1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
|
# -*- test-case-name: twisted.conch.test.test_transport -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""
The lowest level SSH protocol. This handles the key negotiation, the
encryption and the compression. The transport layer is described in
RFC 4253.
Maintainer: Paul Swartz
"""
from __future__ import absolute_import, division
import binascii
import hmac
import struct
import zlib
from hashlib import md5, sha1, sha256, sha384, sha512
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.ciphers import algorithms, modes, Cipher
from cryptography.hazmat.primitives.asymmetric import dh, ec, x25519
from twisted import __version__ as twisted_version
from twisted.internet import protocol, defer
from twisted.python import log, randbytes
from twisted.python.compat import iterbytes, _bytesChr as chr, networkString
# This import is needed if SHA256 hashing is used.
# from twisted.python.compat import nativeString
from twisted.conch.ssh import address, keys, _kex
from twisted.conch.ssh.common import (
NS, getNS, MP, getMP, ffs, int_from_bytes
)
def _mpFromBytes(data):
"""Make an SSH multiple-precision integer from big-endian L{bytes}.
Used in ECDH key exchange.
@type data: L{bytes}
@param data: The input data, interpreted as a big-endian octet string.
@rtype: L{bytes}
@return: The given data encoded as an SSH multiple-precision integer.
"""
return MP(int_from_bytes(data, 'big'))
class _MACParams(tuple):
"""
L{_MACParams} represents the parameters necessary to compute SSH MAC
(Message Authenticate Codes).
L{_MACParams} is a L{tuple} subclass to maintain compatibility with older
versions of the code. The elements of a L{_MACParams} are::
0. The digest object used for the MAC
1. The inner pad ("ipad") string
2. The outer pad ("opad") string
3. The size of the digest produced by the digest object
L{_MACParams} is also an object lesson in why tuples are a bad type for
public APIs.
@ivar key: The HMAC key which will be used.
"""
class SSHCiphers:
"""
SSHCiphers represents all the encryption operations that need to occur
to encrypt and authenticate the SSH connection.
@cvar cipherMap: A dictionary mapping SSH encryption names to 3-tuples of
(<cryptography.hazmat.primitives.interfaces.CipherAlgorithm>,
<block size>, <cryptography.hazmat.primitives.interfaces.Mode>)
@cvar macMap: A dictionary mapping SSH MAC names to hash modules.
@ivar outCipType: the string type of the outgoing cipher.
@ivar inCipType: the string type of the incoming cipher.
@ivar outMACType: the string type of the incoming MAC.
@ivar inMACType: the string type of the incoming MAC.
@ivar encBlockSize: the block size of the outgoing cipher.
@ivar decBlockSize: the block size of the incoming cipher.
@ivar verifyDigestSize: the size of the incoming MAC.
@ivar outMAC: a tuple of (<hash module>, <inner key>, <outer key>,
<digest size>) representing the outgoing MAC.
@ivar inMAc: see outMAC, but for the incoming MAC.
"""
cipherMap = {
b'3des-cbc': (algorithms.TripleDES, 24, modes.CBC),
b'blowfish-cbc': (algorithms.Blowfish, 16, modes.CBC),
b'aes256-cbc': (algorithms.AES, 32, modes.CBC),
b'aes192-cbc': (algorithms.AES, 24, modes.CBC),
b'aes128-cbc': (algorithms.AES, 16, modes.CBC),
b'cast128-cbc': (algorithms.CAST5, 16, modes.CBC),
b'aes128-ctr': (algorithms.AES, 16, modes.CTR),
b'aes192-ctr': (algorithms.AES, 24, modes.CTR),
b'aes256-ctr': (algorithms.AES, 32, modes.CTR),
b'3des-ctr': (algorithms.TripleDES, 24, modes.CTR),
b'blowfish-ctr': (algorithms.Blowfish, 16, modes.CTR),
b'cast128-ctr': (algorithms.CAST5, 16, modes.CTR),
b'none': (None, 0, modes.CBC),
}
macMap = {
b'hmac-sha2-512': sha512,
b'hmac-sha2-384': sha384,
b'hmac-sha2-256': sha256,
b'hmac-sha1': sha1,
b'hmac-md5': md5,
b'none': None
}
def __init__(self, outCip, inCip, outMac, inMac):
self.outCipType = outCip
self.inCipType = inCip
self.outMACType = outMac
self.inMACType = inMac
self.encBlockSize = 0
self.decBlockSize = 0
self.verifyDigestSize = 0
self.outMAC = (None, b'', b'', 0)
self.inMAC = (None, b'', b'', 0)
def setKeys(self, outIV, outKey, inIV, inKey, outInteg, inInteg):
"""
Set up the ciphers and hashes using the given keys,
@param outIV: the outgoing initialization vector
@param outKey: the outgoing encryption key
@param inIV: the incoming initialization vector
@param inKey: the incoming encryption key
@param outInteg: the outgoing integrity key
@param inInteg: the incoming integrity key.
"""
o = self._getCipher(self.outCipType, outIV, outKey)
self.encryptor = o.encryptor()
self.encBlockSize = o.algorithm.block_size // 8
o = self._getCipher(self.inCipType, inIV, inKey)
self.decryptor = o.decryptor()
self.decBlockSize = o.algorithm.block_size // 8
self.outMAC = self._getMAC(self.outMACType, outInteg)
self.inMAC = self._getMAC(self.inMACType, inInteg)
if self.inMAC:
self.verifyDigestSize = self.inMAC[3]
def _getCipher(self, cip, iv, key):
"""
Creates an initialized cipher object.
@param cip: the name of the cipher, maps into cipherMap
@param iv: the initialzation vector
@param key: the encryption key
@return: the cipher object.
"""
algorithmClass, keySize, modeClass = self.cipherMap[cip]
if algorithmClass is None:
return _DummyCipher()
return Cipher(
algorithmClass(key[:keySize]),
modeClass(iv[:algorithmClass.block_size // 8]),
backend=default_backend(),
)
def _getMAC(self, mac, key):
"""
Gets a 4-tuple representing the message authentication code.
(<hash module>, <inner hash value>, <outer hash value>,
<digest size>)
@type mac: L{bytes}
@param mac: a key mapping into macMap
@type key: L{bytes}
@param key: the MAC key.
@rtype: L{bytes}
@return: The MAC components.
"""
mod = self.macMap[mac]
if not mod:
return (None, b'', b'', 0)
# With stdlib we can only get attributes fron an instantiated object.
hashObject = mod()
digestSize = hashObject.digest_size
blockSize = hashObject.block_size
# Truncation here appears to contravene RFC 2104, section 2. However,
# implementing the hashing behavior prescribed by the RFC breaks
# interoperability with OpenSSH (at least version 5.5p1).
key = key[:digestSize] + (b'\x00' * (blockSize - digestSize))
i = key.translate(hmac.trans_36)
o = key.translate(hmac.trans_5C)
result = _MACParams((mod, i, o, digestSize))
result.key = key
return result
def encrypt(self, blocks):
"""
Encrypt some data.
@type blocks: L{bytes}
@param blocks: The data to encrypt.
@rtype: L{bytes}
@return: The encrypted data.
"""
return self.encryptor.update(blocks)
def decrypt(self, blocks):
"""
Decrypt some data.
@type blocks: L{bytes}
@param blocks: The data to decrypt.
@rtype: L{bytes}
@return: The decrypted data.
"""
return self.decryptor.update(blocks)
def makeMAC(self, seqid, data):
"""
Create a message authentication code (MAC) for the given packet using
the outgoing MAC values.
@type seqid: L{int}
@param seqid: The sequence ID of the outgoing packet.
@type data: L{bytes}
@param data: The data to create a MAC for.
