1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
|
# -*- test-case-name: twisted.test.test_amp -*-
# Copyright (c) 2005 Divmod, Inc.
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""
This module implements AMP, the Asynchronous Messaging Protocol.
AMP is a protocol for sending multiple asynchronous request/response pairs over
the same connection. Requests and responses are both collections of key/value
pairs.
AMP is a very simple protocol which is not an application. This module is a
"protocol construction kit" of sorts; it attempts to be the simplest wire-level
implementation of Deferreds. AMP provides the following base-level features:
- Asynchronous request/response handling (hence the name)
- Requests and responses are both key/value pairs
- Binary transfer of all data: all data is length-prefixed. Your
application will never need to worry about quoting.
- Command dispatching (like HTTP Verbs): the protocol is extensible, and
multiple AMP sub-protocols can be grouped together easily.
The protocol implementation also provides a few additional features which are
not part of the core wire protocol, but are nevertheless very useful:
- Tight TLS integration, with an included StartTLS command.
- Handshaking to other protocols: because AMP has well-defined message
boundaries and maintains all incoming and outgoing requests for you, you
can start a connection over AMP and then switch to another protocol.
This makes it ideal for firewall-traversal applications where you may
have only one forwarded port but multiple applications that want to use
it.
Using AMP with Twisted is simple. Each message is a command, with a response.
You begin by defining a command type. Commands specify their input and output
in terms of the types that they expect to see in the request and response
key-value pairs. Here's an example of a command that adds two integers, 'a'
and 'b'::
class Sum(amp.Command):
arguments = [('a', amp.Integer()),
('b', amp.Integer())]
response = [('total', amp.Integer())]
Once you have specified a command, you need to make it part of a protocol, and
define a responder for it. Here's a 'JustSum' protocol that includes a
responder for our 'Sum' command::
class JustSum(amp.AMP):
def sum(self, a, b):
total = a + b
print 'Did a sum: %d + %d = %d' % (a, b, total)
return {'total': total}
Sum.responder(sum)
Later, when you want to actually do a sum, the following expression will return
a L{Deferred} which will fire with the result::
ClientCreator(reactor, amp.AMP).connectTCP(...).addCallback(
lambda p: p.callRemote(Sum, a=13, b=81)).addCallback(
lambda result: result['total'])
Command responders may also return Deferreds, causing the response to be
sent only once the Deferred fires::
class DelayedSum(amp.AMP):
def slowSum(self, a, b):
total = a + b
result = defer.Deferred()
reactor.callLater(3, result.callback, {'total': total})
return result
Sum.responder(slowSum)
This is transparent to the caller.
You can also define the propagation of specific errors in AMP. For example,
for the slightly more complicated case of division, we might have to deal with
division by zero::
class Divide(amp.Command):
arguments = [('numerator', amp.Integer()),
('denominator', amp.Integer())]
response = [('result', amp.Float())]
errors = {ZeroDivisionError: 'ZERO_DIVISION'}
The 'errors' mapping here tells AMP that if a responder to Divide emits a
L{ZeroDivisionError}, then the other side should be informed that an error of
the type 'ZERO_DIVISION' has occurred. Writing a responder which takes
advantage of this is very simple - just raise your exception normally::
class JustDivide(amp.AMP):
def divide(self, numerator, denominator):
result = numerator / denominator
print 'Divided: %d / %d = %d' % (numerator, denominator, total)
return {'result': result}
Divide.responder(divide)
On the client side, the errors mapping will be used to determine what the
'ZERO_DIVISION' error means, and translated into an asynchronous exception,
which can be handled normally as any L{Deferred} would be::
def trapZero(result):
result.trap(ZeroDivisionError)
print "Divided by zero: returning INF"
return 1e1000
ClientCreator(reactor, amp.AMP).connectTCP(...).addCallback(
lambda p: p.callRemote(Divide, numerator=1234,
denominator=0)
).addErrback(trapZero)
For a complete, runnable example of both of these commands, see the files in
the Twisted repository::
doc/core/examples/ampserver.py
doc/core/examples/ampclient.py
On the wire, AMP is a protocol which uses 2-byte lengths to prefix keys and
values, and empty keys to separate messages::
<2-byte length><key><2-byte length><value>
<2-byte length><key><2-byte length><value>
...
<2-byte length><key><2-byte length><value>
<NUL><NUL> # Empty Key == End of Message
And so on. Because it's tedious to refer to lengths and NULs constantly, the
documentation will refer to packets as if they were newline delimited, like
so::
C: _command: sum
C: _ask: ef639e5c892ccb54
C: a: 13
C: b: 81
S: _answer: ef639e5c892ccb54
S: total: 94
Notes:
In general, the order of keys is arbitrary. Specific uses of AMP may impose an
ordering requirement, but unless this is specified explicitly, any ordering may
be generated and any ordering must be accepted. This applies to the
command-related keys I{_command} and I{_ask} as well as any other keys.
Values are limited to the maximum encodable size in a 16-bit length, 65535
bytes.
Keys are limited to the maximum encodable size in a 8-bit length, 255 bytes.
Note that we still use 2-byte lengths to encode keys. This small redundancy
has several features:
- If an implementation becomes confused and starts emitting corrupt data,
or gets keys confused with values, many common errors will be signalled
immediately instead of delivering obviously corrupt packets.
- A single NUL will separate every key, and a double NUL separates
messages. This provides some redundancy when debugging traffic dumps.
- NULs will be present at regular intervals along the protocol, providing
some padding for otherwise braindead C implementations of the protocol,
so that <stdio.h> string functions will see the NUL and stop.
- This makes it possible to run an AMP server on a port also used by a
plain-text protocol, and easily distinguish between non-AMP clients (like
web browsers) which issue non-NUL as the first byte, and AMP clients,
which always issue NUL as the first byte.
@var MAX_VALUE_LENGTH: The maximum length of a message.
@type MAX_VALUE_LENGTH: L{int}
@var ASK: Marker for an Ask packet.
@type ASK: L{bytes}
@var ANSWER: Marker for an Answer packet.
@type ANSWER: L{bytes}
@var COMMAND: Marker for a Command packet.
@type COMMAND: L{bytes}
@var ERROR: Marker for an AMP box of error type.
@type ERROR: L{bytes}
@var ERROR_CODE: Marker for an AMP box containing the code of an error.
@type ERROR_CODE: L{bytes}
@var ERROR_DESCRIPTION: Marker for an AMP box containing the description of the
error.
@type ERROR_DESCRIPTION: L{bytes}
"""
from __future__ import annotations
import datetime
import decimal
import warnings
from functools import partial
from io import BytesIO
from itertools import count
from struct import pack
from types import MethodType
from typing import (
Any,
Callable,
ClassVar,
Dict,
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
)
from zope.interface import Interface, implementer
from twisted.internet.defer import Deferred, fail, maybeDeferred
from twisted.internet.error import ConnectionClosed, ConnectionLost, PeerVerifyError
from twisted.internet.interfaces import IFileDescriptorReceiver
from twisted.internet.main import CONNECTION_LOST
from twisted.internet.protocol import Protocol
from twisted.protocols.basic import Int16StringReceiver, StatefulStringProtocol
from twisted.python import filepath, log
from twisted.python._tzhelper import (
UTC as utc,
FixedOffsetTimeZone as _FixedOffsetTZInfo,
)
from twisted.python.compat import nativeString
from twisted.python.failure import Failure
from twisted.python.reflect import accumulateClassDict
try:
from twisted.internet import ssl as _ssl
if _ssl.supported:
from twisted.internet.ssl import DN, Certificate, CertificateOptions, KeyPair
else:
ssl = None
except ImportError:
ssl = None
else:
ssl = _ssl
__all__ = [
"AMP",
"ANSWER",
"ASK",
"AmpBox",
"AmpError",
"AmpList",
"Argument",
"BadLocalReturn",
"BinaryBoxProtocol",
"Boolean",
"Box",
"BoxDispatcher",
"COMMAND",
"Command",
"CommandLocator",
"Decimal",
"Descriptor",
"ERROR",
"ERROR_CODE",
"ERROR_DESCRIPTION",
"Float",
"IArgumentType",
"IBoxReceiver",
"IBoxSender",
"IResponderLocator",
"IncompatibleVersions",
"Integer",
"InvalidSignature",
"ListOf",
"MAX_KEY_LENGTH",
"MAX_VALUE_LENGTH",
"MalformedAmpBox",
"NoEmptyBoxes",
"OnlyOneTLS",
"PROTOCOL_ERRORS",
"PYTHON_KEYWORDS",
"Path",
"ProtocolSwitchCommand",
"ProtocolSwitched",
"QuitBox",
"RemoteAmpError",
"SimpleStringLocator",
"StartTLS",
"String",
"TooLong",
"UNHANDLED_ERROR_CODE",
"UNKNOWN_ERROR_CODE",
"UnhandledCommand",
"utc",
"Unicode",
"UnknownRemoteError",
"parse",
"parseString",
]
_T_Callable = TypeVar("_T_Callable", bound=Callable[..., object])
ASK = b"_ask"
ANSWER = b"_answer"
COMMAND = b"_command"
ERROR = b"_error"
ERROR_CODE = b"_error_code"
ERROR_DESCRIPTION = b"_error_description"
UNKNOWN_ERROR_CODE = b"UNKNOWN"
UNHANDLED_ERROR_CODE = b"UNHANDLED"
MAX_KEY_LENGTH = 0xFF
MAX_VALUE_LENGTH = 0xFFFF
class IArgumentType(Interface):
"""
An L{IArgumentType} can serialize a Python object into an AMP box and
deserialize information from an AMP box back into a Python object.
@since: 9.0
"""
def fromBox(name, strings, objects, proto):
"""
Given an argument name and an AMP box containing serialized values,
extract one or more Python objects and add them to the C{objects}
dictionary.
@param name: The name associated with this argument. Most commonly
this is the key which can be used to find a serialized value in
C{strings}.
