1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
import logging
import re
import pytz
from io import IOBase
from typing import Any, Tuple, Dict, Sequence, Optional, Union, Generator
from datetime import tzinfo
from pytz.exceptions import UnknownTimeZoneError
from clickhouse_connect.driver import tzutil
from clickhouse_connect.driver.binding import bind_query
from clickhouse_connect.driver.common import dict_copy, empty_gen, StreamContext
from clickhouse_connect.driver.external import ExternalData
from clickhouse_connect.driver.types import Matrix, Closable
from clickhouse_connect.driver.exceptions import StreamClosedError, ProgrammingError
from clickhouse_connect.driver.options import check_arrow, pd_extended_dtypes
from clickhouse_connect.driver.context import BaseQueryContext
logger = logging.getLogger(__name__)
commands = 'CREATE|ALTER|SYSTEM|GRANT|REVOKE|CHECK|DETACH|ATTACH|DROP|DELETE|KILL|' + \
'OPTIMIZE|SET|RENAME|TRUNCATE|USE'
limit_re = re.compile(r'\s+LIMIT($|\s)', re.IGNORECASE)
select_re = re.compile(r'(^|\s)SELECT\s', re.IGNORECASE)
insert_re = re.compile(r'(^|\s)INSERT\s*INTO', re.IGNORECASE)
command_re = re.compile(r'(^\s*)(' + commands + r')\s', re.IGNORECASE)
# pylint: disable=too-many-instance-attributes
class QueryContext(BaseQueryContext):
"""
Argument/parameter object for queries. This context is used to set thread/query specific formats
"""
# pylint: disable=duplicate-code,too-many-arguments,too-many-positional-arguments,too-many-locals
def __init__(self,
query: Union[str, bytes] = '',
parameters: Optional[Dict[str, Any]] = None,
settings: Optional[Dict[str, Any]] = None,
query_formats: Optional[Dict[str, str]] = None,
column_formats: Optional[Dict[str, Union[str, Dict[str, str]]]] = None,
encoding: Optional[str] = None,
server_tz: tzinfo = pytz.UTC,
use_none: Optional[bool] = None,
column_oriented: Optional[bool] = None,
use_numpy: Optional[bool] = None,
max_str_len: Optional[int] = 0,
query_tz: Optional[Union[str, tzinfo]] = None,
column_tzs: Optional[Dict[str, Union[str, tzinfo]]] = None,
use_extended_dtypes: Optional[bool] = None,
as_pandas: bool = False,
streaming: bool = False,
apply_server_tz: bool = False,
external_data: Optional[ExternalData] = None):
"""
Initializes various configuration settings for the query context
:param query: Query string with Python style format value replacements
:param parameters: Optional dictionary of substitution values
:param settings: Optional ClickHouse settings for the query
:param query_formats: Optional dictionary of query formats with the key of a ClickHouse type name
(with * wildcards) and a value of valid query formats for those types.
The value 'encoding' can be sent to change the expected encoding for this query, with a value of
the desired encoding such as `latin-1`
:param column_formats: Optional dictionary of column specific formats. The key is the column name,
The value is either the format for the data column (such as 'string' for a UUID column) or a
second level "format" dictionary of a ClickHouse type name and a value of query formats. This
secondary dictionary can be used for nested column types such as Tuples or Maps
:param encoding: Optional string encoding for this query, such as 'latin-1'
:param column_formats: Optional dictionary
:param use_none: Use a Python None for ClickHouse NULL values in nullable columns. Otherwise the default
value of the column (such as 0 for numbers) will be returned in the result_set
:param max_str_len Limit returned ClickHouse String values to this length, which allows a Numpy
structured array even with ClickHouse variable length String columns. If 0, Numpy arrays for
String columns will always be object arrays
:param query_tz Either a string or a pytz tzinfo object. (Strings will be converted to tzinfo objects).