@rtype: L{str}
@return: The serialized MAC.
"""
if not self.outMAC[0]:
return b''
data = struct.pack('>L', seqid) + data
return hmac.HMAC(self.outMAC.key, data, self.outMAC[0]).digest()
def verify(self, seqid, data, mac):
"""
Verify an incoming MAC using the incoming MAC values.
@type seqid: L{int}
@param seqid: The sequence ID of the incoming packet.
@type data: L{bytes}
@param data: The packet data to verify.
@type mac: L{bytes}
@param mac: The MAC sent with the packet.
@rtype: L{bool}
@return: C{True} if the MAC is valid.
"""
if not self.inMAC[0]:
return mac == b''
data = struct.pack('>L', seqid) + data
outer = hmac.HMAC(self.inMAC.key, data, self.inMAC[0]).digest()
return mac == outer
def _getSupportedCiphers():
"""
Build a list of ciphers that are supported by the backend in use.
@return: a list of supported ciphers.
@rtype: L{list} of L{str}
"""
supportedCiphers = []
cs = [b'aes256-ctr', b'aes256-cbc', b'aes192-ctr', b'aes192-cbc',
b'aes128-ctr', b'aes128-cbc', b'cast128-ctr', b'cast128-cbc',
b'blowfish-ctr', b'blowfish-cbc', b'3des-ctr', b'3des-cbc']
for cipher in cs:
algorithmClass, keySize, modeClass = SSHCiphers.cipherMap[cipher]
try:
Cipher(
algorithmClass(b' ' * keySize),
modeClass(b' ' * (algorithmClass.block_size // 8)),
backend=default_backend(),
).encryptor()
except UnsupportedAlgorithm:
pass
else:
supportedCiphers.append(cipher)
return supportedCiphers
class SSHTransportBase(protocol.Protocol):
"""
Protocol supporting basic SSH functionality: sending/receiving packets
and message dispatch. To connect to or run a server, you must use
SSHClientTransport or SSHServerTransport.
@ivar protocolVersion: A string representing the version of the SSH
protocol we support. Currently defaults to '2.0'.
@ivar version: A string representing the version of the server or client.
Currently defaults to 'Twisted'.
@ivar comment: An optional string giving more information about the
server or client.
@ivar supportedCiphers: A list of strings representing the encryption
algorithms supported, in order from most-preferred to least.
@ivar supportedMACs: A list of strings representing the message
authentication codes (hashes) supported, in order from most-preferred
to least. Both this and supportedCiphers can include 'none' to use
no encryption or authentication, but that must be done manually,
@ivar supportedKeyExchanges: A list of strings representing the
key exchanges supported, in order from most-preferred to least.
@ivar supportedPublicKeys: A list of strings representing the
public key types supported, in order from most-preferred to least.
@ivar supportedCompressions: A list of strings representing compression
types supported, from most-preferred to least.
@ivar supportedLanguages: A list of strings representing languages
supported, from most-preferred to least.
@ivar supportedVersions: A container of strings representing supported ssh
protocol version numbers.
@ivar isClient: A boolean indicating whether this is a client or server.
@ivar gotVersion: A boolean indicating whether we have received the
version string from the other side.
@ivar buf: Data we've received but hasn't been parsed into a packet.
@ivar outgoingPacketSequence: the sequence number of the next packet we
will send.
@ivar incomingPacketSequence: the sequence number of the next packet we
are expecting from the other side.
@ivar outgoingCompression: an object supporting the .compress(str) and
.flush() methods, or None if there is no outgoing compression. Used to
compress outgoing data.
@ivar outgoingCompressionType: A string representing the outgoing
compression type.
@ivar incomingCompression: an object supporting the .decompress(str)
method, or None if there is no incoming compression. Used to
decompress incoming data.
@ivar incomingCompressionType: A string representing the incoming
compression type.
@ivar ourVersionString: the version string that we sent to the other side.
Used in the key exchange.
@ivar otherVersionString: the version string sent by the other side. Used
in the key exchange.
@ivar ourKexInitPayload: the MSG_KEXINIT payload we sent. Used in the key
exchange.
@ivar otherKexInitPayload: the MSG_KEXINIT payload we received. Used in
the key exchange
@ivar sessionID: a string that is unique to this SSH session. Created as
part of the key exchange, sessionID is used to generate the various
encryption and authentication keys.
@ivar service: an SSHService instance, or None. If it's set to an object,
it's the currently running service.
@ivar kexAlg: the agreed-upon key exchange algorithm.
@ivar keyAlg: the agreed-upon public key type for the key exchange.
@ivar currentEncryptions: an SSHCiphers instance. It represents the
current encryption and authentication options for the transport.
@ivar nextEncryptions: an SSHCiphers instance. Held here until the
MSG_NEWKEYS messages are exchanged, when nextEncryptions is
transitioned to currentEncryptions.
@ivar first: the first bytes of the next packet. In order to avoid
decrypting data twice, the first bytes are decrypted and stored until
the whole packet is available.
@ivar _keyExchangeState: The current protocol state with respect to key
exchange. This is either C{_KEY_EXCHANGE_NONE} if no key exchange is
in progress (and returns to this value after any key exchange
completqes), C{_KEY_EXCHANGE_REQUESTED} if this side of the connection
initiated a key exchange, and C{_KEY_EXCHANGE_PROGRESSING} if the other
side of the connection initiated a key exchange. C{_KEY_EXCHANGE_NONE}
is the initial value (however SSH connections begin with key exchange,
so it will quickly change to another state).
@ivar _blockedByKeyExchange: Whenever C{_keyExchangeState} is not
C{_KEY_EXCHANGE_NONE}, this is a C{list} of pending messages which were
passed to L{sendPacket} but could not be sent because it is not legal
to send them while a key exchange is in progress. When the key
exchange completes, another attempt is made to send these messages.
"""
protocolVersion = b'2.0'
version = b'Twisted_' + twisted_version.encode('ascii')
comment = b''
ourVersionString = (b'SSH-' + protocolVersion + b'-' + version + b' '
+ comment).strip()
# L{None} is supported as cipher and hmac. For security they are disabled
# by default. To enable them, subclass this class and add it, or do:
# SSHTransportBase.supportedCiphers.append('none')
# List ordered by preference.
supportedCiphers = _getSupportedCiphers()
supportedMACs = [
b'hmac-sha2-512',
b'hmac-sha2-384',
b'hmac-sha2-256',
b'hmac-sha1',
b'hmac-md5',
# `none`,
]
supportedKeyExchanges = _kex.getSupportedKeyExchanges()
supportedPublicKeys = []
# Add the supported EC keys, and change the name from ecdh* to ecdsa*
for eckey in supportedKeyExchanges:
if eckey.find(b'ecdh') != -1:
supportedPublicKeys += [eckey.replace(b'ecdh', b'ecdsa')]
supportedPublicKeys += [b'ssh-rsa', b'ssh-dss']
supportedCompressions = [b'none', b'zlib']
supportedLanguages = ()
supportedVersions = (b'1.99', b'2.0')
isClient = False
gotVersion = False
buf = b''
outgoingPacketSequence = 0
incomingPacketSequence = 0
outgoingCompression = None
incomingCompression = None
sessionID = None
service = None
# There is no key exchange activity in progress.
_KEY_EXCHANGE_NONE = '_KEY_EXCHANGE_NONE'
# Key exchange is in progress and we started it.
_KEY_EXCHANGE_REQUESTED = '_KEY_EXCHANGE_REQUESTED'
# Key exchange is in progress and both sides have sent KEXINIT messages.
_KEY_EXCHANGE_PROGRESSING = '_KEY_EXCHANGE_PROGRESSING'
# There is a fourth conceptual state not represented here: KEXINIT received
# but not sent. Since we always send a KEXINIT as soon as we get it, we
# can't ever be in that state.
# The current key exchange state.
_keyExchangeState = _KEY_EXCHANGE_NONE
_blockedByKeyExchange = None
def connectionLost(self, reason):
"""
When the underlying connection is closed, stop the running service (if
any), and log out the avatar (if any).