@type name: C{bytes}
@param strings: The AMP box from which to extract one or more
values.
@type strings: C{dict}
@param objects: The output dictionary to populate with the value for
this argument. The key used will be derived from C{name}. It may
differ; in Python 3, for example, the key will be a Unicode/native
string. See L{_wireNameToPythonIdentifier}.
@type objects: C{dict}
@param proto: The protocol instance which received the AMP box being
interpreted. Most likely this is an instance of L{AMP}, but
this is not guaranteed.
@return: L{None}
"""
def toBox(name, strings, objects, proto):
"""
Given an argument name and a dictionary containing structured Python
objects, serialize values into one or more strings and add them to
the C{strings} dictionary.
@param name: The name associated with this argument. Most commonly
this is the key in C{strings} to associate with a C{bytes} giving
the serialized form of that object.
@type name: C{bytes}
@param strings: The AMP box into which to insert one or more strings.
@type strings: C{dict}
@param objects: The input dictionary from which to extract Python
objects to serialize. The key used will be derived from C{name}.
It may differ; in Python 3, for example, the key will be a
Unicode/native string. See L{_wireNameToPythonIdentifier}.
@type objects: C{dict}
@param proto: The protocol instance which will send the AMP box once
it is fully populated. Most likely this is an instance of
L{AMP}, but this is not guaranteed.
@return: L{None}
"""
class IBoxSender(Interface):
"""
A transport which can send L{AmpBox} objects.
"""
def sendBox(box):
"""
Send an L{AmpBox}.
@raise ProtocolSwitched: if the underlying protocol has been
switched.
@raise ConnectionLost: if the underlying connection has already been
lost.
"""
def unhandledError(failure):
"""
An unhandled error occurred in response to a box. Log it
appropriately.
@param failure: a L{Failure} describing the error that occurred.
"""
class IBoxReceiver(Interface):
"""
An application object which can receive L{AmpBox} objects and dispatch them
appropriately.
"""
def startReceivingBoxes(boxSender):
"""
The L{IBoxReceiver.ampBoxReceived} method will start being called;
boxes may be responded to by responding to the given L{IBoxSender}.
@param boxSender: an L{IBoxSender} provider.
"""
def ampBoxReceived(box):
"""
A box was received from the transport; dispatch it appropriately.
"""
def stopReceivingBoxes(reason):
"""
No further boxes will be received on this connection.
@type reason: L{Failure}
"""
class IResponderLocator(Interface):
"""
An application object which can look up appropriate responder methods for
AMP commands.
"""
def locateResponder(name):
"""
Locate a responder method appropriate for the named command.
@param name: the wire-level name (commandName) of the AMP command to be
responded to.
@type name: C{bytes}
@return: a 1-argument callable that takes an L{AmpBox} with argument
values for the given command, and returns an L{AmpBox} containing
argument values for the named command, or a L{Deferred} that fires the
same.
"""
class AmpError(Exception):
"""
Base class of all Amp-related exceptions.
"""
class ProtocolSwitched(Exception):
"""
Connections which have been switched to other protocols can no longer
accept traffic at the AMP level. This is raised when you try to send it.
"""
class OnlyOneTLS(AmpError):
"""
This is an implementation limitation; TLS may only be started once per
connection.
"""
class NoEmptyBoxes(AmpError):
"""
You can't have empty boxes on the connection. This is raised when you
receive or attempt to send one.
"""
class InvalidSignature(AmpError):
"""
You didn't pass all the required arguments.
"""
class TooLong(AmpError):
"""
One of the protocol's length limitations was violated.
@ivar isKey: true if the string being encoded in a key position, false if
it was in a value position.
@ivar isLocal: Was the string encoded locally, or received too long from
the network? (It's only physically possible to encode "too long" values on
the network for keys.)
@ivar value: The string that was too long.
@ivar keyName: If the string being encoded was in a value position, what
key was it being encoded for?
"""
def __init__(self, isKey, isLocal, value, keyName=None):
AmpError.__init__(self)
self.isKey = isKey
self.isLocal = isLocal
self.value = value
self.keyName = keyName
def __repr__(self) -> str:
hdr = self.isKey and "key" or "value"
if not self.isKey:
hdr += " " + repr(self.keyName)
lcl = self.isLocal and "local" or "remote"
return "%s %s too long: %d" % (lcl, hdr, len(self.value))
class BadLocalReturn(AmpError):
"""
A bad value was returned from a local command; we were unable to coerce it.
"""
def __init__(self, message: str, enclosed: Failure) -> None:
AmpError.__init__(self)
self.message = message
self.enclosed = enclosed
def __repr__(self) -> str:
return self.message + " " + self.enclosed.getBriefTraceback()
__str__ = __repr__
class RemoteAmpError(AmpError):
"""
This error indicates that something went wrong on the remote end of the
connection, and the error was serialized and transmitted to you.
"""
def __init__(self, errorCode, description, fatal=False, local=None):
"""Create a remote error with an error code and description.
@param errorCode: the AMP error code of this error.
@type errorCode: C{bytes}
@param description: some text to show to the user.
@type description: C{str}
@param fatal: a boolean, true if this error should terminate the
connection.
@param local: a local Failure, if one exists.
"""
if local:
localwhat = " (local)"
othertb = local.getBriefTraceback()
else:
localwhat = ""
othertb = ""
# Backslash-escape errorCode. Python 3.5 can do this natively
# ("backslashescape") but Python 2.7 and Python 3.4 can't.
errorCodeForMessage = "".join(
f"\\x{c:2x}" if c >= 0x80 else chr(c) for c in errorCode
)
if othertb:
message = "Code<{}>{}: {}\n{}".format(
errorCodeForMessage,
localwhat,
description,
othertb,
)
else:
message = "Code<{}>{}: {}".format(
errorCodeForMessage, localwhat, description
)
super().__init__(message)
self.local = local
self.errorCode = errorCode
self.description = description
self.fatal = fatal
class UnknownRemoteError(RemoteAmpError):
"""
This means that an error whose type we can't identify was raised from the
other side.
"""
def __init__(self, description):
errorCode = UNKNOWN_ERROR_CODE
RemoteAmpError.__init__(self, errorCode, description)
class MalformedAmpBox(AmpError):
"""
This error indicates that the wire-level protocol was malformed.
"""
class UnhandledCommand(AmpError):
"""
A command received via amp could not be dispatched.
"""
class IncompatibleVersions(AmpError):
"""
It was impossible to negotiate a compatible version of the protocol with
the other end of the connection.
"""
PROTOCOL_ERRORS = {UNHANDLED_ERROR_CODE: UnhandledCommand}
class AmpBox(Dict[bytes, bytes]):
"""
I am a packet in the AMP protocol, much like a
regular bytes:bytes dictionary.
"""
# be like a regular dictionary don't magically
# acquire a __dict__...
__slots__: List[str] = []
def __init__(self, *args, **kw):
"""
Initialize a new L{AmpBox}.
In Python 3, keyword arguments MUST be Unicode/native strings whereas
in Python 2 they could be either byte strings or Unicode strings.
However, all keys of an L{AmpBox} MUST be byte strings, or possible to
transparently coerce into byte strings (i.e. Python 2).
In Python 3, therefore, native string keys are coerced to byte strings
by encoding as ASCII. This can result in C{UnicodeEncodeError} being
raised.
@param args: See C{dict}, but all keys and values should be C{bytes}.
On Python 3, native strings may be used as keys provided they
contain only ASCII characters.
@param kw: See C{dict}, but all keys and values should be C{bytes}.
On Python 3, native strings may be used as keys provided they
contain only ASCII characters.
@raise UnicodeEncodeError: When a native string key cannot be coerced
to an ASCII byte string (Python 3 only).
"""
super().__init__(*args, **kw)
nonByteNames = [n for n in self if not isinstance(n, bytes)]
for nonByteName in nonByteNames:
byteName = nonByteName.encode("ascii")
self[byteName] = self.pop(nonByteName)
def copy(self):
"""
Return another AmpBox just like me.
"""
newBox = self.__class__()
newBox.update(self)
return newBox
def serialize(self):
"""
Convert me into a wire-encoded string.
@return: a C{bytes} encoded according to the rules described in the
module docstring.
"""
i = sorted(self.items())
L = []
w = L.append
for k, v in i:
if type(k) == str:
raise TypeError("Unicode key not allowed: %r" % k)
if type(v) == str:
raise TypeError(f"Unicode value for key {k!r} not allowed: {v!r}")
if len(k) > MAX_KEY_LENGTH:
raise TooLong(True, True, k, None)
if len(v) > MAX_VALUE_LENGTH:
raise TooLong(False, True, v, k)
for kv in k, v:
w(pack("!H", len(kv)))
w(kv)
w(pack("!H", 0))
return b"".join(L)
def _sendTo(self, proto):
"""
Serialize and send this box to an Amp instance. By the time it is being
sent, several keys are required. I must have exactly ONE of::
_ask
_answer
_error
If the '_ask' key is set, then the '_command' key must also be
set.
@param proto: an AMP instance.
"""
proto.sendBox(self)
def __repr__(self) -> str:
return f"AmpBox({dict.__repr__(self)})"
# amp.Box => AmpBox
Box = AmpBox
class QuitBox(AmpBox):
"""
I am an AmpBox that, upon being sent, terminates the connection.
"""
__slots__: List[str] = []
def __repr__(self) -> str:
return f"QuitBox(**{super().__repr__()})"
def _sendTo(self, proto):
"""
Immediately call loseConnection after sending.
"""
super()._sendTo(proto)
proto.transport.loseConnection()
class _SwitchBox(AmpBox):
"""
Implementation detail of ProtocolSwitchCommand: I am an AmpBox which sets
up state for the protocol to switch.
"""
# DON'T set __slots__ here; we do have an attribute.
def __init__(self, innerProto, **kw):
"""
Create a _SwitchBox with the protocol to switch to after being sent.
