_is_right = (forward == _nx);
break;
}
if (corner_opposite_is_right)
direction = (z_opposite_right == z_test) ? Direction::Straight : Direction::Right;
else
direction = (z_opposite_left == z_test) ? Direction::Left : Direction::Straight;
}
// Clear unwanted start locations.
if (pass == 0 && !(quad == start_quad && forward == start_forward && left == start_left)) {
if (START_E(quad) && forward == -1 && left == -_nx && direction == Direction::Right &&
(is_upper ? Z_NE > 0 : Z_NE < 2)) {
_cache[quad] &= ~MASK_START_E; // E high if is_upper else low.
if (!_filled && quad < start_location.quad)
// Already counted points from here onwards.
break;
}
else if (START_N(quad) && forward == -_nx && left == 1 &&
direction == Direction::Left && (is_upper ? Z_NW > 0 : Z_NW < 2)) {
_cache[quad] &= ~MASK_START_N; // E high if is_upper else low.
if (!_filled && quad < start_location.quad)
// Already counted points from here onwards.
break;
}
}
// Extra quad_as_tri points.
if (_quad_as_tri && EXISTS_QUAD(quad)) {
if (pass == 0) {
switch (direction) {
case Direction::Left:
point_count += (LEFT_OF_MIDDLE(quad, is_upper) ? 1 : 3);
break;
case Direction::Right:
point_count += (LEFT_OF_MIDDLE(quad, is_upper) ? 3 : 1);
break;
case Direction::Straight:
point_count += 2;
break;
}
}
else { // pass == 1
auto mid_x = get_middle_x(quad);
auto mid_y = get_middle_y(quad);
auto mid_z = calc_middle_z(quad);
switch (direction) {
case Direction::Left:
if (LEFT_OF_MIDDLE(quad, is_upper)) {
interp(left_point, mid_x, mid_y, mid_z, is_upper, points);
point_count++;
}
else {
interp(right_point, mid_x, mid_y, mid_z, is_upper, points);
interp(opposite_right_point, mid_x, mid_y, mid_z, is_upper, points);
interp(opposite_left_point, mid_x, mid_y, mid_z, is_upper, points);
point_count += 3;
}
break;
case Direction::Right:
if (LEFT_OF_MIDDLE(quad, is_upper)) {
interp(left_point, mid_x, mid_y, mid_z, is_upper, points);
interp(opposite_left_point, mid_x, mid_y, mid_z, is_upper, points);
interp(opposite_right_point, mid_x, mid_y, mid_z, is_upper, points);
point_count += 3;
}
else {
interp(right_point, mid_x, mid_y, mid_z, is_upper, points);
point_count++;
}
break;
case Direction::Straight:
if (LEFT_OF_MIDDLE(quad, is_upper)) {
interp(left_point, mid_x, mid_y, mid_z, is_upper, points);
interp(opposite_left_point, mid_x, mid_y, mid_z, is_upper, points);
}
else {
interp(right_point, mid_x, mid_y, mid_z, is_upper, points);
interp(opposite_right_point, mid_x, mid_y, mid_z, is_upper, points);
}
point_count += 2;
break;
}
}
}
bool reached_boundary = false;
// Determine entry edge and left and right points of next quad.
// Do not update quad index yet.
switch (direction) {
case Direction::Left: {
auto temp = forward;
forward = left;
left = -temp;
// left_point unchanged.
right_point = opposite_left_point;
break;
}
case Direction::Right: {
auto temp = forward;
forward = -left;
left = temp;
left_point = opposite_right_point;
// right_point unchanged.
break;
}
case Direction::Straight: {
if (EXISTS_QUAD(quad)) { // Straight on in quad.
// forward and left stay the same.
left_point = opposite_left_point;
right_point = opposite_right_point;
}
else if (start_corner_diagonal) { // Straight on diagonal start corner.
// left point unchanged.
right_point = opposite_right_point;
}
else { // Straight on in a corner reaches boundary.
assert(EXISTS_ANY_CORNER(quad));
reached_boundary = true;
if (corner_opposite_is_right) {
// left_point unchanged.
right_point = opposite_right_point;
}
else {
left_point = opposite_left_point;
// right_point unchanged.
}
// Set forward and left for correct exit along boundary.
switch (EXISTS_ANY_CORNER(quad)) {
case MASK_EXISTS_NW_CORNER:
forward = _nx+1;
left = _nx-1;
break;
case MASK_EXISTS_NE_CORNER:
forward = -_nx+1;
left = _nx+1;
break;
case MASK_EXISTS_SW_CORNER:
forward = _nx-1;
left = -_nx-1;
break;
default:
assert(EXISTS_SE_CORNER(quad));
forward = -_nx-1;
left = -_nx+1;
break;
}
}
break;
}
}
if (want_look_N && LOOK_N(quad) && forward == 1) {
// Only consider look_N if pass across E edge of this quad.
// Care needed if both look_N and look_S set in quad because this line corresponds to
// only one of them, so want to ignore the look_N if it is the other line otherwise it
// will be double counted.
if (!LOOK_S(quad) || (is_upper ? Z_NE < 2 : Z_NE > 0))
local.look_up_quads.push_back(quad);
}
// Check if reached NSEW boundary; already checked and noted if reached corner boundary.
if (!reached_boundary) {
if (forward > 0)
reached_boundary = (forward == 1 ? BOUNDARY_E(quad) : BOUNDARY_N(quad));
else // forward < 0
reached_boundary = (forward == -1 ? BOUNDARY_W(quad) : BOUNDARY_S(quad));
if (reached_boundary) {
auto temp = forward;
forward = left;
left = -temp;
}
}
// If reached a boundary, return.