@type reason: L{twisted.python.failure.Failure}
@param reason: The cause of the connection being closed.
"""
if self.service:
self.service.serviceStopped()
if hasattr(self, 'avatar'):
self.logoutFunction()
log.msg('connection lost')
def connectionMade(self):
"""
Called when the connection is made to the other side. We sent our
version and the MSG_KEXINIT packet.
"""
self.transport.write(self.ourVersionString + b'\r\n')
self.currentEncryptions = SSHCiphers(b'none', b'none', b'none',
b'none')
self.currentEncryptions.setKeys(b'', b'', b'', b'', b'', b'')
self.sendKexInit()
def sendKexInit(self):
"""
Send a I{KEXINIT} message to initiate key exchange or to respond to a
key exchange initiated by the peer.
@raise RuntimeError: If a key exchange has already been started and it
is not appropriate to send a I{KEXINIT} message at this time.
@return: L{None}
"""
if self._keyExchangeState != self._KEY_EXCHANGE_NONE:
raise RuntimeError(
"Cannot send KEXINIT while key exchange state is %r" % (
self._keyExchangeState,))
self.ourKexInitPayload = b''.join([
chr(MSG_KEXINIT),
randbytes.secureRandom(16),
NS(b','.join(self.supportedKeyExchanges)),
NS(b','.join(self.supportedPublicKeys)),
NS(b','.join(self.supportedCiphers)),
NS(b','.join(self.supportedCiphers)),
NS(b','.join(self.supportedMACs)),
NS(b','.join(self.supportedMACs)),
NS(b','.join(self.supportedCompressions)),
NS(b','.join(self.supportedCompressions)),
NS(b','.join(self.supportedLanguages)),
NS(b','.join(self.supportedLanguages)),
b'\000\000\000\000\000'])
self.sendPacket(MSG_KEXINIT, self.ourKexInitPayload[1:])
self._keyExchangeState = self._KEY_EXCHANGE_REQUESTED
self._blockedByKeyExchange = []
def _allowedKeyExchangeMessageType(self, messageType):
"""
Determine if the given message type may be sent while key exchange is
in progress.
@param messageType: The type of message
@type messageType: L{int}
@return: C{True} if the given type of message may be sent while key
exchange is in progress, C{False} if it may not.
@rtype: L{bool}
@see: U{http://tools.ietf.org/html/rfc4253#section-7.1}
"""
# Written somewhat peculularly to reflect the way the specification
# defines the allowed message types.
if 1 <= messageType <= 19:
return messageType not in (MSG_SERVICE_REQUEST, MSG_SERVICE_ACCEPT)
if 20 <= messageType <= 29:
return messageType not in (MSG_KEXINIT,)
return 30 <= messageType <= 49
def sendPacket(self, messageType, payload):
"""
Sends a packet. If it's been set up, compress the data, encrypt it,
and authenticate it before sending. If key exchange is in progress and
the message is not part of key exchange, queue it to be sent later.
@param messageType: The type of the packet; generally one of the
MSG_* values.
@type messageType: L{int}
@param payload: The payload for the message.
@type payload: L{str}
"""
if self._keyExchangeState != self._KEY_EXCHANGE_NONE:
if not self._allowedKeyExchangeMessageType(messageType):
self._blockedByKeyExchange.append((messageType, payload))
return
payload = chr(messageType) + payload
if self.outgoingCompression:
payload = (self.outgoingCompression.compress(payload)
+ self.outgoingCompression.flush(2))
bs = self.currentEncryptions.encBlockSize
# 4 for the packet length and 1 for the padding length
totalSize = 5 + len(payload)
lenPad = bs - (totalSize % bs)
if lenPad < 4:
lenPad = lenPad + bs
packet = (struct.pack('!LB',
totalSize + lenPad - 4, lenPad) +
payload + randbytes.secureRandom(lenPad))
encPacket = (
self.currentEncryptions.encrypt(packet) +
self.currentEncryptions.makeMAC(
self.outgoingPacketSequence, packet))
self.transport.write(encPacket)
self.outgoingPacketSequence += 1
def getPacket(self):
"""
Try to return a decrypted, authenticated, and decompressed packet
out of the buffer. If there is not enough data, return None.
@rtype: L{str} or L{None}
@return: The decoded packet, if any.
"""
bs = self.currentEncryptions.decBlockSize
ms = self.currentEncryptions.verifyDigestSize
if len(self.buf) < bs:
# Not enough data for a block
return
if not hasattr(self, 'first'):
first = self.currentEncryptions.decrypt(self.buf[:bs])
else:
first = self.first
del self.first
packetLen, paddingLen = struct.unpack('!LB', first[:5])
if packetLen > 1048576: # 1024 ** 2
self.sendDisconnect(
DISCONNECT_PROTOCOL_ERROR,
networkString('bad packet length {}'.format(packetLen)))
return
if len(self.buf) < packetLen + 4 + ms:
# Not enough data for a packet
self.first = first
return
if (packetLen + 4) % bs != 0:
self.sendDisconnect(
DISCONNECT_PROTOCOL_ERROR,
networkString(
'bad packet mod (%i%%%i == %i)' % (
packetLen + 4, bs, (packetLen + 4) % bs)))
return
encData, self.buf = self.buf[:4 + packetLen], self.buf[4 + packetLen:]
packet = first + self.currentEncryptions.decrypt(encData[bs:])
if len(packet) != 4 + packetLen:
self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR,
b'bad decryption')
return
if ms:
macData, self.buf = self.buf[:ms], self.buf[ms:]
if not self.currentEncryptions.verify(self.incomingPacketSequence,
packet, macData):
self.sendDisconnect(DISCONNECT_MAC_ERROR, b'bad MAC')
return
payload = packet[5:-paddingLen]
if self.incomingCompression:
try:
payload = self.incomingCompression.decompress(payload)
except:
# Tolerate any errors in decompression
log.err()
self.sendDisconnect(DISCONNECT_COMPRESSION_ERROR,
b'compression error')
return
self.incomingPacketSequence += 1
return payload
def _unsupportedVersionReceived(self, remoteVersion):
"""
Called when an unsupported version of the ssh protocol is received from
the remote endpoint.
@param remoteVersion: remote ssh protocol version which is unsupported
by us.
@type remoteVersion: L{str}
"""
self.sendDisconnect(DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED,
b'bad version ' + remoteVersion)
def dataReceived(self, data):
"""
First, check for the version string (SSH-2.0-*). After that has been
received, this method adds data to the buffer, and pulls out any
packets.
@type data: L{bytes}
@param data: The data that was received.
"""
self.buf = self.buf + data
if not self.gotVersion:
if self.buf.find(b'\n', self.buf.find(b'SSH-')) == -1:
return
# RFC 4253 section 4.2 ask for strict `\r\n` line ending.
# Here we are a bit more relaxed and accept implementations ending
# only in '\n'.
# https://tools.ietf.org/html/rfc4253#section-4.2
lines = self.buf.split(b'\n')
for p in lines:
if p.startswith(b'SSH-'):
self.gotVersion = True
# Since the line was split on '\n' and most of the time
# it uses '\r\n' we may get an extra '\r'.
self.otherVersionString = p.rstrip(b'\r')
remoteVersion = p.split(b'-')[1]
if remoteVersion not in self.supportedVersions:
self._unsupportedVersionReceived(remoteVersion)
return
i = lines.index(p)
self.buf = b'\n'.join(lines[i + 1:])
packet = self.getPacket()
while packet:
messageNum = ord(packet[0:1])
self.dispatchMessage(messageNum, packet[1:])
packet = self.getPacket()
def dispatchMessage(self, messageNum, payload):
"""
Send a received message to the appropriate method.