@param innerProto: the protocol instance to switch to.
@type innerProto: an IProtocol provider.
"""
super().__init__(**kw)
self.innerProto = innerProto
def __repr__(self) -> str:
return "_SwitchBox({!r}, **{})".format(
self.innerProto,
dict.__repr__(self),
)
def _sendTo(self, proto):
"""
Send me; I am the last box on the connection. All further traffic will be
over the new protocol.
"""
super()._sendTo(proto)
proto._lockForSwitch()
proto._switchTo(self.innerProto)
@implementer(IBoxReceiver)
class BoxDispatcher:
"""
A L{BoxDispatcher} dispatches '_ask', '_answer', and '_error' L{AmpBox}es,
both incoming and outgoing, to their appropriate destinations.
Outgoing commands are converted into L{Deferred}s and outgoing boxes, and
associated tracking state to fire those L{Deferred} when '_answer' boxes
come back. Incoming '_answer' and '_error' boxes are converted into
callbacks and errbacks on those L{Deferred}s, respectively.
Incoming '_ask' boxes are converted into method calls on a supplied method
locator.
@ivar _outstandingRequests: a dictionary mapping request IDs to
L{Deferred}s which were returned for those requests.
@ivar locator: an object with a L{CommandLocator.locateResponder} method
that locates a responder function that takes a Box and returns a result
(either a Box or a Deferred which fires one).
@ivar boxSender: an object which can send boxes, via the L{_sendBoxCommand}
method, such as an L{AMP} instance.
@type boxSender: L{IBoxSender}
"""
_failAllReason = None
_outstandingRequests = None
_counter = 0
boxSender = None
def __init__(self, locator):
self._outstandingRequests = {}
self.locator = locator
def startReceivingBoxes(self, boxSender):
"""
The given boxSender is going to start calling boxReceived on this
L{BoxDispatcher}.
@param boxSender: The L{IBoxSender} to send command responses to.
"""
self.boxSender = boxSender
def stopReceivingBoxes(self, reason):
"""
No further boxes will be received here. Terminate all currently
outstanding command deferreds with the given reason.
"""
self.failAllOutgoing(reason)
def failAllOutgoing(self, reason):
"""
Call the errback on all outstanding requests awaiting responses.
@param reason: the Failure instance to pass to those errbacks.
"""
self._failAllReason = reason
OR = self._outstandingRequests.items()
self._outstandingRequests = None # we can never send another request
for key, value in OR:
value.errback(reason)
def _nextTag(self):
"""
Generate protocol-local serial numbers for _ask keys.
@return: a string that has not yet been used on this connection.
"""
self._counter += 1
return b"%x" % (self._counter,)
def _sendBoxCommand(self, command, box, requiresAnswer=True):
"""
Send a command across the wire with the given C{amp.Box}.
Mutate the given box to give it any additional keys (_command, _ask)
required for the command and request/response machinery, then send it.
If requiresAnswer is True, returns a C{Deferred} which fires when a
response is received. The C{Deferred} is fired with an C{amp.Box} on
success, or with an C{amp.RemoteAmpError} if an error is received.
If the Deferred fails and the error is not handled by the caller of
this method, the failure will be logged and the connection dropped.
@param command: a C{bytes}, the name of the command to issue.
@param box: an AmpBox with the arguments for the command.
@param requiresAnswer: a boolean. Defaults to True. If True, return a
Deferred which will fire when the other side responds to this command.
If False, return None and do not ask the other side for acknowledgement.
@return: a Deferred which fires the AmpBox that holds the response to
this command, or None, as specified by requiresAnswer.
@raise ProtocolSwitched: if the protocol has been switched.
"""
if self._failAllReason is not None:
if requiresAnswer:
return fail(self._failAllReason)
else:
return None
box[COMMAND] = command
tag = self._nextTag()
if requiresAnswer:
box[ASK] = tag
box._sendTo(self.boxSender)
if requiresAnswer:
result = self._outstandingRequests[tag] = Deferred()
else:
result = None
return result
def callRemoteString(self, command, requiresAnswer=True, **kw):
"""
This is a low-level API, designed only for optimizing simple messages
for which the overhead of parsing is too great.
@param command: a C{bytes} naming the command.
@param kw: arguments to the amp box.
@param requiresAnswer: a boolean. Defaults to True. If True, return a
Deferred which will fire when the other side responds to this command.
If False, return None and do not ask the other side for acknowledgement.
@return: a Deferred which fires the AmpBox that holds the response to
this command, or None, as specified by requiresAnswer.
"""
box = Box(kw)
return self._sendBoxCommand(command, box, requiresAnswer)
def callRemote(self, commandType, *a, **kw):
"""
This is the primary high-level API for sending messages via AMP. Invoke it
with a command and appropriate arguments to send a message to this
connection's peer.
@param commandType: a subclass of Command.
@type commandType: L{type}
@param a: Positional (special) parameters taken by the command.
Positional parameters will typically not be sent over the wire. The
only command included with AMP which uses positional parameters is
L{ProtocolSwitchCommand}, which takes the protocol that will be
switched to as its first argument.
@param kw: Keyword arguments taken by the command. These are the
arguments declared in the command's 'arguments' attribute. They will
be encoded and sent to the peer as arguments for the L{commandType}.
@return: If L{commandType} has a C{requiresAnswer} attribute set to
L{False}, then return L{None}. Otherwise, return a L{Deferred} which
fires with a dictionary of objects representing the result of this
call. Additionally, this L{Deferred} may fail with an exception
representing a connection failure, with L{UnknownRemoteError} if the
other end of the connection fails for an unknown reason, or with any
error specified as a key in L{commandType}'s C{errors} dictionary.
"""
# XXX this takes command subclasses and not command objects on purpose.
# There's really no reason to have all this back-and-forth between
# command objects and the protocol, and the extra object being created
# (the Command instance) is pointless. Command is kind of like
# Interface, and should be more like it.
# In other words, the fact that commandType is instantiated here is an
# implementation detail. Don't rely on it.
try:
co = commandType(*a, **kw)
except BaseException:
return fail()
return co._doCommand(self)
def unhandledError(self, failure):
"""
This is a terminal callback called after application code has had a
chance to quash any errors.
"""
return self.boxSender.unhandledError(failure)
def _answerReceived(self, box):
"""
An AMP box was received that answered a command previously sent with
L{callRemote}.
@param box: an AmpBox with a value for its L{ANSWER} key.
"""
question = self._outstandingRequests.pop(box[ANSWER])
question.addErrback(self.unhandledError)
question.callback(box)
def _errorReceived(self, box):
"""
An AMP box was received that answered a command previously sent with
L{callRemote}, with an error.
@param box: an L{AmpBox} with a value for its L{ERROR}, L{ERROR_CODE},
and L{ERROR_DESCRIPTION} keys.
"""
question = self._outstandingRequests.pop(box[ERROR])
question.addErrback(self.unhandledError)
errorCode = box[ERROR_CODE]
description = box[ERROR_DESCRIPTION]
if isinstance(description, bytes):
description = description.decode("utf-8", "replace")
if errorCode in PROTOCOL_ERRORS:
exc = PROTOCOL_ERRORS[errorCode](errorCode, description)
else:
exc = RemoteAmpError(errorCode, description)
question.errback(Failure(exc))
def _commandReceived(self, box):
"""
@param box: an L{AmpBox} with a value for its L{COMMAND} and L{ASK}
keys.
"""
def formatAnswer(answerBox):
answerBox[ANSWER] = box[ASK]
return answerBox
def formatError(error):
if error.check(RemoteAmpError):
code = error.value.errorCode
desc = error.value.description
if isinstance(desc, str):
desc = desc.encode("utf-8", "replace")
if error.value.fatal:
errorBox = QuitBox()
else:
errorBox = AmpBox()
else:
errorBox = QuitBox()
log.err(error) # here is where server-side logging happens
# if the error isn't handled
code = UNKNOWN_ERROR_CODE
desc = b"Unknown Error"
errorBox[ERROR] = box[ASK]
errorBox[ERROR_DESCRIPTION] = desc
errorBox[ERROR_CODE] = code
return errorBox
deferred = self.dispatchCommand(box)
if ASK in box:
deferred.addCallbacks(formatAnswer, formatError)
deferred.addCallback(self._safeEmit)
deferred.addErrback(self.unhandledError)
def ampBoxReceived(self, box):
"""
An AmpBox was received, representing a command, or an answer to a
previously issued command (either successful or erroneous). Respond to
it according to its contents.
@param box: an AmpBox
@raise NoEmptyBoxes: when a box is received that does not contain an
'_answer', '_command' / '_ask', or '_error' key; i.e. one which does not
fit into the command / response protocol defined by AMP.
"""
if ANSWER in box:
self._answerReceived(box)
elif ERROR in box:
self._errorReceived(box)
elif COMMAND in box:
self._commandReceived(box)
else:
raise NoEmptyBoxes(box)
def _safeEmit(self, aBox):
"""
Emit a box, ignoring L{ProtocolSwitched} and L{ConnectionLost} errors
which cannot be usefully handled.
"""
try:
aBox._sendTo(self.boxSender)
except (ProtocolSwitched, ConnectionLost):
pass
def dispatchCommand(self, box):
"""
A box with a _command key was received.
Dispatch it to a local handler call it.
@param box: an AmpBox to be dispatched.
"""
cmd = box[COMMAND]
responder = self.locator.locateResponder(cmd)
if responder is None:
description = f"Unhandled Command: {cmd!r}"
return fail(
RemoteAmpError(
UNHANDLED_ERROR_CODE,
description,
False,
local=Failure(UnhandledCommand()),
)
)
return maybeDeferred(responder, box)
class _CommandLocatorMeta(type):
"""
This metaclass keeps track of all of the Command.responder-decorated
methods defined since the last CommandLocator subclass was defined. It
assumes (usually correctly, but unfortunately not necessarily so) that
those commands responders were all declared as methods of the class
being defined. Note that this list can be incorrect if users use the
Command.responder decorator outside the context of a CommandLocator
class declaration.