if (reached_boundary) {
if (!_filled) {
point_count++;
if (pass > 0)
interp(left_point, right_point, false, points);
}
break;
}
quad += forward;
start_corner_diagonal = false;
}
location.quad = quad;
location.forward = forward;
location.left = left;
location.is_upper = is_upper;
return finished;
}
template <typename Derived>
index_t BaseContourGenerator<Derived>::get_boundary_start_point(const Location& location) const
{
auto quad = location.quad;
auto forward = location.forward;
auto left = location.left;
index_t start_point = -1;
if (forward > 0) {
if (forward == _nx) {
assert(left == -1);
start_point = quad-_nx;
}
else if (left == _nx) {
assert(forward == 1);
start_point = quad-_nx-1;
}
else if (EXISTS_SW_CORNER(quad)) {
assert(forward == _nx-1 && left == -_nx-1);
start_point = quad-_nx;
}
else {
assert(EXISTS_NW_CORNER(quad) && forward == _nx+1 && left == _nx-1);
start_point = quad-_nx-1;
}
}
else { // forward < 0
if (forward == -_nx) {
assert(left == 1);
start_point = quad-1;
}
else if (left == -_nx) {
assert(forward == -1);
start_point = quad;
}
else if (EXISTS_NE_CORNER(quad)) {
assert(forward == -_nx+1 && left == _nx+1);
start_point = quad-1;
}
else {
assert(EXISTS_SE_CORNER(quad) && forward == -_nx-1 && left == -_nx+1);
start_point = quad;
}
}
return start_point;
}
template <typename Derived>
py::tuple BaseContourGenerator<Derived>::get_chunk_count() const
{
return py::make_tuple(_ny_chunks, _nx_chunks);
}
template <typename Derived>
void BaseContourGenerator<Derived>::get_chunk_limits(index_t chunk, ChunkLocal& local) const
{
assert(chunk >= 0 && chunk < _n_chunks && "chunk index out of bounds");
local.chunk = chunk;
auto ichunk = chunk % _nx_chunks;
auto jchunk = chunk / _nx_chunks;
local.istart = ichunk*_x_chunk_size + 1;
local.iend = (ichunk < _nx_chunks-1 ? (ichunk+1)*_x_chunk_size : _nx-1);
local.jstart = jchunk*_y_chunk_size + 1;
local.jend = (jchunk < _ny_chunks-1 ? (jchunk+1)*_y_chunk_size : _ny-1);
}
template <typename Derived>
py::tuple BaseContourGenerator<Derived>::get_chunk_size() const
{
return py::make_tuple(_y_chunk_size, _x_chunk_size);
}
template <typename Derived>
bool BaseContourGenerator<Derived>::get_corner_mask() const
{
return _corner_mask;
}
template <typename Derived>
FillType BaseContourGenerator<Derived>::get_fill_type() const
{
return _fill_type;
}
template <typename Derived>
index_t BaseContourGenerator<Derived>::get_interior_start_left_point(
const Location& location, bool& start_corner_diagonal) const
{
auto quad = location.quad;
auto forward = location.forward;
auto left = location.left;
index_t left_point = -1;
if (forward > 0) {
if (forward == _nx) {
assert(left == -1);
left_point = quad-_nx-1;
}
else if (left == _nx) {
assert(forward == 1);
left_point = quad-1;
}
else if (EXISTS_NW_CORNER(quad)) {
assert(forward == _nx-1 && left == -_nx-1);
left_point = quad-_nx-1;
start_corner_diagonal = true;
}
else {
assert(EXISTS_NE_CORNER(quad) && forward == _nx+1 && left == _nx-1);
left_point = quad-1;
start_corner_diagonal = true;
}
}
else { // forward < 0
if (forward == -_nx) {
assert(left == 1);
left_point = quad;
}
else if (left == -_nx) {
assert(forward == -1);
left_point = quad-_nx;
}
else if (EXISTS_SW_CORNER(quad)) {
assert(forward == -_nx-1 && left == -_nx+1);
left_point = quad-_nx;
start_corner_diagonal = true;
}
else {
assert(EXISTS_SE_CORNER(quad) && forward == -_nx+1 && left == _nx+1);
left_point = quad;
start_corner_diagonal = true;
}
}
return left_point;
}
template <typename Derived>
double BaseContourGenerator<Derived>::get_interp_fraction(double z0, double z1, double level) const
{
switch (_z_interp) {
case ZInterp::Log:
// Equivalent to
// (log(z1) - log(level)) / (log(z1) - log(z0))
// Same result obtained regardless of logarithm base.
return log(z1/level) / log(z1/z0);
default: // ZInterp::Linear
return (z1 - level) / (z1 - z0);
}
}
template <typename Derived>
LineType BaseContourGenerator<Derived>::get_line_type() const
{
return _line_type;
}
template <typename Derived>
double BaseContourGenerator<Derived>::get_middle_x(index_t quad) const
{
return 0.25*(get_point_x(POINT_SW) + get_point_x(POINT_SE) +
get_point_x(POINT_NW) + get_point_x(POINT_NE));
}
template <typename Derived>
double BaseContourGenerator<Derived>::get_middle_y(index_t quad) const
{
return 0.25*(get_point_y(POINT_SW) + get_point_y(POINT_SE) +
get_point_y(POINT_NW) + get_point_y(POINT_NE));
}
template <typename Derived>
index_t BaseContourGenerator<Derived>::get_n_chunks() const
{
return _n_chunks;
}
template <typename Derived>
void BaseContourGenerator<Derived>::get_point_xy(index_t point, double*& points) const
{
assert(point >= 0 && point < _n && "point index out of bounds");
*points++ = _xptr[point];
*points++ = _yptr[point];
}
template <typename Derived>
double BaseContourGenerator<Derived>::get_point_x(index_t point) const
{
assert(point >= 0 && point < _n && "point index out of bounds");
return _xptr[point];
}
template <typename Derived>
double BaseContourGenerator<Derived>::get_point_y(index_t point) const
{
assert(point >= 0 && point < _n && "point index out of bounds");
return _yptr[point];
}
template <typename Derived>
double BaseContourGenerator<Derived>::get_point_z(index_t point) const
{
assert(point >= 0 && point < _n && "point index out of bounds");
return _zptr[point];
}
template <typename Derived>
bool BaseContourGenerator<Derived>::get_quad_as_tri() const
{
return _quad_as_tri;
}
template <typename Derived>
ZInterp BaseContourGenerator<Derived>::get_z_interp() const
{
return _z_interp;
}
template <typename Derived>
bool BaseContourGenerator<Derived>::has_direct_line_offsets() const
{
return _direct_line_offsets;
}
template <typename Derived>
bool BaseContourGenerator<Derived>::has_direct_outer_offsets() const
{
return _direct_outer_offsets;
}
template <typename Derived>
bool BaseContourGenerator<Derived>::has_direct_points() const
{
return _direct_points;
}
template <typename Derived>
void BaseContourGenerator<Derived>::init_cache_grid(const MaskArray& mask)
{
index_t i, j, quad;
if (mask.ndim() == 0) {
// No mask, easy to calculate quad existence and boundaries together.
for (j = 0, quad = 0; j < _ny; ++j) {
for (i = 0; i < _nx; ++i, ++quad) {
_cache[quad] = 0;
if (i > 0 && j > 0)
_cache[quad] |= MASK_EXISTS_QUAD;
if ((i % _x_chunk_size == 0 || i == _nx-1) && j > 0)
_cache[quad] |= MASK_BOUNDARY_E;
if ((j % _y_chunk_size == 0 || j == _ny-1) && i > 0)
_cache[quad] |= MASK_BOUNDARY_N;
}
}
}
else {
// Could maybe speed this up and just have a single pass.