@type messageNum: L{int}
@param messageNum: The message number.
@type payload: L{bytes}
@param payload: The message payload.
"""
if messageNum < 50 and messageNum in messages:
messageType = messages[messageNum][4:]
f = getattr(self, 'ssh_%s' % (messageType,), None)
if f is not None:
f(payload)
else:
log.msg("couldn't handle %s" % messageType)
log.msg(repr(payload))
self.sendUnimplemented()
elif self.service:
log.callWithLogger(self.service, self.service.packetReceived,
messageNum, payload)
else:
log.msg("couldn't handle %s" % messageNum)
log.msg(repr(payload))
self.sendUnimplemented()
def getPeer(self):
"""
Returns an L{SSHTransportAddress} corresponding to the other (peer)
side of this transport.
@return: L{SSHTransportAddress} for the peer
@rtype: L{SSHTransportAddress}
@since: 12.1
"""
return address.SSHTransportAddress(self.transport.getPeer())
def getHost(self):
"""
Returns an L{SSHTransportAddress} corresponding to the this side of
transport.
@return: L{SSHTransportAddress} for the peer
@rtype: L{SSHTransportAddress}
@since: 12.1
"""
return address.SSHTransportAddress(self.transport.getHost())
@property
def kexAlg(self):
"""
The key exchange algorithm name agreed between client and server.
"""
return self._kexAlg
@kexAlg.setter
def kexAlg(self, value):
"""
Set the key exchange algorithm name.
"""
self._kexAlg = value
# Client-initiated rekeying looks like this:
#
# C> MSG_KEXINIT
# S> MSG_KEXINIT
# C> MSG_KEX_DH_GEX_REQUEST or MSG_KEXDH_INIT
# S> MSG_KEX_DH_GEX_GROUP or MSG_KEXDH_REPLY
# C> MSG_KEX_DH_GEX_INIT or --
# S> MSG_KEX_DH_GEX_REPLY or --
# C> MSG_NEWKEYS
# S> MSG_NEWKEYS
#
# Server-initiated rekeying is the same, only the first two messages are
# switched.
def ssh_KEXINIT(self, packet):
"""
Called when we receive a MSG_KEXINIT message. Payload::
bytes[16] cookie
string keyExchangeAlgorithms
string keyAlgorithms
string incomingEncryptions
string outgoingEncryptions
string incomingAuthentications
string outgoingAuthentications
string incomingCompressions
string outgoingCompressions
string incomingLanguages
string outgoingLanguages
bool firstPacketFollows
unit32 0 (reserved)
Starts setting up the key exchange, keys, encryptions, and
authentications. Extended by ssh_KEXINIT in SSHServerTransport and
SSHClientTransport.
@type packet: L{bytes}
@param packet: The message data.
@return: A L{tuple} of negotiated key exchange algorithms, key
algorithms, and unhandled data, or L{None} if something went wrong.
"""
self.otherKexInitPayload = chr(MSG_KEXINIT) + packet
# This is useless to us:
# cookie = packet[: 16]
k = getNS(packet[16:], 10)
strings, rest = k[:-1], k[-1]
(kexAlgs, keyAlgs, encCS, encSC, macCS, macSC, compCS, compSC, langCS,
langSC) = [s.split(b',') for s in strings]
# These are the server directions
outs = [encSC, macSC, compSC]
ins = [encCS, macSC, compCS]
if self.isClient:
outs, ins = ins, outs # Switch directions
server = (self.supportedKeyExchanges, self.supportedPublicKeys,
self.supportedCiphers, self.supportedCiphers,
self.supportedMACs, self.supportedMACs,
self.supportedCompressions, self.supportedCompressions)
client = (kexAlgs, keyAlgs, outs[0], ins[0], outs[1], ins[1],
outs[2], ins[2])
if self.isClient:
server, client = client, server
self.kexAlg = ffs(client[0], server[0])
self.keyAlg = ffs(client[1], server[1])
self.nextEncryptions = SSHCiphers(
ffs(client[2], server[2]),
ffs(client[3], server[3]),
ffs(client[4], server[4]),
ffs(client[5], server[5]))
self.outgoingCompressionType = ffs(client[6], server[6])
self.incomingCompressionType = ffs(client[7], server[7])
if None in (self.kexAlg, self.keyAlg, self.outgoingCompressionType,
self.incomingCompressionType):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED,
b"couldn't match all kex parts")
return
if None in self.nextEncryptions.__dict__.values():
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED,
b"couldn't match all kex parts")
return
log.msg('kex alg, key alg: %r %r' % (self.kexAlg, self.keyAlg))
log.msg('outgoing: %r %r %r' % (self.nextEncryptions.outCipType,
self.nextEncryptions.outMACType,
self.outgoingCompressionType))
log.msg('incoming: %r %r %r' % (self.nextEncryptions.inCipType,
self.nextEncryptions.inMACType,
self.incomingCompressionType))
if self._keyExchangeState == self._KEY_EXCHANGE_REQUESTED:
self._keyExchangeState = self._KEY_EXCHANGE_PROGRESSING
else:
self.sendKexInit()
return kexAlgs, keyAlgs, rest # For SSHServerTransport to use
def ssh_DISCONNECT(self, packet):
"""
Called when we receive a MSG_DISCONNECT message. Payload::
long code
string description
This means that the other side has disconnected. Pass the message up
and disconnect ourselves.
@type packet: L{bytes}
@param packet: The message data.
"""
reasonCode = struct.unpack('>L', packet[: 4])[0]
description, foo = getNS(packet[4:])
self.receiveError(reasonCode, description)
self.transport.loseConnection()
def ssh_IGNORE(self, packet):
"""
Called when we receive a MSG_IGNORE message. No payload.
This means nothing; we simply return.
@type packet: L{bytes}
@param packet: The message data.
"""
def ssh_UNIMPLEMENTED(self, packet):
"""
Called when we receive a MSG_UNIMPLEMENTED message. Payload::
long packet
This means that the other side did not implement one of our packets.
@type packet: L{bytes}
@param packet: The message data.
"""
seqnum, = struct.unpack('>L', packet)
self.receiveUnimplemented(seqnum)
def ssh_DEBUG(self, packet):
"""
Called when we receive a MSG_DEBUG message. Payload::
bool alwaysDisplay
string message
string language
This means the other side has passed along some debugging info.
@type packet: L{bytes}
@param packet: The message data.
"""
alwaysDisplay = bool(ord(packet[0:1]))
message, lang, foo = getNS(packet[1:], 2)
self.receiveDebug(alwaysDisplay, message, lang)
def setService(self, service):
"""
Set our service to service and start it running. If we were
running a service previously, stop it first.
@type service: C{SSHService}
@param service: The service to attach.
"""
log.msg('starting service %r' % (service.name,))
if self.service:
self.service.serviceStopped()
self.service = service
service.transport = self
self.service.serviceStarted()
def sendDebug(self, message, alwaysDisplay=False, language=b''):
"""
Send a debug message to the other side.
@param message: the message to send.
@type message: L{str}
@param alwaysDisplay: if True, tell the other side to always
display this message.
@type alwaysDisplay: L{bool}
@param language: optionally, the language the message is in.