Values for any DateTime or DateTime64 column in the query will be converted to Python datetime.datetime
objects with the selected timezone
:param column_tzs A dictionary of column names to tzinfo objects (or strings that will be converted to
tzinfo objects). The timezone will be applied to datetime objects returned in the query
"""
super().__init__(settings,
query_formats,
column_formats,
encoding,
use_extended_dtypes if use_extended_dtypes is not None else False,
use_numpy if use_numpy is not None else False)
self.query = query
self.parameters = parameters or {}
self.use_none = True if use_none is None else use_none
self.column_oriented = False if column_oriented is None else column_oriented
self.use_numpy = use_numpy
self.max_str_len = 0 if max_str_len is None else max_str_len
self.server_tz = server_tz
self.apply_server_tz = apply_server_tz
self.external_data = external_data
if isinstance(query_tz, str):
try:
query_tz = pytz.timezone(query_tz)
except UnknownTimeZoneError as ex:
raise ProgrammingError(f'query_tz {query_tz} is not recognized') from ex
self.query_tz = query_tz
if column_tzs is not None:
for col_name, timezone in column_tzs.items():
if isinstance(timezone, str):
try:
timezone = pytz.timezone(timezone)
column_tzs[col_name] = timezone
except UnknownTimeZoneError as ex:
raise ProgrammingError(f'column_tz {timezone} is not recognized') from ex
self.column_tzs = column_tzs
self.column_tz = None
self.response_tz = None
self.block_info = False
self.as_pandas = as_pandas
self.use_pandas_na = as_pandas and pd_extended_dtypes
self.streaming = streaming
self._update_query()
@property
def is_select(self) -> bool:
return select_re.search(self.uncommented_query) is not None
@property
def has_limit(self) -> bool:
return limit_re.search(self.uncommented_query) is not None
@property
def is_insert(self) -> bool:
return insert_re.search(self.uncommented_query) is not None
@property
def is_command(self) -> bool:
return command_re.search(self.uncommented_query) is not None
def set_parameters(self, parameters: Dict[str, Any]):
self.parameters = parameters
self._update_query()
def set_parameter(self, key: str, value: Any):
if not self.parameters:
self.parameters = {}
self.parameters[key] = value
self._update_query()
def set_response_tz(self, response_tz: tzinfo):
self.response_tz = response_tz
def start_column(self, name: str):
super().start_column(name)
if self.column_tzs and name in self.column_tzs:
self.column_tz = self.column_tzs[name]
else:
self.column_tz = None
def active_tz(self, datatype_tz: Optional[tzinfo]):
if self.column_tz:
active_tz = self.column_tz
elif datatype_tz:
active_tz = datatype_tz
elif self.query_tz:
active_tz = self.query_tz
elif self.response_tz:
active_tz = self.response_tz
elif self.apply_server_tz:
active_tz = self.server_tz
else:
active_tz = tzutil.local_tz
if active_tz == pytz.UTC:
return None
return active_tz
# pylint disable=too-many-positional-arguments
def updated_copy(self,
query: Optional[Union[str, bytes]] = None,
parameters: Optional[Dict[str, Any]] = None,
settings: Optional[Dict[str, Any]] = None,
query_formats: Optional[Dict[str, str]] = None,
column_formats: Optional[Dict[str, Union[str, Dict[str, str]]]] = None,
encoding: Optional[str] = None,
server_tz: Optional[tzinfo] = None,
use_none: Optional[bool] = None,
column_oriented: Optional[bool] = None,
use_numpy: Optional[bool] = None,
max_str_len: Optional[int] = None,
query_tz: Optional[Union[str, tzinfo]] = None,
column_tzs: Optional[Dict[str, Union[str, tzinfo]]] = None,
use_extended_dtypes: Optional[bool] = None,
as_pandas: bool = False,
streaming: bool = False,
external_data: Optional[ExternalData] = None) -> 'QueryContext':
"""
Creates Query context copy with parameters overridden/updated as appropriate.
