1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
<h1 align="center">Charset Detection, for Everyone π</h1>
<p align="center">
<sup>The Real First Universal Charset Detector</sup><br>
<a href="https://pypi.org/project/charset-normalizer">
<img src="https://img.shields.io/pypi/pyversions/charset_normalizer.svg?orange=blue" />
</a>
<a href="https://pepy.tech/project/charset-normalizer/">
<img alt="Download Count Total" src="https://pepy.tech/badge/charset-normalizer/month" />
</a>
<a href="https://bestpractices.coreinfrastructure.org/projects/7297">
<img src="https://bestpractices.coreinfrastructure.org/projects/7297/badge">
</a>
</p>
> A library that helps you read text from an unknown charset encoding.<br /> Motivated by `chardet`,
> I'm trying to resolve the issue by taking a new approach.
> All IANA character set names for which the Python core library provides codecs are supported.
<p align="center">
>>>>> <a href="https://charsetnormalizerweb.ousret.now.sh" target="_blank">π Try Me Online Now, Then Adopt Me π </a> <<<<<
</p>
This project offers you an alternative to **Universal Charset Encoding Detector**, also known as **Chardet**.
| Feature | [Chardet](https://github.com/chardet/chardet) | Charset Normalizer | [cChardet](https://github.com/PyYoshi/cChardet) |
|--------------------------------------------------|:---------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------------------------------------:|
| `Fast` | β<br> | β
<br> | β
<br> |
| `Universal**` | β | β
| β |
| `Reliable` **without** distinguishable standards | β | β
| β
|
| `Reliable` **with** distinguishable standards | β
| β
| β
|
| `License` | LGPL-2.1<br>_restrictive_ | MIT | MPL-1.1<br>_restrictive_ |
| `Native Python` | β
| β
| β |
| `Detect spoken language` | β | β
| N/A |
| `UnicodeDecodeError Safety` | β | β
| β |
| `Whl Size` | 193.6 kB | 40 kB | ~200 kB |
| `Supported Encoding` | 33 | π [90](https://charset-normalizer.readthedocs.io/en/latest/user/support.html#supported-encodings) | 40 |
<p align="center">
<img src="https://i.imgflip.com/373iay.gif" alt="Reading Normalized Text" width="226"/><img src="https://media.tenor.com/images/c0180f70732a18b4965448d33adba3d0/tenor.gif" alt="Cat Reading Text" width="200"/>
*\*\* : They are clearly using specific code for a specific encoding even if covering most of used one*<br>
Did you got there because of the logs? See [https://charset-normalizer.readthedocs.io/en/latest/user/miscellaneous.html](https://charset-normalizer.readthedocs.io/en/latest/user/miscellaneous.html)
## β‘ Performance
This package offer better performance than its counterpart Chardet. Here are some numbers.
| Package | Accuracy | Mean per file (ms) | File per sec (est) |
|-----------------------------------------------|:--------:|:------------------:|:------------------:|
| [chardet](https://github.com/chardet/chardet) | 86 % | 200 ms | 5 file/sec |
| charset-normalizer | **98 %** | **10 ms** | 100 file/sec |
| Package | 99th percentile | 95th percentile | 50th percentile |
|-----------------------------------------------|:---------------:|:---------------:|:---------------:|
| [chardet](https://github.com/chardet/chardet) | 1200 ms | 287 ms | 23 ms |
| charset-normalizer | 100 ms | 50 ms | 5 ms |
Chardet's performance on larger file (1MB+) are very poor. Expect huge difference on large payload.
> Stats are generated using 400+ files using default parameters. More details on used files, see GHA workflows.
> And yes, these results might change at any time. The dataset can be updated to include more files.
> The actual delays heavily depends on your CPU capabilities. The factors should remain the same.
> Keep in mind that the stats are generous and that Chardet accuracy vs our is measured using Chardet initial capability
> (eg. Supported Encoding) Challenge-them if you want.
## β¨ Installation
Using pip:
```sh
pip install charset-normalizer -U
```
## π Basic Usage
### CLI
This package comes with a CLI.
```
usage: normalizer [-h] [-v] [-a] [-n] [-m] [-r] [-f] [-t THRESHOLD]
file [file ...]
The Real First Universal Charset Detector. Discover originating encoding used
on text file. Normalize text to unicode.
positional arguments:
files File(s) to be analysed
optional arguments:
-h, --help show this help message and exit
-v, --verbose Display complementary information about file if any.
Stdout will contain logs about the detection process.
-a, --with-alternative
Output complementary possibilities if any. Top-level
JSON WILL be a list.