@type language: L{str}
"""
self.sendPacket(MSG_DEBUG, chr(alwaysDisplay) + NS(message) +
NS(language))
def sendIgnore(self, message):
"""
Send a message that will be ignored by the other side. This is
useful to fool attacks based on guessing packet sizes in the
encrypted stream.
@param message: data to send with the message
@type message: L{str}
"""
self.sendPacket(MSG_IGNORE, NS(message))
def sendUnimplemented(self):
"""
Send a message to the other side that the last packet was not
understood.
"""
seqnum = self.incomingPacketSequence
self.sendPacket(MSG_UNIMPLEMENTED, struct.pack('!L', seqnum))
def sendDisconnect(self, reason, desc):
"""
Send a disconnect message to the other side and then disconnect.
@param reason: the reason for the disconnect. Should be one of the
DISCONNECT_* values.
@type reason: L{int}
@param desc: a descrption of the reason for the disconnection.
@type desc: L{str}
"""
self.sendPacket(
MSG_DISCONNECT, struct.pack('>L', reason) + NS(desc) + NS(b''))
log.msg('Disconnecting with error, code %s\nreason: %s' % (reason,
desc))
self.transport.loseConnection()
def _startEphemeralDH(self):
"""
Prepares for a Diffie-Hellman key agreement exchange.
Creates an ephemeral keypair in the group defined by (self.g,
self.p) and stores it.
"""
numbers = dh.DHParameterNumbers(self.p, self.g)
parameters = numbers.parameters(default_backend())
self.dhSecretKey = parameters.generate_private_key()
y = self.dhSecretKey.public_key().public_numbers().y
self.dhSecretKeyPublicMP = MP(y)
def _finishEphemeralDH(self, remoteDHpublicKey):
"""
Completes the Diffie-Hellman key agreement started by
_startEphemeralDH, and forgets the ephemeral secret key.
@type remoteDHpublicKey: L{int}
@rtype: L{bytes}
@return: The new shared secret, in SSH C{mpint} format.
"""
remoteKey = dh.DHPublicNumbers(
remoteDHpublicKey,
dh.DHParameterNumbers(self.p, self.g)
).public_key(default_backend())
secret = self.dhSecretKey.exchange(remoteKey)
del self.dhSecretKey
# The result of a Diffie-Hellman exchange is an integer, but
# the Cryptography module returns it as bytes in a form that
# is only vaguely documented. We fix it up to match the SSH
# MP-integer format as described in RFC4251.
secret = secret.lstrip(b'\x00')
ch = ord(secret[0:1])
if ch & 0x80: # High bit set?
# Make room for the sign bit
prefix = struct.pack('>L', len(secret) + 1) + b'\x00'
else:
prefix = struct.pack('>L', len(secret))
return prefix + secret
def _getKey(self, c, sharedSecret, exchangeHash):
"""
Get one of the keys for authentication/encryption.
@type c: L{bytes}
@param c: The letter identifying which key this is.
@type sharedSecret: L{bytes}
@param sharedSecret: The shared secret K.
@type exchangeHash: L{bytes}
@param exchangeHash: The hash H from key exchange.
@rtype: L{bytes}
@return: The derived key.
"""
hashProcessor = _kex.getHashProcessor(self.kexAlg)
k1 = hashProcessor(sharedSecret + exchangeHash + c + self.sessionID)
k1 = k1.digest()
k2 = hashProcessor(sharedSecret + exchangeHash + k1).digest()
k3 = hashProcessor(sharedSecret + exchangeHash + k1 + k2).digest()
k4 = hashProcessor(sharedSecret + exchangeHash + k1 + k2 + k3).digest()
return k1 + k2 + k3 + k4
def _keySetup(self, sharedSecret, exchangeHash):
"""
Set up the keys for the connection and sends MSG_NEWKEYS when
finished,
@param sharedSecret: a secret string agreed upon using a Diffie-
Hellman exchange, so it is only shared between
the server and the client.
@type sharedSecret: L{str}
@param exchangeHash: A hash of various data known by both sides.
@type exchangeHash: L{str}
"""
if not self.sessionID:
self.sessionID = exchangeHash
initIVCS = self._getKey(b'A', sharedSecret, exchangeHash)
initIVSC = self._getKey(b'B', sharedSecret, exchangeHash)
encKeyCS = self._getKey(b'C', sharedSecret, exchangeHash)
encKeySC = self._getKey(b'D', sharedSecret, exchangeHash)
integKeyCS = self._getKey(b'E', sharedSecret, exchangeHash)
integKeySC = self._getKey(b'F', sharedSecret, exchangeHash)
outs = [initIVSC, encKeySC, integKeySC]
ins = [initIVCS, encKeyCS, integKeyCS]
if self.isClient: # Reverse for the client
log.msg('REVERSE')
outs, ins = ins, outs
self.nextEncryptions.setKeys(outs[0], outs[1], ins[0], ins[1],
outs[2], ins[2])
self.sendPacket(MSG_NEWKEYS, b'')
def _newKeys(self):
"""
Called back by a subclass once a I{MSG_NEWKEYS} message has been
received. This indicates key exchange has completed and new encryption
and compression parameters should be adopted. Any messages which were
queued during key exchange will also be flushed.
"""
log.msg('NEW KEYS')
self.currentEncryptions = self.nextEncryptions
if self.outgoingCompressionType == b'zlib':
self.outgoingCompression = zlib.compressobj(6)
if self.incomingCompressionType == b'zlib':
self.incomingCompression = zlib.decompressobj()
self._keyExchangeState = self._KEY_EXCHANGE_NONE
messages = self._blockedByKeyExchange
self._blockedByKeyExchange = None
for (messageType, payload) in messages:
self.sendPacket(messageType, payload)
def isEncrypted(self, direction="out"):
"""
Check if the connection is encrypted in the given direction.
@type direction: L{str}
@param direction: The direction: one of 'out', 'in', or 'both'.
@rtype: L{bool}
@return: C{True} if it is encrypted.
"""
if direction == "out":
return self.currentEncryptions.outCipType != b'none'
elif direction == "in":
return self.currentEncryptions.inCipType != b'none'
elif direction == "both":
return self.isEncrypted("in") and self.isEncrypted("out")
else:
raise TypeError('direction must be "out", "in", or "both"')
def isVerified(self, direction="out"):
"""
Check if the connection is verified/authentication in the given direction.
@type direction: L{str}
@param direction: The direction: one of 'out', 'in', or 'both'.
@rtype: L{bool}
@return: C{True} if it is verified.
"""
if direction == "out":
return self.currentEncryptions.outMACType != b'none'
elif direction == "in":
return self.currentEncryptions.inMACType != b'none'
elif direction == "both":
return self.isVerified("in") and self.isVerified("out")
else:
raise TypeError('direction must be "out", "in", or "both"')
def loseConnection(self):
"""
Lose the connection to the other side, sending a
DISCONNECT_CONNECTION_LOST message.
"""
self.sendDisconnect(DISCONNECT_CONNECTION_LOST,
b"user closed connection")
# Client methods
def receiveError(self, reasonCode, description):
"""
Called when we receive a disconnect error message from the other
side.
@param reasonCode: the reason for the disconnect, one of the
DISCONNECT_ values.
@type reasonCode: L{int}
@param description: a human-readable description of the
disconnection.
@type description: L{str}
"""
log.msg('Got remote error, code %s\nreason: %s' % (reasonCode,
description))
def receiveUnimplemented(self, seqnum):
"""
Called when we receive an unimplemented packet message from the other
side.
@param seqnum: the sequence number that was not understood.
@type seqnum: L{int}
"""
log.msg('other side unimplemented packet #%s' % (seqnum,))
def receiveDebug(self, alwaysDisplay, message, lang):
"""
Called when we receive a debug message from the other side.
@param alwaysDisplay: if True, this message should always be
displayed.