Command responders defined on subclasses are given precedence over
those inherited from a base class.
The Command.responder decorator explicitly cooperates with this
metaclass.
"""
_currentClassCommands: "list[tuple[type[Command], Callable[..., Any]]]" = []
def __new__(cls, name, bases, attrs):
commands = cls._currentClassCommands[:]
cls._currentClassCommands[:] = []
cd = attrs["_commandDispatch"] = {}
subcls = type.__new__(cls, name, bases, attrs)
ancestors = list(subcls.__mro__[1:])
ancestors.reverse()
for ancestor in ancestors:
cd.update(getattr(ancestor, "_commandDispatch", {}))
for commandClass, responderFunc in commands:
cd[commandClass.commandName] = (commandClass, responderFunc)
if bases and (subcls.lookupFunction != CommandLocator.lookupFunction):
def locateResponder(self, name):
warnings.warn(
"Override locateResponder, not lookupFunction.",
category=PendingDeprecationWarning,
stacklevel=2,
)
return self.lookupFunction(name)
subcls.locateResponder = locateResponder
return subcls
@implementer(IResponderLocator)
class CommandLocator(metaclass=_CommandLocatorMeta):
"""
A L{CommandLocator} is a collection of responders to AMP L{Command}s, with
the help of the L{Command.responder} decorator.
"""
def _wrapWithSerialization(self, aCallable, command):
"""
Wrap aCallable with its command's argument de-serialization
and result serialization logic.
@param aCallable: a callable with a 'command' attribute, designed to be
called with keyword arguments.
@param command: the command class whose serialization to use.
@return: a 1-arg callable which, when invoked with an AmpBox, will
deserialize the argument list and invoke appropriate user code for the
callable's command, returning a Deferred which fires with the result or
fails with an error.
"""
def doit(box):
kw = command.parseArguments(box, self)
def checkKnownErrors(error):
key = error.trap(*command.allErrors)
code = command.allErrors[key]
desc = str(error.value)
return Failure(
RemoteAmpError(code, desc, key in command.fatalErrors, local=error)
)
def makeResponseFor(objects):
try:
return command.makeResponse(objects, self)
except BaseException:
# let's helpfully log this.
originalFailure = Failure()
raise BadLocalReturn(
"%r returned %r and %r could not serialize it"
% (aCallable, objects, command),
originalFailure,
)
return (
maybeDeferred(aCallable, **kw)
.addCallback(makeResponseFor)
.addErrback(checkKnownErrors)
)
return doit
def lookupFunction(self, name):
"""
Deprecated synonym for L{CommandLocator.locateResponder}
"""
if self.__class__.lookupFunction != CommandLocator.lookupFunction:
return CommandLocator.locateResponder(self, name)
else:
warnings.warn(
"Call locateResponder, not lookupFunction.",
category=PendingDeprecationWarning,
stacklevel=2,
)
return self.locateResponder(name)
def locateResponder(self, name):
"""
Locate a callable to invoke when executing the named command.
@param name: the normalized name (from the wire) of the command.
@type name: C{bytes}
@return: a 1-argument function that takes a Box and returns a box or a
Deferred which fires a Box, for handling the command identified by the
given name, or None, if no appropriate responder can be found.
"""
# Try to find a high-level method to invoke, and if we can't find one,
# fall back to a low-level one.
cd = self._commandDispatch
if name in cd:
commandClass, responderFunc = cd[name]
responderMethod = MethodType(responderFunc, self)
return self._wrapWithSerialization(responderMethod, commandClass)
@implementer(IResponderLocator)
class SimpleStringLocator:
"""
Implement the L{AMP.locateResponder} method to do simple, string-based
dispatch.
"""
baseDispatchPrefix = b"amp_"
def locateResponder(self, name):
"""
Locate a callable to invoke when executing the named command.
@return: a function with the name C{"amp_" + name} on the same
instance, or None if no such function exists.
This function will then be called with the L{AmpBox} itself as an
argument.
@param name: the normalized name (from the wire) of the command.
@type name: C{bytes}
"""
fName = nativeString(self.baseDispatchPrefix + name.upper())
return getattr(self, fName, None)
PYTHON_KEYWORDS = [
"and",
"del",
"for",
"is",
"raise",
"assert",
"elif",
"from",
"lambda",
"return",
"break",
"else",
"global",
"not",
"try",
"class",
"except",
"if",
"or",
"while",
"continue",
"exec",
"import",
"pass",
"yield",
"def",
"finally",
"in",
"print",
]
def _wireNameToPythonIdentifier(key):
"""
(Private) Normalize an argument name from the wire for use with Python
code. If the return value is going to be a python keyword it will be
capitalized. If it contains any dashes they will be replaced with
underscores.
The rationale behind this method is that AMP should be an inherently
multi-language protocol, so message keys may contain all manner of bizarre
bytes. This is not a complete solution; there are still forms of arguments
that this implementation will be unable to parse. However, Python
identifiers share a huge raft of properties with identifiers from many
other languages, so this is a 'good enough' effort for now. We deal
explicitly with dashes because that is the most likely departure: Lisps
commonly use dashes to separate method names, so protocols initially
implemented in a lisp amp dialect may use dashes in argument or command
names.
@param key: a C{bytes}, looking something like 'foo-bar-baz' or 'from'
@type key: C{bytes}
@return: a native string which is a valid python identifier, looking
something like 'foo_bar_baz' or 'From'.
"""
lkey = nativeString(key.replace(b"-", b"_"))
if lkey in PYTHON_KEYWORDS:
return lkey.title()
return lkey
@implementer(IArgumentType)
class Argument:
"""
Base-class of all objects that take values from Amp packets and convert
them into objects for Python functions.
This implementation of L{IArgumentType} provides several higher-level
hooks for subclasses to override. See L{toString} and L{fromString}
which will be used to define the behavior of L{IArgumentType.toBox} and
L{IArgumentType.fromBox}, respectively.
"""
optional = False
def __init__(self, optional=False):
"""
Create an Argument.
@param optional: a boolean indicating whether this argument can be
omitted in the protocol.
"""
self.optional = optional
def retrieve(self, d, name, proto):
"""
Retrieve the given key from the given dictionary, removing it if found.
@param d: a dictionary.
@param name: a key in I{d}.
@param proto: an instance of an AMP.
@raise KeyError: if I am not optional and no value was found.
@return: d[name].
"""
if self.optional:
value = d.get(name)
if value is not None:
del d[name]
else:
value = d.pop(name)
return value
def fromBox(self, name, strings, objects, proto):
"""
Populate an 'out' dictionary with mapping names to Python values
decoded from an 'in' AmpBox mapping strings to string values.
@param name: the argument name to retrieve
@type name: C{bytes}
@param strings: The AmpBox to read string(s) from, a mapping of
argument names to string values.
@type strings: AmpBox
@param objects: The dictionary to write object(s) to, a mapping of
names to Python objects. Keys will be native strings.
@type objects: dict
@param proto: an AMP instance.
"""
st = self.retrieve(strings, name, proto)
nk = _wireNameToPythonIdentifier(name)
if self.optional and st is None:
objects[nk] = None
else:
objects[nk] = self.fromStringProto(st, proto)
def toBox(self, name, strings, objects, proto):
"""
Populate an 'out' AmpBox with strings encoded from an 'in' dictionary
mapping names to Python values.
@param name: the argument name to retrieve
@type name: C{bytes}
@param strings: The AmpBox to write string(s) to, a mapping of
argument names to string values.
@type strings: AmpBox
@param objects: The dictionary to read object(s) from, a mapping of
names to Python objects. Keys should be native strings.
@type objects: dict
@param proto: the protocol we are converting for.
@type proto: AMP
"""
obj = self.retrieve(objects, _wireNameToPythonIdentifier(name), proto)
if self.optional and obj is None:
# strings[name] = None
pass
else:
strings[name] = self.toStringProto(obj, proto)
def fromStringProto(self, inString, proto):
"""
Convert a string to a Python value.
@param inString: the string to convert.
@type inString: C{bytes}
@param proto: the protocol we are converting for.
@type proto: AMP
@return: a Python object.
"""
return self.fromString(inString)
def toStringProto(self, inObject, proto):
"""
Convert a Python object to a string.
@param inObject: the object to convert.
@param proto: the protocol we are converting for.
@type proto: AMP
"""
return self.toString(inObject)
def fromString(self, inString):
"""
Convert a string to a Python object. Subclasses must implement this.
@param inString: the string to convert.
@type inString: C{bytes}
@return: the decoded value from C{inString}
"""
def toString(self, inObject):
"""
Convert a Python object into a string for passing over the network.
@param inObject: an object of the type that this Argument is intended
to deal with.
@return: the wire encoding of inObject
@rtype: C{bytes}
"""
class Integer(Argument):
"""
Encode any integer values of any size on the wire as the string
representation.
Example: C{123} becomes C{"123"}
"""
fromString = int
def toString(self, inObject):
return b"%d" % (inObject,)
class String(Argument):
"""
Don't do any conversion at all; just pass through 'str'.
"""
def toString(self, inObject):
return inObject
def fromString(self, inString):
return inString
class Float(Argument):
"""
Encode floating-point values on the wire as their repr.
"""
fromString = float
def toString(self, inString):
if not isinstance(inString, float):
raise ValueError(f"Bad float value {inString!r}")
return str(inString).encode("ascii")
class Boolean(Argument):
"""
Encode True or False as "True" or "False" on the wire.
"""
def fromString(self, inString):
if inString == b"True":
return True
elif inString == b"False":
return False
else:
raise TypeError(f"Bad boolean value: {inString!r}")
def toString(self, inObject):
if inObject:
return b"True"
else:
return b"False"
class Unicode(String):
"""
Encode a unicode string on the wire as UTF-8.