-n, --normalize Permit to normalize input file. If not set, program
does not write anything.
-m, --minimal Only output the charset detected to STDOUT. Disabling
JSON output.
-r, --replace Replace file when trying to normalize it instead of
creating a new one.
-f, --force Replace file without asking if you are sure, use this
flag with caution.
-t THRESHOLD, --threshold THRESHOLD
Define a custom maximum amount of chaos allowed in
decoded content. 0. <= chaos <= 1.
--version Show version information and exit.
```
```bash
normalizer ./data/sample.1.fr.srt
```
π Since version 1.4.0 the CLI produce easily usable stdout result in JSON format.
```json
{
"path": "/home/default/projects/charset_normalizer/data/sample.1.fr.srt",
"encoding": "cp1252",
"encoding_aliases": [
"1252",
"windows_1252"
],
"alternative_encodings": [
"cp1254",
"cp1256",
"cp1258",
"iso8859_14",
"iso8859_15",
"iso8859_16",
"iso8859_3",
"iso8859_9",
"latin_1",
"mbcs"
],
"language": "French",
"alphabets": [
"Basic Latin",
"Latin-1 Supplement"
],
"has_sig_or_bom": false,
"chaos": 0.149,
"coherence": 97.152,
"unicode_path": null,
"is_preferred": true
}
```
### Python
*Just print out normalized text*
```python
from charset_normalizer import from_path
results = from_path('./my_subtitle.srt')
print(str(results.best()))
```
*Upgrade your code without effort*
```python
from charset_normalizer import detect
```
The above code will behave the same as **chardet**. We ensure that we offer the best (reasonable) BC result possible.
See the docs for advanced usage : [readthedocs.io](https://charset-normalizer.readthedocs.io/en/latest/)
## π Why
When I started using Chardet, I noticed that it was not suited to my expectations, and I wanted to propose a
reliable alternative using a completely different method. Also! I never back down on a good challenge!
I **don't care** about the **originating charset** encoding, because **two different tables** can
produce **two identical rendered string.**
What I want is to get readable text, the best I can.
In a way, **I'm brute forcing text decoding.** How cool is that ? π
Don't confuse package **ftfy** with charset-normalizer or chardet. ftfy goal is to repair unicode string whereas charset-normalizer to convert raw file in unknown encoding to unicode.
## π° How
- Discard all charset encoding table that could not fit the binary content.
- Measure noise, or the mess once opened (by chunks) with a corresponding charset encoding.
- Extract matches with the lowest mess detected.
- Additionally, we measure coherence / probe for a language.
**Wait a minute**, what is noise/mess and coherence according to **YOU ?**
*Noise :* I opened hundred of text files, **written by humans**, with the wrong encoding table. **I observed**, then
**I established** some ground rules about **what is obvious** when **it seems like** a mess.
I know that my interpretation of what is noise is probably incomplete, feel free to contribute in order to
improve or rewrite it.
*Coherence :* For each language there is on earth, we have computed ranked letter appearance occurrences (the best we can). So I thought
that intel is worth something here. So I use those records against decoded text to check if I can detect intelligent design.
## β‘ Known limitations
- Language detection is unreliable when text contains two or more languages sharing identical letters. (eg. HTML (english tags) + Turkish content (Sharing Latin characters))
- Every charset detector heavily depends on sufficient content. In common cases, do not bother run detection on very tiny content.
## β οΈ About Python EOLs
**If you are running:**
- Python >=2.7,<3.5: Unsupported
- Python 3.5: charset-normalizer < 2.1
- Python 3.6: charset-normalizer < 3.1
Upgrade your Python interpreter as soon as possible.
## π€ Contributing
Contributions, issues and feature requests are very much welcome.<br />
Feel free to check [issues page](https://github.com/ousret/charset_normalizer/issues) if you want to contribute.
## π License
Copyright Β© [Ahmed TAHRI @Ousret](https://github.com/Ousret).<br />
This project is [MIT](https://github.com/Ousret/charset_normalizer/blob/master/LICENSE) licensed.
Characters frequencies used in this project Β© 2012 [Denny VrandeΔiΔ](http://simia.net/letters/)
## πΌ For Enterprise
Professional support for charset-normalizer is available as part of the [Tidelift
Subscription][1]. Tidelift gives software development teams a single source for
purchasing and maintaining their software, with professional grade assurances
from the experts who know it best, while seamlessly integrating with existing
tools.
[1]: https://tidelift.com/subscription/pkg/pypi-charset-normalizer?utm_source=pypi-charset-normalizer&utm_medium=readme
|