// Care would be needed with lookback of course.
const bool* mask_ptr = mask.data();
// Have mask so use two stages.
// Stage 1, determine if quads/corners exist.
quad = 0;
for (j = 0; j < _ny; ++j) {
for (i = 0; i < _nx; ++i, ++quad) {
_cache[quad] = 0;
if (i > 0 && j > 0) {
unsigned int config = (mask_ptr[POINT_NW] << 3) |
(mask_ptr[POINT_NE] << 2) |
(mask_ptr[POINT_SW] << 1) |
(mask_ptr[POINT_SE] << 0);
if (_corner_mask) {
switch (config) {
case 0: _cache[quad] = MASK_EXISTS_QUAD; break;
case 1: _cache[quad] = MASK_EXISTS_NW_CORNER; break;
case 2: _cache[quad] = MASK_EXISTS_NE_CORNER; break;
case 4: _cache[quad] = MASK_EXISTS_SW_CORNER; break;
case 8: _cache[quad] = MASK_EXISTS_SE_CORNER; break;
default:
// Do nothing, quad is masked out.
break;
}
}
else if (config == 0)
_cache[quad] = MASK_EXISTS_QUAD;
}
}
}
// Stage 2, calculate N and E boundaries.
quad = 0;
for (j = 0; j < _ny; ++j) {
bool j_chunk_boundary = j % _y_chunk_size == 0;
for (i = 0; i < _nx; ++i, ++quad) {
bool i_chunk_boundary = i % _x_chunk_size == 0;
if (_corner_mask) {
bool exists_E_edge = EXISTS_E_EDGE(quad);
bool E_exists_W_edge = (i < _nx-1 && EXISTS_W_EDGE(quad+1));
bool exists_N_edge = EXISTS_N_EDGE(quad);
bool N_exists_S_edge = (j < _ny-1 && EXISTS_S_EDGE(quad+_nx));
if (exists_E_edge != E_exists_W_edge ||
(i_chunk_boundary && exists_E_edge && E_exists_W_edge))
_cache[quad] |= MASK_BOUNDARY_E;
if (exists_N_edge != N_exists_S_edge ||
(j_chunk_boundary && exists_N_edge && N_exists_S_edge))
_cache[quad] |= MASK_BOUNDARY_N;
}
else {
bool E_exists_quad = (i < _nx-1 && EXISTS_QUAD(quad+1));
bool N_exists_quad = (j < _ny-1 && EXISTS_QUAD(quad+_nx));
bool exists = EXISTS_QUAD(quad);
if (exists != E_exists_quad || (i_chunk_boundary && exists && E_exists_quad))
_cache[quad] |= MASK_BOUNDARY_E;
if (exists != N_exists_quad || (j_chunk_boundary && exists && N_exists_quad))
_cache[quad] |= MASK_BOUNDARY_N;
}
}
}
}
}
template <typename Derived>
void BaseContourGenerator<Derived>::init_cache_levels_and_starts(const ChunkLocal* local)
{
bool ordered_chunks = (local == nullptr);
// This function initialises the cache z-levels and starts for either a single chunk or the
// whole domain. If a single chunk, only the quads contained in the chunk are calculated and
// this includes the z-levels of the points that on the NE corners of those quads. In addition,
// chunks that are on the W (starting at i=1) also calculate the most westerly points (i=0),
// and similarly chunks that are on the S (starting at j=1) also calculate the most southerly
// points (j=0). Non W/S chunks do not do this as their neighboring chunks to the W/S are
// responsible for it. If ordered_chunks is true then those W/S points will already have had
// their cache items set so that their z-levels can be read from the cache as usual. But if
// ordered_chunks is false then we cannot rely upon those neighboring W/S points having their
// cache items already set and so must temporarily calculate those z-levels rather than reading
// the cache.
constexpr CacheItem keep_mask = (MASK_EXISTS_ANY | MASK_BOUNDARY_N | MASK_BOUNDARY_E);
index_t istart, iend, jstart, jend; // Loop indices.
index_t chunk_istart; // Actual start i-index of chunk.
if (local != nullptr) {
chunk_istart = local->istart;
istart = chunk_istart > 1 ? chunk_istart : 0;
iend = local->iend;
jstart = local->jstart > 1 ? local->jstart : 0;
jend = local->jend;
}
else {
chunk_istart = 1;
istart = 0;
iend = _nx-1;
jstart = 0;
jend = _ny-1;
}
index_t j_final_start = jstart - 1;
bool calc_W_z_level = (!ordered_chunks && istart == chunk_istart);
for (index_t j = jstart; j <= jend; ++j) {
index_t quad = istart + j*_nx;
const double* z_ptr = _zptr + quad;
bool start_in_row = false;
bool calc_S_z_level = (!ordered_chunks && j == jstart);
// z-level of NW point not needed if i == 0.
ZLevel z_nw = (istart == 0) ? 0 : (calc_W_z_level ? z_to_zlevel(*(z_ptr-1)) : Z_NW);
// z-level of SW point not needed if i == 0 or j == 0.
ZLevel z_sw = (istart == 0 || j == 0) ? 0 :
((calc_W_z_level || calc_S_z_level) ? z_to_zlevel(*(z_ptr-_nx-1)) : Z_SW);
for (index_t i = istart; i <= iend; ++i, ++quad, ++z_ptr) {
// z-level of SE point not needed if j == 0.
ZLevel z_se = (j == 0) ? 0 : (calc_S_z_level ? z_to_zlevel(*(z_ptr-_nx)) : Z_SE);
_cache[quad] &= keep_mask;
// Calculate and cache z-level of NE point.