"""
def toString(self, inObject):
return String.toString(self, inObject.encode("utf-8"))
def fromString(self, inString):
return String.fromString(self, inString).decode("utf-8")
class Path(Unicode):
"""
Encode and decode L{filepath.FilePath} instances as paths on the wire.
This is really intended for use with subprocess communication tools:
exchanging pathnames on different machines over a network is not generally
meaningful, but neither is it disallowed; you can use this to communicate
about NFS paths, for example.
"""
def fromString(self, inString):
return filepath.FilePath(Unicode.fromString(self, inString))
def toString(self, inObject):
return Unicode.toString(self, inObject.asTextMode().path)
class ListOf(Argument):
"""
Encode and decode lists of instances of a single other argument type.
For example, if you want to pass::
[3, 7, 9, 15]
You can create an argument like this::
ListOf(Integer())
The serialized form of the entire list is subject to the limit imposed by
L{MAX_VALUE_LENGTH}. List elements are represented as 16-bit length
prefixed strings. The argument type passed to the L{ListOf} initializer is
responsible for producing the serialized form of each element.
@ivar elementType: The L{Argument} instance used to encode and decode list
elements (note, not an arbitrary L{IArgumentType} implementation:
arguments must be implemented using only the C{fromString} and
C{toString} methods, not the C{fromBox} and C{toBox} methods).
@param optional: a boolean indicating whether this argument can be
omitted in the protocol.
@since: 10.0
"""
def __init__(self, elementType, optional=False):
self.elementType = elementType
Argument.__init__(self, optional)
def fromString(self, inString):
"""
Convert the serialized form of a list of instances of some type back
into that list.
"""
strings = []
parser = Int16StringReceiver()
parser.stringReceived = strings.append
parser.dataReceived(inString)
elementFromString = self.elementType.fromString
return [elementFromString(string) for string in strings]
def toString(self, inObject):
"""
Serialize the given list of objects to a single string.
"""
strings = []
for obj in inObject:
serialized = self.elementType.toString(obj)
strings.append(pack("!H", len(serialized)))
strings.append(serialized)
return b"".join(strings)
class AmpList(Argument):
"""
Convert a list of dictionaries into a list of AMP boxes on the wire.
For example, if you want to pass::
[{'a': 7, 'b': u'hello'}, {'a': 9, 'b': u'goodbye'}]
You might use an AmpList like this in your arguments or response list::
AmpList([('a', Integer()),
('b', Unicode())])
"""
def __init__(self, subargs, optional=False):
"""
Create an AmpList.
@param subargs: a list of 2-tuples of ('name', argument) describing the
schema of the dictionaries in the sequence of amp boxes.
@type subargs: A C{list} of (C{bytes}, L{Argument}) tuples.
@param optional: a boolean indicating whether this argument can be
omitted in the protocol.
"""
assert all(isinstance(name, bytes) for name, _ in subargs), (
"AmpList should be defined with a list of (name, argument) "
"tuples where `name' is a byte string, got: %r" % (subargs,)
)
self.subargs = subargs
Argument.__init__(self, optional)
def fromStringProto(self, inString, proto):
boxes = parseString(inString)
values = [_stringsToObjects(box, self.subargs, proto) for box in boxes]
return values
def toStringProto(self, inObject, proto):
return b"".join(
[
_objectsToStrings(objects, self.subargs, Box(), proto).serialize()
for objects in inObject
]
)
class Descriptor(Integer):
"""
Encode and decode file descriptors for exchange over a UNIX domain socket.
This argument type requires an AMP connection set up over an
L{IUNIXTransport<twisted.internet.interfaces.IUNIXTransport>} provider (for
example, the kind of connection created by
L{IReactorUNIX.connectUNIX<twisted.internet.interfaces.IReactorUNIX.connectUNIX>}
and L{UNIXClientEndpoint<twisted.internet.endpoints.UNIXClientEndpoint>}).
There is no correspondence between the integer value of the file descriptor
on the sending and receiving sides, therefore an alternate approach is taken
to matching up received descriptors with particular L{Descriptor}
parameters. The argument is encoded to an ordinal (unique per connection)
for inclusion in the AMP command or response box. The descriptor itself is
sent using
L{IUNIXTransport.sendFileDescriptor<twisted.internet.interfaces.IUNIXTransport.sendFileDescriptor>}.
The receiver uses the order in which file descriptors are received and the
ordinal value to come up with the received copy of the descriptor.
"""
def fromStringProto(self, inString, proto):
"""
Take a unique identifier associated with a file descriptor which must
have been received by now and use it to look up that descriptor in a
dictionary where they are kept.
@param inString: The base representation (as a byte string) of an
ordinal indicating which file descriptor corresponds to this usage
of this argument.
@type inString: C{str}
@param proto: The protocol used to receive this descriptor. This
protocol must be connected via a transport providing
L{IUNIXTransport<twisted.internet.interfaces.IUNIXTransport>}.
@type proto: L{BinaryBoxProtocol}
@return: The file descriptor represented by C{inString}.
@rtype: C{int}
"""
return proto._getDescriptor(int(inString))
def toStringProto(self, inObject, proto):
"""
Send C{inObject}, an integer file descriptor, over C{proto}'s connection
and return a unique identifier which will allow the receiver to
associate the file descriptor with this argument.
@param inObject: A file descriptor to duplicate over an AMP connection
as the value for this argument.
@type inObject: C{int}
@param proto: The protocol which will be used to send this descriptor.
This protocol must be connected via a transport providing
L{IUNIXTransport<twisted.internet.interfaces.IUNIXTransport>}.
@return: A byte string which can be used by the receiver to reconstruct
the file descriptor.
@rtype: C{bytes}
"""
identifier = proto._sendFileDescriptor(inObject)
outString = Integer.toStringProto(self, identifier, proto)
return outString
_Self = TypeVar("_Self")
class _CommandMeta(type):
"""
Metaclass hack to establish reverse-mappings for 'errors' and
'fatalErrors' as class vars.
"""
def __new__(
cls: type[_Self], name: str, bases: tuple[type], attrs: dict[str, object]
) -> Type[Command]:
reverseErrors = attrs["reverseErrors"] = {}
er = attrs["allErrors"] = {}
if "commandName" not in attrs:
attrs["commandName"] = name.encode("ascii")
newtype: Type[Command] = type.__new__(cls, name, bases, attrs) # type:ignore
if not isinstance(newtype.commandName, bytes):
raise TypeError(
"Command names must be byte strings, got: {!r}".format(
newtype.commandName
)
)
for bname, _ in newtype.arguments:
if not isinstance(bname, bytes):
raise TypeError(f"Argument names must be byte strings, got: {bname!r}")
for bname, _ in newtype.response:
if not isinstance(bname, bytes):
raise TypeError(f"Response names must be byte strings, got: {bname!r}")
errors: Dict[Type[Exception], bytes] = {}
fatalErrors: Dict[Type[Exception], bytes] = {}
accumulateClassDict(newtype, "errors", errors)
accumulateClassDict(newtype, "fatalErrors", fatalErrors)
if not isinstance(newtype.errors, dict):
newtype.errors = dict(newtype.errors) # type:ignore[unreachable]
if not isinstance(newtype.fatalErrors, dict):
newtype.fatalErrors = dict(newtype.fatalErrors) # type:ignore[unreachable]
for v, k in errors.items():
reverseErrors[k] = v
er[v] = k
for v, k in fatalErrors.items():
reverseErrors[k] = v
er[v] = k
for _, bname in newtype.errors.items():
if not isinstance(bname, bytes):
raise TypeError(f"Error names must be byte strings, got: {bname!r}")
for _, bname in newtype.fatalErrors.items():
if not isinstance(bname, bytes):
raise TypeError(
f"Fatal error names must be byte strings, got: {bname!r}"
)
return newtype
class Command(metaclass=_CommandMeta):
"""
Subclass me to specify an AMP Command.
@cvar arguments: A list of 2-tuples of (name, Argument-subclass-instance),
specifying the names and values of the parameters which are required for
this command.
@cvar response: A list like L{arguments}, but instead used for the return
value.
@cvar errors: A mapping of subclasses of L{Exception} to wire-protocol tags
for errors represented as L{str}s. Responders which raise keys from
this dictionary will have the error translated to the corresponding tag
on the wire.
Invokers which receive Deferreds from invoking this command with
L{BoxDispatcher.callRemote} will potentially receive Failures with keys
from this mapping as their value.
This mapping is inherited; if you declare a command which handles
C{FooError} as 'FOO_ERROR', then subclass it and specify C{BarError} as
'BAR_ERROR', responders to the subclass may raise either C{FooError} or
C{BarError}, and invokers must be able to deal with either of those
exceptions.
@cvar fatalErrors: like 'errors', but errors in this list will always
terminate the connection, despite being of a recognizable error type.
@cvar commandType: The type of Box used to issue commands; useful only for
protocol-modifying behavior like startTLS or protocol switching. Defaults
to a plain vanilla L{Box}.
@cvar responseType: The type of Box used to respond to this command; only
useful for protocol-modifying behavior like startTLS or protocol switching.
Defaults to a plain vanilla L{Box}.
@ivar requiresAnswer: a boolean; defaults to True. Set it to False on your
subclass if you want callRemote to return None. Note: this is a hint only
to the client side of the protocol. The return-type of a command responder
method must always be a dictionary adhering to the contract specified by
L{response}, because clients are always free to request a response if they
want one.
"""
commandName: ClassVar[bytes]
arguments: ClassVar[List[Tuple[bytes, Argument]]] = []
response: ClassVar[List[Tuple[bytes, Argument]]] = []
extra: ClassVar[List[Any]] = []
errors: ClassVar[Dict[Type[Exception], bytes]] = {}
fatalErrors: ClassVar[Dict[Type[Exception], bytes]] = {}
commandType: "ClassVar[Union[Type[Command], Type[Box]]]" = Box
responseType: ClassVar[Type[AmpBox]] = Box
requiresAnswer = True
def __init__(self, **kw):
"""
Create an instance of this command with specified values for its
parameters.