@type alwaysDisplay: L{bool}
@param message: the debug message
@type message: L{str}
@param lang: optionally the language the message is in.
@type lang: L{str}
"""
if alwaysDisplay:
log.msg('Remote Debug Message: %s' % (message,))
def _generateECPrivateKey(self):
"""
Generate an private key for ECDH key exchange.
@rtype: The appropriate private key type matching C{self.kexAlg}:
L{EllipticCurvePrivateKey} for C{ecdh-sha2-nistp*}, or
L{X25519PrivateKey} for C{curve25519-sha256}.
@return: The generated private key.
"""
if self.kexAlg.startswith(b'ecdh-sha2-nistp'):
try:
curve = keys._curveTable[b'ecdsa' + self.kexAlg[4:]]
except KeyError:
raise UnsupportedAlgorithm('unused-key')
return ec.generate_private_key(curve, default_backend())
elif self.kexAlg in (
b'curve25519-sha256', b'curve25519-sha256@libssh.org'):
return x25519.X25519PrivateKey.generate()
else:
raise UnsupportedAlgorithm(
'Cannot generate elliptic curve private key for %r' %
(self.kexAlg,))
def _encodeECPublicKey(self, ecPub):
"""
Encode an elliptic curve public key to bytes.
@type ecPub: The appropriate public key type matching
C{self.kexAlg}: L{EllipticCurvePublicKey} for
C{ecdh-sha2-nistp*}, or L{X25519PublicKey} for
C{curve25519-sha256}.
@param ecPub: The public key to encode.
@rtype: L{bytes}
@return: The encoded public key.
"""
if self.kexAlg.startswith(b'ecdh-sha2-nistp'):
return ecPub.public_bytes(
serialization.Encoding.X962,
serialization.PublicFormat.UncompressedPoint
)
elif self.kexAlg in (
b'curve25519-sha256', b'curve25519-sha256@libssh.org'):
return ecPub.public_bytes(
serialization.Encoding.Raw,
serialization.PublicFormat.Raw
)
else:
raise UnsupportedAlgorithm(
'Cannot encode elliptic curve public key for %r' %
(self.kexAlg,))
def _generateECSharedSecret(self, ecPriv, theirECPubBytes):
"""
Generate a shared secret for ECDH key exchange.
@type ecPriv: The appropriate private key type matching
C{self.kexAlg}: L{EllipticCurvePrivateKey} for
C{ecdh-sha2-nistp*}, or L{X25519PrivateKey} for
C{curve25519-sha256}.
@param ecPriv: Our private key.
@rtype: L{bytes}
@return: The generated shared secret, as an SSH multiple-precision
integer.
"""
if self.kexAlg.startswith(b'ecdh-sha2-nistp'):
try:
curve = keys._curveTable[b'ecdsa' + self.kexAlg[4:]]
except KeyError:
raise UnsupportedAlgorithm('unused-key')
theirECPub = ec.EllipticCurvePublicKey.from_encoded_point(
curve, theirECPubBytes)
sharedSecret = ecPriv.exchange(ec.ECDH(), theirECPub)
elif self.kexAlg in (
b'curve25519-sha256', b'curve25519-sha256@libssh.org'):
theirECPub = x25519.X25519PublicKey.from_public_bytes(
theirECPubBytes)
sharedSecret = ecPriv.exchange(theirECPub)
else:
raise UnsupportedAlgorithm(
'Cannot generate elliptic curve shared secret for %r' %
(self.kexAlg,))
return _mpFromBytes(sharedSecret)
class SSHServerTransport(SSHTransportBase):
"""
SSHServerTransport implements the server side of the SSH protocol.
@ivar isClient: since we are never the client, this is always False.
@ivar ignoreNextPacket: if True, ignore the next key exchange packet. This
is set when the client sends a guessed key exchange packet but with
an incorrect guess.
@ivar dhGexRequest: the KEX_DH_GEX_REQUEST(_OLD) that the client sent.
The key generation needs this to be stored.
@ivar g: the Diffie-Hellman group generator.
@ivar p: the Diffie-Hellman group prime.
"""
isClient = False
ignoreNextPacket = 0
def ssh_KEXINIT(self, packet):
"""
Called when we receive a MSG_KEXINIT message. For a description
of the packet, see SSHTransportBase.ssh_KEXINIT(). Additionally,
this method checks if a guessed key exchange packet was sent. If
it was sent, and it guessed incorrectly, the next key exchange
packet MUST be ignored.
"""
retval = SSHTransportBase.ssh_KEXINIT(self, packet)
if not retval: # Disconnected
return
else:
kexAlgs, keyAlgs, rest = retval
if ord(rest[0:1]): # Flag first_kex_packet_follows?
if (kexAlgs[0] != self.supportedKeyExchanges[0] or
keyAlgs[0] != self.supportedPublicKeys[0]):
self.ignoreNextPacket = True # Guess was wrong
def _ssh_KEX_ECDH_INIT(self, packet):
"""
Called from L{ssh_KEX_DH_GEX_REQUEST_OLD} to handle
elliptic curve key exchanges.
Payload::
string client Elliptic Curve Diffie-Hellman public key
Just like L{_ssh_KEXDH_INIT} this message type is also not dispatched
directly. Extra check to determine if this is really KEX_ECDH_INIT
is required.
First we load the host's public/private keys.
Then we generate the ECDH public/private keypair for the given curve.
With that we generate the shared secret key.
Then we compute the hash to sign and send back to the client
Along with the server's public key and the ECDH public key.
@type packet: L{bytes}
@param packet: The message data.
@return: None.
"""
# Get the raw client public key.
pktPub, packet = getNS(packet)
# Get the host's public and private keys
pubHostKey = self.factory.publicKeys[self.keyAlg]
privHostKey = self.factory.privateKeys[self.keyAlg]
# Generate the private key
ecPriv = self._generateECPrivateKey()
# Get the public key
self.ecPub = ecPriv.public_key()
encPub = self._encodeECPublicKey(self.ecPub)
# Generate the shared secret
sharedSecret = self._generateECSharedSecret(ecPriv, pktPub)
# Finish update and digest
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.otherVersionString))
h.update(NS(self.ourVersionString))
h.update(NS(self.otherKexInitPayload))
h.update(NS(self.ourKexInitPayload))
h.update(NS(pubHostKey.blob()))
h.update(NS(pktPub))
h.update(NS(encPub))
h.update(sharedSecret)
exchangeHash = h.digest()
self.sendPacket(
MSG_KEXDH_REPLY,
NS(pubHostKey.blob()) + NS(encPub) +
NS(privHostKey.sign(exchangeHash)))
self._keySetup(sharedSecret, exchangeHash)
def _ssh_KEXDH_INIT(self, packet):
"""
Called to handle the beginning of a non-group key exchange.
Unlike other message types, this is not dispatched automatically. It
is called from C{ssh_KEX_DH_GEX_REQUEST_OLD} because an extra check is
required to determine if this is really a KEXDH_INIT message or if it
is a KEX_DH_GEX_REQUEST_OLD message.
The KEXDH_INIT payload::
integer e (the client's Diffie-Hellman public key)
We send the KEXDH_REPLY with our host key and signature.
@type packet: L{bytes}
@param packet: The message data.