ZLevel z_ne = z_to_zlevel(*z_ptr);
_cache[quad] |= z_ne;
switch (EXISTS_ANY(quad)) {
case MASK_EXISTS_QUAD:
if (_filled) {
switch ((z_nw << 6) | (z_ne << 4) | (z_sw << 2) | z_se) { // config
case 1: // 0001
case 2: // 0002
case 17: // 0101
case 18: // 0102
case 34: // 0202
case 68: // 1010
case 102: // 1212
case 136: // 2020
case 152: // 2120
case 153: // 2121
case 168: // 2220
case 169: // 2221
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row = true;
}
break;
case 4: // 0010
case 5: // 0011
case 6: // 0012
case 8: // 0020
case 9: // 0021
case 21: // 0111
case 22: // 0112
case 25: // 0121
case 38: // 0212
case 72: // 1020
case 98: // 1202
case 132: // 2010
case 145: // 2101
case 148: // 2110
case 149: // 2111
case 161: // 2201
case 162: // 2202
case 164: // 2210
case 165: // 2211
case 166: // 2212
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row |= ANY_START(quad);
break;
case 10: // 0022
case 26: // 0122
case 42: // 0222
case 64: // 1000
case 106: // 1222
case 128: // 2000
case 144: // 2100
case 160: // 2200
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_W(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row = true;
}
break;
case 16: // 0100
case 154: // 2122
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
_cache[quad] |= MASK_START_N;
start_in_row = true;
break;
case 20: // 0110
case 24: // 0120
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) == 0) _cache[quad] |= MASK_START_N;
start_in_row |= ANY_START(quad);
break;
case 32: // 0200
case 138: // 2022
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
_cache[quad] |= MASK_START_E;
_cache[quad] |= MASK_START_N;
start_in_row = true;
break;
case 33: // 0201
case 69: // 1011
case 70: // 1012
case 100: // 1210
case 101: // 1211
case 137: // 2021
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
_cache[quad] |= MASK_START_E;
start_in_row = true;
break;
case 36: // 0210
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) == 0) _cache[quad] |= MASK_START_N;
_cache[quad] |= MASK_START_E;
start_in_row = true;
break;
case 37: // 0211
case 73: // 1021
case 97: // 1201
case 133: // 2011
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
_cache[quad] |= MASK_START_E;
start_in_row = true;
break;
case 40: // 0220
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) < 2) _cache[quad] |= MASK_START_E;
if (MIDDLE_Z_LEVEL(quad) == 0) _cache[quad] |= MASK_START_N;
start_in_row |= ANY_START(quad);
break;
case 41: // 0221
case 104: // 1220
case 105: // 1221
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) < 2) _cache[quad] |= MASK_START_E;
start_in_row |= ANY_START(quad);
break;
case 65: // 1001
case 66: // 1002
case 129: // 2001
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) > 0) _cache[quad] |= MASK_START_E;
start_in_row |= ANY_START(quad);
break;
case 74: // 1022
case 96: // 1200
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
_cache[quad] |= MASK_START_E;
start_in_row = true;
break;
case 80: // 1100
case 90: // 1122
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (BOUNDARY_N(quad) && !START_HOLE_N(quad-1) &&
j % _y_chunk_size > 0 && j != _ny-1 && i % _x_chunk_size > 1)
_cache[quad] |= MASK_START_HOLE_N;
start_in_row |= ANY_START(quad);
break;
case 81: // 1101
case 82: // 1102
case 88: // 1120
case 89: // 1121
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (BOUNDARY_N(quad) && !START_HOLE_N(quad-1) &&
j % _y_chunk_size > 0 && j != _ny-1 && i % _x_chunk_size > 1)
_cache[quad] |= MASK_START_HOLE_N;
start_in_row |= ANY_START(quad);
break;
case 84: // 1110
case 85: // 1111
case 86: // 1112
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_N(quad) && !START_HOLE_N(quad-1) &&
j % _y_chunk_size > 0 && j != _ny-1 && i % _x_chunk_size > 1)
_cache[quad] |= MASK_START_HOLE_N;
start_in_row |= ANY_START(quad);
break;
case 130: // 2002
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) > 0) _cache[quad] |= MASK_START_E;
if (MIDDLE_Z_LEVEL(quad) == 2) _cache[quad] |= MASK_START_N;
start_in_row |= ANY_START(quad);
break;
case 134: // 2012
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) == 2) _cache[quad] |= MASK_START_N;
_cache[quad] |= MASK_START_E;
start_in_row = true;
break;
case 146: // 2102
case 150: // 2112
calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (MIDDLE_Z_LEVEL(quad) == 2) _cache[quad] |= MASK_START_N;
start_in_row |= ANY_START(quad);
break;
}
}
else { // !_filled quad
switch ((z_nw << 3) | (z_ne << 2) | (z_sw << 1) | z_se) { // config
case 1: // 0001
case 3: // 0011
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_E(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_E;
start_in_row = true;
}
break;
case 2: // 0010
case 10: // 1010
case 14: // 1110
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_S(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row = true;
}
break;
case 4: // 0100
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_N(quad))
_cache[quad] |= MASK_START_BOUNDARY_N;
else if (!BOUNDARY_E(quad))
_cache[quad] |= MASK_START_N;
start_in_row |= ANY_START(quad);
break;
case 5: // 0101
case 7: // 0111
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_N(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_N;
start_in_row = true;
}
break;
case 6: // 0110
calc_and_set_middle_z_level(quad);
if (BOUNDARY_N(quad))
_cache[quad] |= MASK_START_BOUNDARY_N;
else if (!BOUNDARY_E(quad) && MIDDLE_Z_LEVEL(quad) == 0)
_cache[quad] |= MASK_START_N;
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row |= ANY_START(quad);
break;
case 8: // 1000
case 12: // 1100
case 13: // 1101
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_W(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row = true;
}
break;
case 9: // 1001
calc_and_set_middle_z_level(quad);
if (BOUNDARY_E(quad))
_cache[quad] |= MASK_START_BOUNDARY_E;
else if (!BOUNDARY_N(quad) && MIDDLE_Z_LEVEL(quad) == 1)
_cache[quad] |= MASK_START_E;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row |= ANY_START(quad);
break;
case 11: // 1011
if (_quad_as_tri) calc_and_set_middle_z_level(quad);
if (BOUNDARY_E(quad))
_cache[quad] |= MASK_START_BOUNDARY_E;
else if (!BOUNDARY_N(quad))
_cache[quad] |= MASK_START_E;
start_in_row |= ANY_START(quad);
break;
}
}
break;
case MASK_EXISTS_NW_CORNER:
if (_filled) {
switch ((z_nw << 4) | (z_ne << 2) | z_sw) { // config
case 1: // 001
case 5: // 011
case 9: // 021
case 10: // 022
case 16: // 100
case 17: // 101
case 25: // 121
case 26: // 122
case 32: // 200
case 33: // 201
case 37: // 211
case 41: // 221
if (BOUNDARY_W(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row = true;
}
break;
case 2: // 002
case 6: // 012
case 18: // 102
case 24: // 120
case 36: // 210
case 40: // 220
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 4: // 010
case 8: // 020
case 34: // 202
case 38: // 212
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 20: // 110
case 22: // 112
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (BOUNDARY_N(quad) && !START_HOLE_N(quad-1) &&
j % _y_chunk_size > 0 && j != _ny-1 && i % _x_chunk_size > 1)
_cache[quad] |= MASK_START_HOLE_N;
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 21: // 111
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
if (BOUNDARY_N(quad) && !START_HOLE_N(quad-1) &&
j % _y_chunk_size > 0 && j != _ny-1 && i % _x_chunk_size > 1)
_cache[quad] |= MASK_START_HOLE_N;
start_in_row |= ANY_START(quad);
break;
}
}
else { // !_filled NW corner.