In Python 3, keyword arguments MUST be Unicode/native strings whereas
in Python 2 they could be either byte strings or Unicode strings.
A L{Command}'s arguments are defined in its schema using C{bytes}
names. The values for those arguments are plucked from the keyword
arguments using the name returned from L{_wireNameToPythonIdentifier}.
In other words, keyword arguments should be named using the
Python-side equivalent of the on-wire (C{bytes}) name.
@param kw: a dict containing an appropriate value for each name
specified in the L{arguments} attribute of my class.
@raise InvalidSignature: if you forgot any required arguments.
"""
self.structured = kw
forgotten = []
for name, arg in self.arguments:
pythonName = _wireNameToPythonIdentifier(name)
if pythonName not in self.structured and not arg.optional:
forgotten.append(pythonName)
if forgotten:
raise InvalidSignature(
"forgot {} for {}".format(", ".join(forgotten), self.commandName)
)
forgotten = []
@classmethod
def makeResponse(cls, objects, proto):
"""
Serialize a mapping of arguments using this L{Command}'s
response schema.
@param objects: a dict with keys matching the names specified in
self.response, having values of the types that the Argument objects in
self.response can format.
@param proto: an L{AMP}.
@return: an L{AmpBox}.
"""
try:
responseType = cls.responseType()
except BaseException:
return fail()
return _objectsToStrings(objects, cls.response, responseType, proto)
@classmethod
def makeArguments(cls, objects, proto):
"""
Serialize a mapping of arguments using this L{Command}'s
argument schema.
@param objects: a dict with keys similar to the names specified in
self.arguments, having values of the types that the Argument objects in
self.arguments can parse.
@param proto: an L{AMP}.
@return: An instance of this L{Command}'s C{commandType}.
"""
allowedNames = set()
for argName, ignored in cls.arguments:
allowedNames.add(_wireNameToPythonIdentifier(argName))
for intendedArg in objects:
if intendedArg not in allowedNames:
raise InvalidSignature(f"{intendedArg} is not a valid argument")
return _objectsToStrings(objects, cls.arguments, cls.commandType(), proto)
@classmethod
def parseResponse(cls, box, protocol):
"""
Parse a mapping of serialized arguments using this
L{Command}'s response schema.
@param box: A mapping of response-argument names to the
serialized forms of those arguments.
@param protocol: The L{AMP} protocol.
@return: A mapping of response-argument names to the parsed
forms.
"""
return _stringsToObjects(box, cls.response, protocol)
@classmethod
def parseArguments(cls, box, protocol):
"""
Parse a mapping of serialized arguments using this
L{Command}'s argument schema.
@param box: A mapping of argument names to the seralized forms
of those arguments.
@param protocol: The L{AMP} protocol.
@return: A mapping of argument names to the parsed forms.
"""
return _stringsToObjects(box, cls.arguments, protocol)
@classmethod
def responder(cls, methodfunc: _T_Callable) -> _T_Callable:
"""
Declare a method to be a responder for a particular command.
This is a decorator.
Use like so::
class MyCommand(Command):
arguments = [('a', ...), ('b', ...)]
class MyProto(AMP):
def myFunMethod(self, a, b):
...
MyCommand.responder(myFunMethod)
Notes: Although decorator syntax is not used within Twisted, this
function returns its argument and is therefore safe to use with
decorator syntax.
This is not thread safe. Don't declare AMP subclasses in other
threads. Don't declare responders outside the scope of AMP subclasses;
the behavior is undefined.
@param methodfunc: A function which will later become a method, which
has a keyword signature compatible with this command's L{arguments} list
and returns a dictionary with a set of keys compatible with this
command's L{response} list.
@return: the methodfunc parameter.
"""
CommandLocator._currentClassCommands.append((cls, methodfunc))
return methodfunc
# Our only instance method
def _doCommand(self, proto):
"""
Encode and send this Command to the given protocol.
@param proto: an AMP, representing the connection to send to.
@return: a Deferred which will fire or error appropriately when the
other side responds to the command (or error if the connection is lost
before it is responded to).
"""
def _massageError(error):
error.trap(RemoteAmpError)
rje = error.value
errorType = self.reverseErrors.get(rje.errorCode, UnknownRemoteError)
return Failure(errorType(rje.description))
d = proto._sendBoxCommand(
self.commandName,
self.makeArguments(self.structured, proto),
self.requiresAnswer,
)
if self.requiresAnswer:
d.addCallback(self.parseResponse, proto)
d.addErrback(_massageError)
return d
class _NoCertificate:
"""
This is for peers which don't want to use a local certificate. Used by
AMP because AMP's internal language is all about certificates and this
duck-types in the appropriate place; this API isn't really stable though,
so it's not exposed anywhere public.
For clients, it will use ephemeral DH keys, or whatever the default is for
certificate-less clients in OpenSSL. For servers, it will generate a
temporary self-signed certificate with garbage values in the DN and use
that.
"""
def __init__(self, client):
"""
Create a _NoCertificate which either is or isn't for the client side of
the connection.
@param client: True if we are a client and should truly have no
certificate and be anonymous, False if we are a server and actually
have to generate a temporary certificate.
@type client: bool
"""
self.client = client
def options(self, *authorities):
"""
Behaves like L{twisted.internet.ssl.PrivateCertificate.options}().
"""
if not self.client:
# do some crud with sslverify to generate a temporary self-signed
# certificate. This is SLOOOWWWWW so it is only in the absolute
# worst, most naive case.
# We have to do this because OpenSSL will not let both the server
# and client be anonymous.
sharedDN = DN(CN="TEMPORARY CERTIFICATE")
key = KeyPair.generate()
cr = key.certificateRequest(sharedDN)
sscrd = key.signCertificateRequest(sharedDN, cr, lambda dn: True, 1)
cert = key.newCertificate(sscrd)
return cert.options(*authorities)
options = dict()
if authorities:
options.update(
dict(
verify=True,
requireCertificate=True,
caCerts=[auth.original for auth in authorities],
)
)
occo = CertificateOptions(**options)
return occo
class _TLSBox(AmpBox):
"""
I am an AmpBox that, upon being sent, initiates a TLS connection.
"""
__slots__: List[str] = []
def __init__(self):
if ssl is None:
raise RemoteAmpError(b"TLS_ERROR", "TLS not available")
AmpBox.__init__(self)
@property
def certificate(self):
return self.get(b"tls_localCertificate", _NoCertificate(False))
@property
def verify(self):
return self.get(b"tls_verifyAuthorities", None)
def _sendTo(self, proto):
"""
Send my encoded value to the protocol, then initiate TLS.
"""
ab = AmpBox(self)
for k in [b"tls_localCertificate", b"tls_verifyAuthorities"]:
ab.pop(k, None)
ab._sendTo(proto)
proto._startTLS(self.certificate, self.verify)
class _LocalArgument(String):
"""
Local arguments are never actually relayed across the wire. This is just a
shim so that StartTLS can pretend to have some arguments: if arguments
acquire documentation properties, replace this with something nicer later.
"""
def fromBox(self, name, strings, objects, proto):
pass
class StartTLS(Command):
"""
Use, or subclass, me to implement a command that starts TLS.
Callers of StartTLS may pass several special arguments, which affect the
TLS negotiation:
- tls_localCertificate: This is a
twisted.internet.ssl.PrivateCertificate which will be used to secure
the side of the connection it is returned on.
- tls_verifyAuthorities: This is a list of
twisted.internet.ssl.Certificate objects that will be used as the
certificate authorities to verify our peer's certificate.
Each of those special parameters may also be present as a key in the
response dictionary.
"""
arguments = [
(b"tls_localCertificate", _LocalArgument(optional=True)),
(b"tls_verifyAuthorities", _LocalArgument(optional=True)),
]
response = [
(b"tls_localCertificate", _LocalArgument(optional=True)),
(b"tls_verifyAuthorities", _LocalArgument(optional=True)),
]
responseType = _TLSBox
def __init__(self, *, tls_localCertificate=None, tls_verifyAuthorities=None, **kw):
"""
Create a StartTLS command. (This is private. Use AMP.callRemote.)
@param tls_localCertificate: the PrivateCertificate object to use to
secure the connection. If it's L{None}, or unspecified, an ephemeral DH
key is used instead.
@param tls_verifyAuthorities: a list of Certificate objects which
represent root certificates to verify our peer with.
"""
if ssl is None:
raise RuntimeError("TLS not available.")
self.certificate = (
_NoCertificate(True)
if tls_localCertificate is None
else tls_localCertificate
)
self.authorities = tls_verifyAuthorities
Command.__init__(self, **kw)
def _doCommand(self, proto):
"""
When a StartTLS command is sent, prepare to start TLS, but don't actually
do it; wait for the acknowledgement, then initiate the TLS handshake.
"""
d = Command._doCommand(self, proto)
proto._prepareTLS(self.certificate, self.authorities)
# XXX before we get back to user code we are going to start TLS...
def actuallystart(response):
proto._startTLS(self.certificate, self.authorities)
return response
d.addCallback(actuallystart)
return d
class ProtocolSwitchCommand(Command):
"""
Use this command to switch from something Amp-derived to a different
protocol mid-connection. This can be useful to use amp as the
connection-startup negotiation phase. Since TLS is a different layer
entirely, you can use Amp to negotiate the security parameters of your
connection, then switch to a different protocol, and the connection will
remain secured.
"""
def __init__(self, _protoToSwitchToFactory, **kw):
"""
Create a ProtocolSwitchCommand.
@param _protoToSwitchToFactory: a ProtocolFactory which will generate
the Protocol to switch to.
@param kw: Keyword arguments, encoded and handled normally as
L{Command} would.