"""
clientDHpublicKey, foo = getMP(packet)
self.g, self.p = _kex.getDHGeneratorAndPrime(self.kexAlg)
self._startEphemeralDH()
sharedSecret = self._finishEphemeralDH(clientDHpublicKey)
h = sha1()
h.update(NS(self.otherVersionString))
h.update(NS(self.ourVersionString))
h.update(NS(self.otherKexInitPayload))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.factory.publicKeys[self.keyAlg].blob()))
h.update(MP(clientDHpublicKey))
h.update(self.dhSecretKeyPublicMP)
h.update(sharedSecret)
exchangeHash = h.digest()
self.sendPacket(
MSG_KEXDH_REPLY,
NS(self.factory.publicKeys[self.keyAlg].blob()) +
self.dhSecretKeyPublicMP +
NS(self.factory.privateKeys[self.keyAlg].sign(exchangeHash)))
self._keySetup(sharedSecret, exchangeHash)
def ssh_KEX_DH_GEX_REQUEST_OLD(self, packet):
"""
This represents different key exchange methods that share the same
integer value. If the message is determined to be a KEXDH_INIT,
L{_ssh_KEXDH_INIT} is called to handle it. If it is a KEX_ECDH_INIT,
L{_ssh_KEX_ECDH_INIT} is called.
Otherwise, for KEX_DH_GEX_REQUEST_OLD payload::
integer ideal (ideal size for the Diffie-Hellman prime)
We send the KEX_DH_GEX_GROUP message with the group that is
closest in size to ideal.
If we were told to ignore the next key exchange packet by ssh_KEXINIT,
drop it on the floor and return.
@type packet: L{bytes}
@param packet: The message data.
"""
if self.ignoreNextPacket:
self.ignoreNextPacket = 0
return
# KEXDH_INIT, KEX_ECDH_INIT, and KEX_DH_GEX_REQUEST_OLD
# have the same value, so use another cue
# to decide what kind of message the peer sent us.
if _kex.isFixedGroup(self.kexAlg):
return self._ssh_KEXDH_INIT(packet)
elif _kex.isEllipticCurve(self.kexAlg):
return self._ssh_KEX_ECDH_INIT(packet)
else:
self.dhGexRequest = packet
ideal = struct.unpack('>L', packet)[0]
self.g, self.p = self.factory.getDHPrime(ideal)
self._startEphemeralDH()
self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g))
def ssh_KEX_DH_GEX_REQUEST(self, packet):
"""
Called when we receive a MSG_KEX_DH_GEX_REQUEST message. Payload::
integer minimum
integer ideal
integer maximum
The client is asking for a Diffie-Hellman group between minimum and
maximum size, and close to ideal if possible. We reply with a
MSG_KEX_DH_GEX_GROUP message.
If we were told to ignore the next key exchange packet by ssh_KEXINIT,
drop it on the floor and return.
@type packet: L{bytes}
@param packet: The message data.
"""
if self.ignoreNextPacket:
self.ignoreNextPacket = 0
return
self.dhGexRequest = packet
min, ideal, max = struct.unpack('>3L', packet)
self.g, self.p = self.factory.getDHPrime(ideal)
self._startEphemeralDH()
self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g))
def ssh_KEX_DH_GEX_INIT(self, packet):
"""
Called when we get a MSG_KEX_DH_GEX_INIT message. Payload::
integer e (client DH public key)
We send the MSG_KEX_DH_GEX_REPLY message with our host key and
signature.
@type packet: L{bytes}
@param packet: The message data.
"""
clientDHpublicKey, foo = getMP(packet)
# TODO: we should also look at the value they send to us and reject
# insecure values of f (if g==2 and f has a single '1' bit while the
# rest are '0's, then they must have used a small y also).
# TODO: This could be computed when self.p is set up
# or do as openssh does and scan f for a single '1' bit instead
sharedSecret = self._finishEphemeralDH(clientDHpublicKey)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.otherVersionString))
h.update(NS(self.ourVersionString))
h.update(NS(self.otherKexInitPayload))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.factory.publicKeys[self.keyAlg].blob()))
h.update(self.dhGexRequest)
h.update(MP(self.p))
h.update(MP(self.g))
h.update(MP(clientDHpublicKey))
h.update(self.dhSecretKeyPublicMP)
h.update(sharedSecret)
exchangeHash = h.digest()
self.sendPacket(
MSG_KEX_DH_GEX_REPLY,
NS(self.factory.publicKeys[self.keyAlg].blob()) +
self.dhSecretKeyPublicMP +
NS(self.factory.privateKeys[self.keyAlg].sign(exchangeHash)))
self._keySetup(sharedSecret, exchangeHash)
def ssh_NEWKEYS(self, packet):
"""
Called when we get a MSG_NEWKEYS message. No payload.
When we get this, the keys have been set on both sides, and we
start using them to encrypt and authenticate the connection.
@type packet: L{bytes}
@param packet: The message data.
"""
if packet != b'':
self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR,
b"NEWKEYS takes no data")
return
self._newKeys()
def ssh_SERVICE_REQUEST(self, packet):
"""
Called when we get a MSG_SERVICE_REQUEST message. Payload::
string serviceName
The client has requested a service. If we can start the service,
start it; otherwise, disconnect with
DISCONNECT_SERVICE_NOT_AVAILABLE.
@type packet: L{bytes}
@param packet: The message data.
"""
service, rest = getNS(packet)
cls = self.factory.getService(self, service)
if not cls:
self.sendDisconnect(DISCONNECT_SERVICE_NOT_AVAILABLE,
b"don't have service " + service)
return
else:
self.sendPacket(MSG_SERVICE_ACCEPT, NS(service))
self.setService(cls())
class SSHClientTransport(SSHTransportBase):
"""
SSHClientTransport implements the client side of the SSH protocol.
@ivar isClient: since we are always the client, this is always True.
@ivar _gotNewKeys: if we receive a MSG_NEWKEYS message before we are
ready to transition to the new keys, this is set to True so we
can transition when the keys are ready locally.
@ivar x: our Diffie-Hellman private key.
@ivar e: our Diffie-Hellman public key.
@ivar g: the Diffie-Hellman group generator.
@ivar p: the Diffie-Hellman group prime
@ivar instance: the SSHService object we are requesting.
@ivar _dhMinimalGroupSize: Minimal acceptable group size advertised by the
client in MSG_KEX_DH_GEX_REQUEST.
@type _dhMinimalGroupSize: int
@ivar _dhMaximalGroupSize: Maximal acceptable group size advertised by the
client in MSG_KEX_DH_GEX_REQUEST.
@type _dhMaximalGroupSize: int
@ivar _dhPreferredGroupSize: Preferred group size advertised by the client
in MSG_KEX_DH_GEX_REQUEST.
@type _dhPreferredGroupSize: int
"""
isClient = True
# Recommended minimal and maximal values from RFC 4419, 3.
_dhMinimalGroupSize = 1024
_dhMaximalGroupSize = 8192
# FIXME: https://twistedmatrix.com/trac/ticket/8103
# This may need to be more dynamic; compare kexgex_client in
# OpenSSH.
_dhPreferredGroupSize = 2048
def connectionMade(self):
"""
Called when the connection is started with the server. Just sets
up a private instance variable.
"""
SSHTransportBase.connectionMade(self)
self._gotNewKeys = 0
def ssh_KEXINIT(self, packet):
"""
Called when we receive a MSG_KEXINIT message. For a description
of the packet, see SSHTransportBase.ssh_KEXINIT(). Additionally,
this method sends the first key exchange packet.
If the agreed-upon exchange is ECDH, generate a key pair for the
corresponding curve and send the public key.
If the agreed-upon exchange has a fixed prime/generator group,
generate a public key and send it in a MSG_KEXDH_INIT message.
Otherwise, ask for a 2048 bit group with a MSG_KEX_DH_GEX_REQUEST
message.