switch ((z_nw << 2) | (z_ne << 1) | z_sw) { // config
case 1: // 001
case 5: // 101
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 2: // 010
case 3: // 011
if (BOUNDARY_N(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_N;
start_in_row = true;
}
break;
case 4: // 100
case 6: // 110
if (BOUNDARY_W(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row = true;
}
break;
}
}
break;
case MASK_EXISTS_NE_CORNER:
if (_filled) {
switch ((z_nw << 4) | (z_ne << 2) | z_se) { // config
case 1: // 001
case 2: // 002
case 5: // 011
case 6: // 012
case 10: // 022
case 16: // 100
case 26: // 122
case 32: // 200
case 36: // 210
case 37: // 211
case 40: // 220
case 41: // 221
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 4: // 010
case 38: // 212
_cache[quad] |= MASK_START_N;
start_in_row = true;
break;
case 8: // 020
case 34: // 202
_cache[quad] |= MASK_START_E;
_cache[quad] |= MASK_START_N;
start_in_row = true;
break;
case 9: // 021
case 17: // 101
case 18: // 102
case 24: // 120
case 25: // 121
case 33: // 201
_cache[quad] |= MASK_START_CORNER;
_cache[quad] |= MASK_START_E;
start_in_row = true;
break;
case 20: // 110
case 21: // 111
case 22: // 112
if (BOUNDARY_N(quad) && !START_HOLE_N(quad-1) &&
j % _y_chunk_size > 0 && j != _ny-1 && i % _x_chunk_size > 1)
_cache[quad] |= MASK_START_HOLE_N;
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
}
}
else { // !_filled NE corner.
switch ((z_nw << 2) | (z_ne << 1) | z_se) { // config
case 1: // 001
if (BOUNDARY_E(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_E;
start_in_row = true;
}
break;
case 2: // 010
if (BOUNDARY_N(quad))
_cache[quad] |= MASK_START_BOUNDARY_N;
else if (!BOUNDARY_E(quad))
_cache[quad] |= MASK_START_N;
start_in_row |= ANY_START(quad);
break;
case 3: // 011
if (BOUNDARY_N(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_N;
start_in_row = true;
}
break;
case 4: // 100
case 6: // 110
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 5: // 101
if (BOUNDARY_E(quad))
_cache[quad] |= MASK_START_BOUNDARY_E;
else if (!BOUNDARY_N(quad))
_cache[quad] |= MASK_START_E;
start_in_row |= ANY_START(quad);
break;
}
}
break;
case MASK_EXISTS_SW_CORNER:
if (_filled) {
switch ((z_nw << 4) | (z_sw << 2) | z_se) { // config
case 1: // 001
case 2: // 002
case 40: // 220
case 41: // 221
if (BOUNDARY_S(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row = true;
}
break;
case 4: // 010
case 5: // 011
case 6: // 012
case 8: // 020
case 9: // 021
case 18: // 102
case 24: // 120
case 33: // 201
case 34: // 202
case 36: // 210
case 37: // 211
case 38: // 212
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row |= ANY_START(quad);
break;
case 10: // 022
case 16: // 100
case 26: // 122
case 32: // 200
if (BOUNDARY_W(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row = true;
}
break;
case 17: // 101
case 25: // 121
if (BOUNDARY_S(quad)) _cache[quad] |= MASK_START_BOUNDARY_S;
if (BOUNDARY_W(quad)) _cache[quad] |= MASK_START_BOUNDARY_W;
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 20: // 110
case 21: // 111
case 22: // 112
if (BOUNDARY_S(quad))
_cache[quad] |= MASK_START_BOUNDARY_S;
else
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
}
}
else { // !_filled SW corner.
switch ((z_nw << 2) | (z_sw << 1) | z_se) { // config
case 1: // 001
case 3: // 011
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
case 2: // 010
case 6: // 110
if (BOUNDARY_S(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row = true;
}
break;
case 4: // 100
case 5: // 101
if (BOUNDARY_W(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_W;
start_in_row = true;
}
break;
}
}
break;
case MASK_EXISTS_SE_CORNER:
if (_filled) {
switch ((z_ne << 4) | (z_sw << 2) | z_se) { // config
case 1: // 001
case 2: // 002
case 4: // 010
case 5: // 011
case 6: // 012
case 8: // 020
case 9: // 021
case 17: // 101
case 18: // 102
case 20: // 110
case 21: // 111
case 22: // 112
case 24: // 120
case 25: // 121
case 33: // 201
case 34: // 202
case 36: // 210
case 37: // 211
case 38: // 212
case 40: // 220
case 41: // 221
if (BOUNDARY_S(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row = true;
}
break;
case 10: // 022
case 16: // 100
case 26: // 122
case 32: // 200
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
}
}
else { // !_filled SE corner.
switch ((z_ne << 2) | (z_sw << 1) | z_se) { // config
case 1: // 001
case 3: // 011
if (BOUNDARY_E(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_E;
start_in_row = true;
}
break;
case 2: // 010
case 6: // 110
if (BOUNDARY_S(quad)) {
_cache[quad] |= MASK_START_BOUNDARY_S;
start_in_row = true;
}
break;
case 4: // 100
case 5: // 101
_cache[quad] |= MASK_START_CORNER;
start_in_row = true;
break;
}
}
break;
}
z_nw = z_ne;
z_sw = z_se;
} // i-loop.
if (start_in_row)
j_final_start = j;
else if (j > 0)
_cache[chunk_istart + j*_nx] |= MASK_NO_STARTS_IN_ROW;
} // j-loop.