"""
self.protoToSwitchToFactory = _protoToSwitchToFactory
super().__init__(**kw)
@classmethod
def makeResponse(cls, innerProto, proto):
return _SwitchBox(innerProto)
def _doCommand(self, proto):
"""
When we emit a ProtocolSwitchCommand, lock the protocol, but don't actually
switch to the new protocol unless an acknowledgement is received. If
an error is received, switch back.
"""
d = super()._doCommand(proto)
proto._lockForSwitch()
def switchNow(ign):
innerProto = self.protoToSwitchToFactory.buildProtocol(
proto.transport.getPeer()
)
proto._switchTo(innerProto, self.protoToSwitchToFactory)
return ign
def handle(ign):
proto._unlockFromSwitch()
self.protoToSwitchToFactory.clientConnectionFailed(
None, Failure(CONNECTION_LOST)
)
return ign
return d.addCallbacks(switchNow, handle)
@implementer(IFileDescriptorReceiver)
class _DescriptorExchanger:
"""
L{_DescriptorExchanger} is a mixin for L{BinaryBoxProtocol} which adds
support for receiving file descriptors, a feature offered by
L{IUNIXTransport<twisted.internet.interfaces.IUNIXTransport>}.
@ivar _descriptors: Temporary storage for all file descriptors received.
Values in this dictionary are the file descriptors (as integers). Keys
in this dictionary are ordinals giving the order in which each
descriptor was received. The ordering information is used to allow
L{Descriptor} to determine which is the correct descriptor for any
particular usage of that argument type.
@type _descriptors: C{dict}
@ivar _sendingDescriptorCounter: A no-argument callable which returns the
ordinals, starting from 0. This is used to construct values for
C{_sendFileDescriptor}.
@ivar _receivingDescriptorCounter: A no-argument callable which returns the
ordinals, starting from 0. This is used to construct values for
C{fileDescriptorReceived}.
"""
def __init__(self):
self._descriptors = {}
self._getDescriptor = self._descriptors.pop
self._sendingDescriptorCounter = partial(next, count())
self._receivingDescriptorCounter = partial(next, count())
def _sendFileDescriptor(self, descriptor):
"""
Assign and return the next ordinal to the given descriptor after sending
the descriptor over this protocol's transport.
"""
self.transport.sendFileDescriptor(descriptor)
return self._sendingDescriptorCounter()
def fileDescriptorReceived(self, descriptor):
"""
Collect received file descriptors to be claimed later by L{Descriptor}.
@param descriptor: The received file descriptor.
@type descriptor: C{int}
"""
self._descriptors[self._receivingDescriptorCounter()] = descriptor
@implementer(IBoxSender)
class BinaryBoxProtocol(
StatefulStringProtocol, Int16StringReceiver, _DescriptorExchanger
):
"""
A protocol for receiving L{AmpBox}es - key/value pairs - via length-prefixed
strings. A box is composed of:
- any number of key-value pairs, described by:
- a 2-byte network-endian packed key length (of which the first
byte must be null, and the second must be non-null: i.e. the
value of the length must be 1-255)
- a key, comprised of that many bytes
- a 2-byte network-endian unsigned value length (up to the maximum
of 65535)
- a value, comprised of that many bytes
- 2 null bytes
In other words, an even number of strings prefixed with packed unsigned
16-bit integers, and then a 0-length string to indicate the end of the box.
This protocol also implements 2 extra private bits of functionality related
to the byte boundaries between messages; it can start TLS between two given
boxes or switch to an entirely different protocol. However, due to some
tricky elements of the implementation, the public interface to this
functionality is L{ProtocolSwitchCommand} and L{StartTLS}.
@ivar _keyLengthLimitExceeded: A flag which is only true when the
connection is being closed because a key length prefix which was longer
than allowed by the protocol was received.
@ivar boxReceiver: an L{IBoxReceiver} provider, whose
L{IBoxReceiver.ampBoxReceived} method will be invoked for each
L{AmpBox} that is received.
"""
_justStartedTLS = False
_startingTLSBuffer = None
_locked = False
_currentKey = None
_currentBox = None
_keyLengthLimitExceeded = False
hostCertificate = None
noPeerCertificate = False # for tests
innerProtocol: Optional[Protocol] = None
innerProtocolClientFactory = None
def __init__(self, boxReceiver):
_DescriptorExchanger.__init__(self)
self.boxReceiver = boxReceiver
def _switchTo(self, newProto, clientFactory=None):
"""
Switch this BinaryBoxProtocol's transport to a new protocol. You need
to do this 'simultaneously' on both ends of a connection; the easiest
way to do this is to use a subclass of ProtocolSwitchCommand.
@param newProto: the new protocol instance to switch to.
@param clientFactory: the ClientFactory to send the
L{twisted.internet.protocol.ClientFactory.clientConnectionLost}
notification to.
"""
# All the data that Int16Receiver has not yet dealt with belongs to our
# new protocol: luckily it's keeping that in a handy (although
# ostensibly internal) variable for us:
newProtoData = self.recvd
# We're quite possibly in the middle of a 'dataReceived' loop in
# Int16StringReceiver: let's make sure that the next iteration, the
# loop will break and not attempt to look at something that isn't a
# length prefix.
self.recvd = ""
# Finally, do the actual work of setting up the protocol and delivering
# its first chunk of data, if one is available.
self.innerProtocol = newProto
self.innerProtocolClientFactory = clientFactory
newProto.makeConnection(self.transport)
if newProtoData:
newProto.dataReceived(newProtoData)
def sendBox(self, box):
"""
Send a amp.Box to my peer.
Note: transport.write is never called outside of this method.
@param box: an AmpBox.
@raise ProtocolSwitched: if the protocol has previously been switched.
@raise ConnectionLost: if the connection has previously been lost.
"""
if self._locked:
raise ProtocolSwitched(
"This connection has switched: no AMP traffic allowed."
)
if self.transport is None:
raise ConnectionLost()
if self._startingTLSBuffer is not None:
self._startingTLSBuffer.append(box)
else:
self.transport.write(box.serialize())
def makeConnection(self, transport):
"""
Notify L{boxReceiver} that it is about to receive boxes from this
protocol by invoking L{IBoxReceiver.startReceivingBoxes}.
"""
self.transport = transport
self.boxReceiver.startReceivingBoxes(self)
self.connectionMade()
def dataReceived(self, data):
"""
Either parse incoming data as L{AmpBox}es or relay it to our nested
protocol.
"""
if self._justStartedTLS:
self._justStartedTLS = False
# If we already have an inner protocol, then we don't deliver data to
# the protocol parser any more; we just hand it off.
if self.innerProtocol is not None:
self.innerProtocol.dataReceived(data)
return
return Int16StringReceiver.dataReceived(self, data)
def connectionLost(self, reason):
"""
The connection was lost; notify any nested protocol.
"""
if self.innerProtocol is not None:
self.innerProtocol.connectionLost(reason)
if self.innerProtocolClientFactory is not None:
self.innerProtocolClientFactory.clientConnectionLost(None, reason)
if self._keyLengthLimitExceeded:
failReason = Failure(TooLong(True, False, None, None))
elif reason.check(ConnectionClosed) and self._justStartedTLS:
# We just started TLS and haven't received any data. This means
# the other connection didn't like our cert (although they may not
# have told us why - later Twisted should make 'reason' into a TLS
# error.)
failReason = PeerVerifyError(
"Peer rejected our certificate for an unknown reason."
)
else:
failReason = reason
self.boxReceiver.stopReceivingBoxes(failReason)
# The longest key allowed
_MAX_KEY_LENGTH = 255
# The longest value allowed (this is somewhat redundant, as longer values
# cannot be encoded - ah well).
_MAX_VALUE_LENGTH = 65535
# The first thing received is a key.
MAX_LENGTH = _MAX_KEY_LENGTH
def proto_init(self, string):
"""
String received in the 'init' state.
"""
self._currentBox = AmpBox()
return self.proto_key(string)
def proto_key(self, string):
"""
String received in the 'key' state. If the key is empty, a complete
box has been received.
"""
if string:
self._currentKey = string
self.MAX_LENGTH = self._MAX_VALUE_LENGTH
return "value"
else:
self.boxReceiver.ampBoxReceived(self._currentBox)
self._currentBox = None
return "init"
def proto_value(self, string):
"""
String received in the 'value' state.
"""
self._currentBox[self._currentKey] = string
self._currentKey = None
self.MAX_LENGTH = self._MAX_KEY_LENGTH
return "key"
def lengthLimitExceeded(self, length):
"""
The key length limit was exceeded. Disconnect the transport and make
sure a meaningful exception is reported.
"""
self._keyLengthLimitExceeded = True
self.transport.loseConnection()
def _lockForSwitch(self):
"""
Lock this binary protocol so that no further boxes may be sent. This
is used when sending a request to switch underlying protocols. You
probably want to subclass ProtocolSwitchCommand rather than calling
this directly.
"""
self._locked = True
def _unlockFromSwitch(self):
"""
Unlock this locked binary protocol so that further boxes may be sent
again. This is used after an attempt to switch protocols has failed
for some reason.
"""
if self.innerProtocol is not None:
raise ProtocolSwitched("Protocol already switched. Cannot unlock.")
self._locked = False
def _prepareTLS(self, certificate, verifyAuthorities):
"""
Used by StartTLSCommand to put us into the state where we don't
actually send things that get sent, instead we buffer them. see
L{_sendBoxCommand}.
"""
self._startingTLSBuffer = []
if self.hostCertificate is not None:
raise OnlyOneTLS(
"Previously authenticated connection between %s and %s "
"is trying to re-establish as %s"
% (
self.hostCertificate,
self.peerCertificate,
(certificate, verifyAuthorities),
)
)
def _startTLS(self, certificate, verifyAuthorities):
"""
Used by TLSBox to initiate the SSL handshake.
@param certificate: a L{twisted.internet.ssl.PrivateCertificate} for
use locally.
@param verifyAuthorities: L{twisted.internet.ssl.Certificate} instances
representing certificate authorities which will verify our peer.