"""
return QueryContext(query or self.query,
dict_copy(self.parameters, parameters),
dict_copy(self.settings, settings),
dict_copy(self.query_formats, query_formats),
dict_copy(self.column_formats, column_formats),
encoding if encoding else self.encoding,
server_tz if server_tz else self.server_tz,
self.use_none if use_none is None else use_none,
self.column_oriented if column_oriented is None else column_oriented,
self.use_numpy if use_numpy is None else use_numpy,
self.max_str_len if max_str_len is None else max_str_len,
self.query_tz if query_tz is None else query_tz,
self.column_tzs if column_tzs is None else column_tzs,
self.use_extended_dtypes if use_extended_dtypes is None else use_extended_dtypes,
as_pandas,
streaming,
self.apply_server_tz,
self.external_data if external_data is None else external_data)
def _update_query(self):
self.final_query, self.bind_params = bind_query(self.query, self.parameters, self.server_tz)
if isinstance(self.final_query, bytes):
# If we've embedded binary data in the query, all bets are off, and we check the original query for comments
self.uncommented_query = remove_sql_comments(self.query)
else:
self.uncommented_query = remove_sql_comments(self.final_query)
class QueryResult(Closable):
"""
Wrapper class for query return values and metadata
"""
# pylint: disable=too-many-arguments
def __init__(self,
result_set: Matrix = None,
block_gen: Generator[Matrix, None, None] = None,
column_names: Tuple = (),
column_types: Tuple = (),
column_oriented: bool = False,
source: Closable = None,
query_id: str = None,
summary: Dict[str, Any] = None):
self._result_rows = result_set
self._result_columns = None
self._block_gen = block_gen or empty_gen()
self._in_context = False
self._query_id = query_id
self.column_names = column_names
self.column_types = column_types
self.column_oriented = column_oriented
self.source = source
self.summary = {} if summary is None else summary
@property
def result_set(self) -> Matrix:
if self.column_oriented:
return self.result_columns
return self.result_rows
@property
def result_columns(self) -> Matrix:
if self._result_columns is None:
result = [[] for _ in range(len(self.column_names))]
with self.column_block_stream as stream:
for block in stream:
for base, added in zip(result, block):
base.extend(added)
self._result_columns = result
return self._result_columns
@property
def result_rows(self) -> Matrix:
if self._result_rows is None:
result = []
with self.row_block_stream as stream:
for block in stream:
result.extend(block)
self._result_rows = result
return self._result_rows
@property
def query_id(self) -> str:
query_id = self.summary.get('query_id')
if query_id:
return query_id
return self._query_id
def _column_block_stream(self):
if self._block_gen is None:
raise StreamClosedError
block_stream = self._block_gen
self._block_gen = None
return block_stream
def _row_block_stream(self):
for block in self._column_block_stream():
yield list(zip(*block))
@property
def column_block_stream(self) -> StreamContext:
return StreamContext(self, self._column_block_stream())
@property
def row_block_stream(self):
return StreamContext(self, self._row_block_stream())
@property
def rows_stream(self) -> StreamContext:
def stream():
for block in self._row_block_stream():
yield from block
return StreamContext(self, stream())
def named_results(self) -> Generator[dict, None, None]:
for row in zip(*self.result_set) if self.column_oriented else self.result_set:
yield dict(zip(self.column_names, row))
@property
def row_count(self) -> int:
if self.column_oriented:
return 0 if len(self.result_set) == 0 else len(self.result_set[0])
return len(self.result_set)
@property
def first_item(self):
if self.column_oriented:
return {name: col[0] for name, col in zip(self.column_names, self.result_set)}
return dict(zip(self.column_names, self.result_set[0]))
@property
def first_row(self):
if self.column_oriented:
return [col[0] for col in self.result_set]
return self.result_set[0]
def close(self):
if self.source:
self.source.close()
self.source = None
if self._block_gen is not None:
self._block_gen.close()
self._block_gen = None
comment_re = re.compile(r"(\".*?\"|\'.*?\')|(/\*.*?\*/|(--\s)[^\n]*$)", re.MULTILINE | re.DOTALL)
def remove_sql_comments(sql: str) -> str:
"""
Remove SQL comments. This is useful to determine the type of SQL query, such as SELECT or INSERT, but we
don't fully trust it to correctly ignore weird quoted strings, and other edge cases, so we always pass the
original SQL to ClickHouse (which uses a full-fledged AST/ token parser)
:param sql: SQL query
:return: SQL Query without SQL comments
"""
def replacer(match):
# if the 2nd group (capturing comments) is not None, it means we have captured a
# non-quoted, actual comment string, so return nothing to remove the comment
if match.group(2):
return ''
# Otherwise we've actually captured a quoted string, so return it
return match.group(1)
return comment_re.sub(replacer, sql)
def to_arrow(content: bytes):
pyarrow = check_arrow()
reader = pyarrow.ipc.RecordBatchFileReader(content)
return reader.read_all()
def to_arrow_batches(buffer: IOBase) -> StreamContext:
pyarrow = check_arrow()
reader = pyarrow.ipc.open_stream(buffer)
return StreamContext(buffer, reader)
def arrow_buffer(table, compression: Optional[str] = None) -> Tuple[Sequence[str], bytes]:
pyarrow = check_arrow()
options = None
if compression in ('zstd', 'lz4'):
options = pyarrow.ipc.IpcWriteOptions(compression=pyarrow.Codec(compression=compression))
sink = pyarrow.BufferOutputStream()
with pyarrow.RecordBatchFileWriter(sink, table.schema, options=options) as writer:
writer.write(table)
return table.schema.names, sink.getvalue()
|