if (j_final_start < jend)
_cache[chunk_istart + (j_final_start+1)*_nx] |= MASK_NO_MORE_STARTS;
}
template <typename Derived>
void BaseContourGenerator<Derived>::interp(
index_t point0, index_t point1, bool is_upper, double*& points) const
{
auto frac = get_interp_fraction(
get_point_z(point0), get_point_z(point1), is_upper ? _upper_level : _lower_level);
assert(frac >= 0.0 && frac <= 1.0 && "Interp fraction out of bounds");
*points++ = get_point_x(point0)*frac + get_point_x(point1)*(1.0 - frac);
*points++ = get_point_y(point0)*frac + get_point_y(point1)*(1.0 - frac);
}
template <typename Derived>
void BaseContourGenerator<Derived>::interp(
index_t point0, double x1, double y1, double z1, bool is_upper, double*& points) const
{
auto frac = get_interp_fraction(
get_point_z(point0), z1, is_upper ? _upper_level : _lower_level);
assert(frac >= 0.0 && frac <= 1.0 && "Interp fraction out of bounds");
*points++ = get_point_x(point0)*frac + x1*(1.0 - frac);
*points++ = get_point_y(point0)*frac + y1*(1.0 - frac);
}
template <typename Derived>
bool BaseContourGenerator<Derived>::is_filled() const
{
return _filled;
}
template <typename Derived>
bool BaseContourGenerator<Derived>::is_point_in_chunk(index_t point, const ChunkLocal& local) const
{
return is_quad_in_bounds(point, local.istart-1, local.iend, local.jstart-1, local.jend);
}
template <typename Derived>
bool BaseContourGenerator<Derived>::is_quad_in_bounds(
index_t quad, index_t istart, index_t iend, index_t jstart, index_t jend) const
{
return (quad % _nx >= istart && quad % _nx <= iend &&
quad / _nx >= jstart && quad / _nx <= jend);
}
template <typename Derived>
bool BaseContourGenerator<Derived>::is_quad_in_chunk(index_t quad, const ChunkLocal& local) const
{
return is_quad_in_bounds(quad, local.istart, local.iend, local.jstart, local.jend);
}
template <typename Derived>
void BaseContourGenerator<Derived>::line(const Location& start_location, ChunkLocal& local)
{
// start_location.on_boundary indicates starts (and therefore also finishes)
assert(is_quad_in_chunk(start_location.quad, local));
Location location = start_location;
count_t point_count = 0;
// finished == true indicates closed line loop.
bool finished = follow_interior(location, start_location, local, point_count);
if (local.pass > 0) {
assert(local.line_offsets.current == local.line_offsets.start + local.line_count);
*local.line_offsets.current++ = local.total_point_count;
}
if (local.pass == 0 && !start_location.on_boundary && !finished)
// An internal start that isn't a line loop is part of a line strip that starts on a
// boundary and will be traced later. Do not count it as a valid start in pass 0 and remove
// the first point or it will be duplicated by the correct boundary-started line later.
point_count--;
else
local.line_count++;
local.total_point_count += point_count;
}
template <typename Derived>
py::sequence BaseContourGenerator<Derived>::lines(double level)
{
_filled = false;
_lower_level = _upper_level = level;
_identify_holes = false;
_output_chunked = !(_line_type == LineType::Separate || _line_type == LineType::SeparateCode);
_direct_points = _output_chunked;
_direct_line_offsets = (_line_type == LineType::ChunkCombinedOffset);
_direct_outer_offsets = false;
_outer_offsets_into_points = false;
_return_list_count = (_line_type == LineType::Separate) ? 1 : 2;
return march_wrapper();
}
template <typename Derived>
void BaseContourGenerator<Derived>::march_chunk(
ChunkLocal& local, std::vector<py::list>& return_lists)
{
for (local.pass = 0; local.pass < 2; ++local.pass) {
bool ignore_holes = (_identify_holes && local.pass == 1);
index_t j_final_start = local.jstart;
for (index_t j = local.jstart; j <= local.jend; ++j) {
index_t quad = local.istart + j*_nx;
if (NO_MORE_STARTS(quad))
break;
if (NO_STARTS_IN_ROW(quad))
continue;
// Want to count number of starts in this row, so store how many starts at start of row.
auto prev_start_count =
(_identify_holes ? local.line_count - local.hole_count : local.line_count);
for (index_t i = local.istart; i <= local.iend; ++i, ++quad) {
if (!ANY_START(quad))
continue;
assert(EXISTS_ANY(quad));
if (_filled) {
if (START_BOUNDARY_S(quad))
closed_line_wrapper(Location(quad, 1, _nx, Z_SW == 2, true), Outer, local);
if (START_BOUNDARY_W(quad))
closed_line_wrapper(Location(quad, -_nx, 1, Z_NW == 2, true), Outer, local);
if (START_CORNER(quad)) {
switch (EXISTS_ANY_CORNER(quad)) {
case MASK_EXISTS_NE_CORNER:
closed_line_wrapper(
Location(quad, -_nx+1, _nx+1, Z_NW == 2, true), Outer, local);
break;
case MASK_EXISTS_NW_CORNER:
closed_line_wrapper(
Location(quad, _nx+1, _nx-1, Z_SW == 2, true), Outer, local);
break;
case MASK_EXISTS_SE_CORNER:
closed_line_wrapper(
Location(quad, -_nx-1, -_nx+1, Z_NE == 2, true), Outer, local);
break;
default:
assert(EXISTS_SW_CORNER(quad));
if (!ignore_holes)
closed_line_wrapper(
Location(quad, _nx-1, -_nx-1, false, true), Hole, local);
break;
}
}
if (START_N(quad))
closed_line_wrapper(Location(quad, -_nx, 1, Z_NW > 0, false), Outer, local);
if (ignore_holes)
continue;
if (START_E(quad))
closed_line_wrapper(Location(quad, -1, -_nx, Z_NE > 0, false), Hole, local);
if (START_HOLE_N(quad))
closed_line_wrapper(Location(quad, -1, -_nx, false, true), Hole, local);
}
else { // !_filled
if (START_BOUNDARY_S(quad))
line(Location(quad, _nx, -1, false, true), local);
if (START_BOUNDARY_W(quad))
line(Location(quad, 1, _nx, false, true), local);
if (START_BOUNDARY_E(quad))
line(Location(quad, -1, -_nx, false, true), local);
if (START_BOUNDARY_N(quad))
line(Location(quad, -_nx, 1, false, true), local);
if (START_E(quad))
line(Location(quad, -1, -_nx, false, false), local);
if (START_N(quad))
line(Location(quad, -_nx, 1, false, false), local);
if (START_CORNER(quad)) {
index_t forward, left;
switch (EXISTS_ANY_CORNER(quad)) {
case MASK_EXISTS_NE_CORNER:
forward = _nx+1;
left = _nx-1;
break;
case MASK_EXISTS_NW_CORNER:
forward = _nx-1;
left = -_nx-1;
break;
case MASK_EXISTS_SE_CORNER:
forward = -_nx+1;
left = _nx+1;
break;
default:
assert(EXISTS_SW_CORNER(quad));
forward = -_nx-1;
left = -_nx+1;
break;
}
line(Location(quad, forward, left, false, true), local);
}
} // _filled
} // i
// Number of starts at end of row.
auto start_count =
(_identify_holes ? local.line_count - local.hole_count : local.line_count);
if (start_count > prev_start_count)
j_final_start = j;
else
_cache[local.istart + j*_nx] |= MASK_NO_STARTS_IN_ROW;
} // j
if (j_final_start < local.jend)
_cache[local.istart + (j_final_start+1)*_nx] |= MASK_NO_MORE_STARTS;
if (local.pass == 0) {
if (local.total_point_count == 0) {
local.points.clear();
local.line_offsets.clear();
local.outer_offsets.clear();
break; // Do not need pass 1.