"""
self.hostCertificate = certificate
self._justStartedTLS = True
if verifyAuthorities is None:
verifyAuthorities = ()
self.transport.startTLS(certificate.options(*verifyAuthorities))
stlsb = self._startingTLSBuffer
if stlsb is not None:
self._startingTLSBuffer = None
for box in stlsb:
self.sendBox(box)
@property
def peerCertificate(self):
if self.noPeerCertificate:
return None
return Certificate.peerFromTransport(self.transport)
def unhandledError(self, failure):
"""
The buck stops here. This error was completely unhandled, time to
terminate the connection.
"""
log.err(
failure,
"Amp server or network failure unhandled by client application. "
"Dropping connection! To avoid, add errbacks to ALL remote "
"commands!",
)
if self.transport is not None:
self.transport.loseConnection()
def _defaultStartTLSResponder(self):
"""
The default TLS responder doesn't specify any certificate or anything.
From a security perspective, it's little better than a plain-text
connection - but it is still a *bit* better, so it's included for
convenience.
You probably want to override this by providing your own StartTLS.responder.
"""
return {}
StartTLS.responder(_defaultStartTLSResponder)
class AMP(BinaryBoxProtocol, BoxDispatcher, CommandLocator, SimpleStringLocator):
"""
This protocol is an AMP connection. See the module docstring for protocol
details.
"""
_ampInitialized = False
def __init__(self, boxReceiver=None, locator=None):
# For backwards compatibility. When AMP did not separate parsing logic
# (L{BinaryBoxProtocol}), request-response logic (L{BoxDispatcher}) and
# command routing (L{CommandLocator}), it did not have a constructor.
# Now it does, so old subclasses might have defined their own that did
# not upcall. If this flag isn't set, we'll call the constructor in
# makeConnection before anything actually happens.
self._ampInitialized = True
if boxReceiver is None:
boxReceiver = self
if locator is None:
locator = self
BoxDispatcher.__init__(self, locator)
BinaryBoxProtocol.__init__(self, boxReceiver)
def locateResponder(self, name):
"""
Unify the implementations of L{CommandLocator} and
L{SimpleStringLocator} to perform both kinds of dispatch, preferring
L{CommandLocator}.
@type name: C{bytes}
"""
firstResponder = CommandLocator.locateResponder(self, name)
if firstResponder is not None:
return firstResponder
secondResponder = SimpleStringLocator.locateResponder(self, name)
return secondResponder
def __repr__(self) -> str:
"""
A verbose string representation which gives us information about this
AMP connection.
"""
if self.innerProtocol is not None:
innerRepr = f" inner {self.innerProtocol!r}"
else:
innerRepr = ""
return f"<{self.__class__.__name__}{innerRepr} at 0x{id(self):x}>"
def makeConnection(self, transport):
"""
Emit a helpful log message when the connection is made.
"""
if not self._ampInitialized:
# See comment in the constructor re: backward compatibility. I
# should probably emit a deprecation warning here.
AMP.__init__(self)
# Save these so we can emit a similar log message in L{connectionLost}.
self._transportPeer = transport.getPeer()
self._transportHost = transport.getHost()
log.msg(
"%s connection established (HOST:%s PEER:%s)"
% (self.__class__.__name__, self._transportHost, self._transportPeer)
)
BinaryBoxProtocol.makeConnection(self, transport)
def connectionLost(self, reason):
"""
Emit a helpful log message when the connection is lost.
"""
log.msg(
"%s connection lost (HOST:%s PEER:%s)"
% (self.__class__.__name__, self._transportHost, self._transportPeer)
)
BinaryBoxProtocol.connectionLost(self, reason)
self.transport = None
class _ParserHelper:
"""
A box receiver which records all boxes received.
"""
def __init__(self):
self.boxes = []
def getPeer(self):
return "string"
def getHost(self):
return "string"
disconnecting = False
def startReceivingBoxes(self, sender):
"""
No initialization is required.
"""
def ampBoxReceived(self, box):
self.boxes.append(box)
# Synchronous helpers
@classmethod
def parse(cls, fileObj):
"""
Parse some amp data stored in a file.
@param fileObj: a file-like object.
@return: a list of AmpBoxes encoded in the given file.
"""
parserHelper = cls()
bbp = BinaryBoxProtocol(boxReceiver=parserHelper)
bbp.makeConnection(parserHelper)
bbp.dataReceived(fileObj.read())
return parserHelper.boxes
@classmethod
def parseString(cls, data):
"""
Parse some amp data stored in a string.
@param data: a str holding some amp-encoded data.
@return: a list of AmpBoxes encoded in the given string.
"""
return cls.parse(BytesIO(data))
parse = _ParserHelper.parse
parseString = _ParserHelper.parseString
def _stringsToObjects(strings, arglist, proto):
"""
Convert an AmpBox to a dictionary of python objects, converting through a
given arglist.
@param strings: an AmpBox (or dict of strings)
@param arglist: a list of 2-tuples of strings and Argument objects, as
described in L{Command.arguments}.
@param proto: an L{AMP} instance.
@return: the converted dictionary mapping names to argument objects.
"""
objects = {}
myStrings = strings.copy()
for argname, argparser in arglist:
argparser.fromBox(argname, myStrings, objects, proto)
return objects
def _objectsToStrings(objects, arglist, strings, proto):
"""
Convert a dictionary of python objects to an AmpBox, converting through a
given arglist.
@param objects: a dict mapping names to python objects
@param arglist: a list of 2-tuples of strings and Argument objects, as
described in L{Command.arguments}.
@param strings: [OUT PARAMETER] An object providing the L{dict}
interface which will be populated with serialized data.
@param proto: an L{AMP} instance.
@return: The converted dictionary mapping names to encoded argument
strings (identical to C{strings}).
"""
myObjects = objects.copy()
for argname, argparser in arglist:
argparser.toBox(argname, strings, myObjects, proto)
return strings
class Decimal(Argument):
"""
Encodes C{decimal.Decimal} instances.
There are several ways in which a decimal value might be encoded.
Special values are encoded as special strings::
- Positive infinity is encoded as C{"Infinity"}
- Negative infinity is encoded as C{"-Infinity"}
- Quiet not-a-number is encoded as either C{"NaN"} or C{"-NaN"}
- Signalling not-a-number is encoded as either C{"sNaN"} or C{"-sNaN"}
Normal values are encoded using the base ten string representation, using
engineering notation to indicate magnitude without precision, and "normal"
digits to indicate precision. For example::
- C{"1"} represents the value I{1} with precision to one place.
- C{"-1"} represents the value I{-1} with precision to one place.
- C{"1.0"} represents the value I{1} with precision to two places.
- C{"10"} represents the value I{10} with precision to two places.
- C{"1E+2"} represents the value I{10} with precision to one place.
- C{"1E-1"} represents the value I{0.1} with precision to one place.
- C{"1.5E+2"} represents the value I{15} with precision to two places.
U{http://speleotrove.com/decimal/} should be considered the authoritative
specification for the format.
"""
def fromString(self, inString):
inString = nativeString(inString)
return decimal.Decimal(inString)
def toString(self, inObject):
"""
Serialize a C{decimal.Decimal} instance to the specified wire format.
"""
if isinstance(inObject, decimal.Decimal):
# Hopefully decimal.Decimal.__str__ actually does what we want.
return str(inObject).encode("ascii")
raise ValueError("amp.Decimal can only encode instances of decimal.Decimal")
class DateTime(Argument):
"""
Encodes C{datetime.datetime} instances.
Wire format: '%04i-%02i-%02iT%02i:%02i:%02i.%06i%s%02i:%02i'. Fields in
order are: year, month, day, hour, minute, second, microsecond, timezone
direction (+ or -), timezone hour, timezone minute. Encoded string is
always exactly 32 characters long. This format is compatible with ISO 8601,
but that does not mean all ISO 8601 dates can be accepted.
Also, note that the datetime module's notion of a "timezone" can be
complex, but the wire format includes only a fixed offset, so the
conversion is not lossless. A lossless transmission of a C{datetime} instance
is not feasible since the receiving end would require a Python interpreter.
@ivar _positions: A sequence of slices giving the positions of various
interesting parts of the wire format.
"""
_positions = [
slice(0, 4),
slice(5, 7),
slice(8, 10), # year, month, day
slice(11, 13),
slice(14, 16),
slice(17, 19), # hour, minute, second
slice(20, 26), # microsecond
# intentionally skip timezone direction, as it is not an integer
slice(27, 29),
slice(30, 32), # timezone hour, timezone minute
]
def fromString(self, s):
"""
Parse a string containing a date and time in the wire format into a
C{datetime.datetime} instance.
"""
s = nativeString(s)
if len(s) != 32:
raise ValueError(f"invalid date format {s!r}")
values = [int(s[p]) for p in self._positions]
sign = s[26]
timezone = _FixedOffsetTZInfo.fromSignHoursMinutes(sign, *values[7:])
values[7:] = [timezone]
return datetime.datetime(*values)
def toString(self, i):
"""
Serialize a C{datetime.datetime} instance to a string in the specified
wire format.
"""
offset = i.utcoffset()
if offset is None:
raise ValueError(
"amp.DateTime cannot serialize naive datetime instances. "
"You may find amp.utc useful."
)
minutesOffset = (offset.days * 86400 + offset.seconds) // 60
if minutesOffset > 0:
sign = "+"
else:
sign = "-"
# strftime has no way to format the microseconds, or put a ':' in the
# timezone. Surprise!
# Python 3.4 cannot do % interpolation on byte strings so we pack into
# an explicitly Unicode string then encode as ASCII.
packed = "%04i-%02i-%02iT%02i:%02i:%02i.%06i%s%02i:%02i" % (
i.year,
i.month,
i.day,
i.hour,
i.minute,
i.second,
i.microsecond,
sign,
abs(minutesOffset) // 60,
abs(minutesOffset) % 60,
)
return packed.encode("ascii")
|