}
// Create arrays for points, line_offsets and optionally outer_offsets. Arrays may be
// either C++ vectors or Python NumPy arrays. Want to group creation of the latter as
// threaded code needs to lock creation of these to limit access to a single thread.
if (_direct_points || _direct_line_offsets || _direct_outer_offsets) {
typename Derived::Lock lock(static_cast<Derived&>(*this));
// Strictly speaking adding the NumPy arrays to return_lists does not need to be
// within the lock.
if (_direct_points) {
return_lists[0][local.chunk] =
local.points.create_python(local.total_point_count, 2);
}
if (_direct_line_offsets) {
return_lists[1][local.chunk] =
local.line_offsets.create_python(local.line_count + 1);
}
if (_direct_outer_offsets) {
return_lists[2][local.chunk] =
local.outer_offsets.create_python(local.line_count - local.hole_count + 1);
}
}
if (!_direct_points)
local.points.create_cpp(2*local.total_point_count);
if (!_direct_line_offsets)
local.line_offsets.create_cpp(local.line_count + 1);
if (!_direct_outer_offsets) {
if (_identify_holes)
local.outer_offsets.create_cpp( local.line_count - local.hole_count + 1);
else
local.outer_offsets.clear();
}
// Reset counts for pass 1.
local.total_point_count = 0;
local.line_count = 0;
local.hole_count = 0;
}
} // pass
// Set final line and outer offsets.
if (local.line_count > 0) {
*local.line_offsets.current++ = local.total_point_count;
if (_identify_holes) {
if (_outer_offsets_into_points)
*local.outer_offsets.current++ = local.total_point_count;
else
*local.outer_offsets.current++ = local.line_count;
}
}
// Throw exception if the two passes returned different number of points, lines, etc.
check_consistent_counts(local);
if (local.total_point_count == 0) {
if (_output_chunked) {
typename Derived::Lock lock(static_cast<Derived&>(*this));
for (auto& list : return_lists)
list[local.chunk] = py::none();
}
}
else if (_filled)
static_cast<Derived*>(this)->export_filled(local, return_lists);
else
static_cast<Derived*>(this)->export_lines(local, return_lists);
}
template <typename Derived>
py::sequence BaseContourGenerator<Derived>::march_wrapper()
{
index_t list_len = _n_chunks;
if ((_filled && (_fill_type == FillType::OuterCode|| _fill_type == FillType::OuterOffset)) ||
(!_filled && (_line_type == LineType::Separate || _line_type == LineType::SeparateCode)))
list_len = 0;
// Prepare lists to return to python.
std::vector<py::list> return_lists;
return_lists.reserve(_return_list_count);
for (decltype(_return_list_count) i = 0; i < _return_list_count; ++i)
return_lists.emplace_back(list_len);
static_cast<Derived*>(this)->march(return_lists);
// Return to python objects.
if (_return_list_count == 1) {
assert(!_filled && _line_type == LineType::Separate);
return return_lists[0];
}
else if (_return_list_count == 2)
return py::make_tuple(return_lists[0], return_lists[1]);
else {
assert(_return_list_count == 3);
return py::make_tuple(return_lists[0], return_lists[1], return_lists[2]);
}
}
template <typename Derived>
void BaseContourGenerator<Derived>::move_to_next_boundary_edge(
index_t& quad, index_t& forward, index_t& left) const
{
// edge == 0 for E edge (facing N), forward = +_nx
// 2 for S edge (facing E), forward = +1
// 4 for W edge (facing S), forward = -_nx
// 6 for N edge (facing W), forward = -1
// 1 for SE edge (NW corner) from SW facing NE, forward = +_nx+1
// 3 for SW edge (NE corner) from NW facing SE, forward = -_nx+1
// 5 for NW edge (SE corner) from NE facing SW, forward = -_nx-1
// 7 for NE edge (SW corner) from SE facing NW, forward = +_nx-1
int edge = 0;
// Need index of quad that is the same as the end point, i.e. quad to SW of end point, as it is
// this point which we need to find the next available boundary of, looking clockwise.
if (forward > 0) {
if (forward == _nx) {
assert(left == -1);
// W edge facing N, no change to quad or edge.
}
else if (left == _nx) {
assert(forward == 1);
quad -= _nx; // S edge facing E.
edge = 2;
}
else if (EXISTS_SW_CORNER(quad)) {
assert(forward == _nx-1 && left == -_nx-1);
quad -= 1;
edge = 7;
}
else {
assert(EXISTS_NW_CORNER(quad) && forward == _nx+1 && _nx-1);
// quad unchanged.
edge = 1;
}
}
else { // forward < 0
if (forward == -_nx) {
assert(left == 1);
quad -= _nx+1; // W edge facing S.
edge = 4;
}
else if (left == -_nx) {
assert(forward == -1);
quad -= 1; // N edge facing W.
edge = 6;
}
else if (EXISTS_NE_CORNER(quad)) {
assert(forward == -_nx+1 && left == _nx+1);
quad -= _nx;
edge = 3;
}
else {
assert(EXISTS_SE_CORNER(quad) && forward == -_nx-1 && left == -_nx+1);
quad -= _nx+1;
edge = 5;
}
}
// If _corner_mask not set, only need to consider odd edge in loop below.
if (!_corner_mask)
++edge;
while (true) {
// Look at possible edges that leave NE point of quad.
// If something is wrong here or in the setup of the boundary flags, can end up with an
// infinite loop!
switch (edge) {
case 0:
// Is there an edge to follow towards SW?
if (EXISTS_SE_CORNER(quad)) { // Equivalent to BOUNDARY_NE.
// quad unchanged.
forward = -_nx-1;
left = -_nx+1;
return;
}
break;
case 1:
// Is there an edge to follow towards W?
if (BOUNDARY_N(quad)) {
// quad unchanged.
forward = -1;
left = -_nx;
return;
}
break;
case 2:
// Is there an edge to follow towards NW?
if (EXISTS_SW_CORNER(quad+_nx)) { // Equivalent to BOUNDARY_NE.
quad += _nx;
forward = _nx-1;
left = -_nx-1;
return;
}
break;
case 3:
// Is there an edge to follow towards N?
if (BOUNDARY_E(quad+_nx)) { // Really a BOUNDARY_W check.
quad += _nx;
forward = _nx;
left = -1;
return;
}
break;
case 4:
// Is there an edge to follow towards NE?
if (EXISTS_NW_CORNER(quad+_nx+1)) { // Equivalent to BOUNDARY_SE.
quad += _nx+1;
forward = _nx+1;
left = _nx-1;
return;
}
break;
case 5:
// Is there an edge to follow towards E?
if (BOUNDARY_N(quad+1)) { // Really a BOUNDARY_S check
quad += _nx+1;
forward = 1;
left = _nx;
return;
}
break;
case 6:
// Is there an edge to follow towards SE?
if (EXISTS_NE_CORNER(quad+1)) { // Equivalent to BOUNDARY_SW.
quad += 1;
forward = -_nx+1;
left = _nx+1;
return;
}
break;
case 7:
// Is there an edge to follow towards S?
if (BOUNDARY_E(quad)) {
quad += 1;
forward = -_nx;
left = 1;
return;
}
break;
default:
assert(0 && "Invalid edge index");
break;
}
edge = _corner_mask ? (edge + 1) % 8 : (edge + 2) % 8;
}
}
template <typename Derived>
void BaseContourGenerator<Derived>::set_look_flags(index_t hole_start_quad)
{
assert(_identify_holes);
// The only possible hole starts are START_E (from E to N), START_HOLE_N (on N boundary, E to W)
// and START_CORNER for SW corner (on boundary, SE to NW).
assert(hole_start_quad >= 0 && hole_start_quad < _n);
assert(EXISTS_N_EDGE(hole_start_quad) || EXISTS_SW_CORNER(hole_start_quad));
assert(!LOOK_S(hole_start_quad) && "Look S already set");
_cache[hole_start_quad] |= MASK_LOOK_S;
// Walk S until find place to mark corresponding look N.
auto quad = hole_start_quad;
while (true) {
assert(quad >= 0 && quad < _n);
assert(EXISTS_N_EDGE(quad) || (quad == hole_start_quad && EXISTS_SW_CORNER(quad)));
if (BOUNDARY_S(quad) || EXISTS_NE_CORNER(quad) || EXISTS_NW_CORNER(quad) || Z_SE != 1) {
assert(!LOOK_N(quad) && "Look N already set");
_cache[quad] |= MASK_LOOK_N;
break;
}
quad -= _nx;
}
}
template <typename Derived>
bool BaseContourGenerator<Derived>::supports_fill_type(FillType fill_type)
{
switch (fill_type) {
case FillType::OuterCode:
case FillType::OuterOffset:
case FillType::ChunkCombinedCode:
case FillType::ChunkCombinedOffset:
case FillType::ChunkCombinedCodeOffset:
case FillType::ChunkCombinedOffsetOffset:
return true;
default:
return false;
}
}
template <typename Derived>
bool BaseContourGenerator<Derived>::supports_line_type(LineType line_type)
{
switch (line_type) {
case LineType::Separate:
case LineType::SeparateCode:
case LineType::ChunkCombinedCode:
case LineType::ChunkCombinedOffset:
return true;
default:
return false;
}
}
template <typename Derived>
void BaseContourGenerator<Derived>::write_cache() const
{
std::cout << "---------- Cache ----------" << std::endl;
index_t ny = _n / _nx;
for (index_t j = ny-1; j >= 0; --j) {
std::cout << "j=" << j << " ";
for (index_t i = 0; i < _nx; ++i) {
index_t quad = i + j*_nx;
write_cache_quad(quad);
}
std::cout << std::endl;
}
std::cout << " ";
for (index_t i = 0; i < _nx; ++i)
std::cout << "i=" << i << " ";
std::cout << std::endl;
std::cout << "---------------------------" << std::endl;
}
template <typename Derived>
void BaseContourGenerator<Derived>::write_cache_quad(index_t quad) const
{
assert(quad >= 0 && quad < _n && "quad index out of bounds");
std::cout << (NO_MORE_STARTS(quad) ? 'x' :
(NO_STARTS_IN_ROW(quad) ? 'i' : '.'));
std::cout << (EXISTS_QUAD(quad) ? "Q_" :
(EXISTS_NW_CORNER(quad) ? "NW" :
(EXISTS_NE_CORNER(quad) ? "NE" :
(EXISTS_SW_CORNER(quad) ? "SW" :
(EXISTS_SE_CORNER(quad) ? "SE" : "..")))));
std::cout << (BOUNDARY_N(quad) && BOUNDARY_E(quad) ? 'b' : (
BOUNDARY_N(quad) ? 'n' : (BOUNDARY_E(quad) ? 'e' : '.')));
std::cout << Z_LEVEL(quad);
std::cout << ((_cache[quad] & MASK_MIDDLE) >> 2);
std::cout << (START_BOUNDARY_S(quad) ? 's' : '.');
std::cout << (START_BOUNDARY_W(quad) ? 'w' : '.');
if (!_filled) {
std::cout << (START_BOUNDARY_E(quad) ? 'e' : '.');
std::cout << (START_BOUNDARY_N(quad) ? 'n' : '.');
}
std::cout << (START_E(quad) ? 'E' : '.');
std::cout << (START_N(quad) ? 'N' : '.');
if (_filled)
std::cout << (START_HOLE_N(quad) ? 'h' : '.');
std::cout << (START_CORNER(quad) ? 'c' : '.');
if (_filled)
std::cout << (LOOK_N(quad) && LOOK_S(quad) ? 'B' :
(LOOK_N(quad) ? '^' : (LOOK_S(quad) ? 'v' : '.')));
std::cout << ' ';
}
template <typename Derived>
typename BaseContourGenerator<Derived>::ZLevel BaseContourGenerator<Derived>::z_to_zlevel(
double z_value) const
{
return (_filled && z_value > _upper_level) ? 2 : (z_value > _lower_level ? 1 : 0);
}
} // namespace contourpy
#endif // CONTOURPY_BASE_IMPL_H
|