"""
if SSHTransportBase.ssh_KEXINIT(self, packet) is None:
# Connection was disconnected while doing base processing.
# Maybe no common protocols were agreed.
return
# Are we using ECDH?
if _kex.isEllipticCurve(self.kexAlg):
# Generate the keys
self.ecPriv = self._generateECPrivateKey()
self.ecPub = self.ecPriv.public_key()
# DH_GEX_REQUEST_OLD is the same number we need.
self.sendPacket(
MSG_KEX_DH_GEX_REQUEST_OLD,
NS(self._encodeECPublicKey(self.ecPub))
)
elif _kex.isFixedGroup(self.kexAlg):
# We agreed on a fixed group key exchange algorithm.
self.g, self.p = _kex.getDHGeneratorAndPrime(self.kexAlg)
self._startEphemeralDH()
self.sendPacket(MSG_KEXDH_INIT, self.dhSecretKeyPublicMP)
else:
# We agreed on a dynamic group. Tell the server what range of
# group sizes we accept, and what size we prefer; the server
# will then select a group.
self.sendPacket(
MSG_KEX_DH_GEX_REQUEST,
struct.pack(
'!LLL',
self._dhMinimalGroupSize,
self._dhPreferredGroupSize,
self._dhMaximalGroupSize,
))
def _ssh_KEX_ECDH_REPLY(self, packet):
"""
Called to handle a reply to a ECDH exchange message(KEX_ECDH_INIT).
Like the handler for I{KEXDH_INIT}, this message type has an
overlapping value. This method is called from C{ssh_KEX_DH_GEX_GROUP}
if that method detects a non-group key exchange is in progress.
Payload::
string serverHostKey
string server Elliptic Curve Diffie-Hellman public key
string signature
We verify the host key and continue if it passes verificiation.
Otherwise raise an exception and return.
@type packet: L{bytes}
@param packet: The message data.
@return: A deferred firing when key exchange is complete.
"""
def _continue_KEX_ECDH_REPLY(ignored, hostKey, pubKey, signature):
# Save off the host public key.
theirECHost = hostKey
sharedSecret = self._generateECSharedSecret(self.ecPriv, pubKey)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.ourVersionString))
h.update(NS(self.otherVersionString))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.otherKexInitPayload))
h.update(NS(theirECHost))
h.update(NS(self._encodeECPublicKey(self.ecPub)))
h.update(NS(pubKey))
h.update(sharedSecret)
exchangeHash = h.digest()
if not keys.Key.fromString(theirECHost).verify(
signature, exchangeHash):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED,
b'bad signature')
else:
self._keySetup(sharedSecret, exchangeHash)
# Get the host public key,
# the raw ECDH public key bytes and the signature
hostKey, pubKey, signature, packet = getNS(packet, 3)
# Easier to comment this out for now than to update all of the tests.
#fingerprint = nativeString(base64.b64encode(
# sha256(hostKey).digest()))
fingerprint = b':'.join(
[binascii.hexlify(ch) for ch in iterbytes(md5(hostKey).digest())])
d = self.verifyHostKey(hostKey, fingerprint)
d.addCallback(_continue_KEX_ECDH_REPLY, hostKey, pubKey, signature)
d.addErrback(
lambda unused: self.sendDisconnect(
DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b'bad host key'))
return d
def _ssh_KEXDH_REPLY(self, packet):
"""
Called to handle a reply to a non-group key exchange message
(KEXDH_INIT).
Like the handler for I{KEXDH_INIT}, this message type has an
overlapping value. This method is called from C{ssh_KEX_DH_GEX_GROUP}
if that method detects a non-group key exchange is in progress.
Payload::
string serverHostKey
integer f (server Diffie-Hellman public key)
string signature
We verify the host key by calling verifyHostKey, then continue in
_continueKEXDH_REPLY.
@type packet: L{bytes}
@param packet: The message data.
@return: A deferred firing when key exchange is complete.
"""
pubKey, packet = getNS(packet)
f, packet = getMP(packet)
signature, packet = getNS(packet)
fingerprint = b':'.join([binascii.hexlify(ch) for ch in
iterbytes(md5(pubKey).digest())])
d = self.verifyHostKey(pubKey, fingerprint)
d.addCallback(self._continueKEXDH_REPLY, pubKey, f, signature)
d.addErrback(
lambda unused: self.sendDisconnect(
DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b'bad host key'))
return d
def ssh_KEX_DH_GEX_GROUP(self, packet):
"""
This handles different messages which share an integer value.
If the key exchange does not have a fixed prime/generator group,
we generate a Diffie-Hellman public key and send it in a
MSG_KEX_DH_GEX_INIT message.
Payload::
string g (group generator)
string p (group prime)
@type packet: L{bytes}
@param packet: The message data.
"""
if _kex.isFixedGroup(self.kexAlg):
return self._ssh_KEXDH_REPLY(packet)
elif _kex.isEllipticCurve(self.kexAlg):
return self._ssh_KEX_ECDH_REPLY(packet)
else:
self.p, rest = getMP(packet)
self.g, rest = getMP(rest)
self._startEphemeralDH()
self.sendPacket(MSG_KEX_DH_GEX_INIT, self.dhSecretKeyPublicMP)
def _continueKEXDH_REPLY(self, ignored, pubKey, f, signature):
"""
The host key has been verified, so we generate the keys.
@param ignored: Ignored.
@param pubKey: the public key blob for the server's public key.
@type pubKey: L{str}
@param f: the server's Diffie-Hellman public key.
@type f: L{long}
@param signature: the server's signature, verifying that it has the
correct private key.
@type signature: L{str}
"""
serverKey = keys.Key.fromString(pubKey)
sharedSecret = self._finishEphemeralDH(f)
h = sha1()
h.update(NS(self.ourVersionString))
h.update(NS(self.otherVersionString))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.otherKexInitPayload))
h.update(NS(pubKey))
h.update(self.dhSecretKeyPublicMP)
h.update(MP(f))
h.update(sharedSecret)
exchangeHash = h.digest()
if not serverKey.verify(signature, exchangeHash):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED,
b'bad signature')
return
self._keySetup(sharedSecret, exchangeHash)
def ssh_KEX_DH_GEX_REPLY(self, packet):
"""
Called when we receive a MSG_KEX_DH_GEX_REPLY message. Payload::
string server host key
integer f (server DH public key)
We verify the host key by calling verifyHostKey, then continue in
_continueGEX_REPLY.
@type packet: L{bytes}
@param packet: The message data.
@return: A deferred firing once key exchange is complete.
"""
pubKey, packet = getNS(packet)
f, packet = getMP(packet)
signature, packet = getNS(packet)
fingerprint = b':'.join(
[binascii.hexlify(c) for c in iterbytes(md5(pubKey).digest())])
d = self.verifyHostKey(pubKey, fingerprint)
d.addCallback(self._continueGEX_REPLY, pubKey, f, signature)
d.addErrback(
lambda unused: self.sendDisconnect(
DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b'bad host key'))
return d
def _continueGEX_REPLY(self, ignored, pubKey, f, signature):
"""
The host key has been verified, so we generate the keys.
@param ignored: Ignored.
@param pubKey: the public key blob for the server's public key.
@type pubKey: L{str}
@param f: the server's Diffie-Hellman public key.
@type f: L{long}
@param signature: the server's signature, verifying that it has the
correct private key.
@type signature: L{str}
"""
serverKey = keys.Key.fromString(pubKey)
sharedSecret = self._finishEphemeralDH(f)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.ourVersionString))
h.update(NS(self.otherVersionString))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.otherKexInitPayload))
h.update(NS(pubKey))
h.update(struct.pack(
'!LLL',
self._dhMinimalGroupSize,
self._dhPreferredGroupSize,
self._dhMaximalGroupSize,
))
h.update(MP(self.p))
h.update(MP(self.g))
h.update(self.dhSecretKeyPublicMP)
h.update(MP(f))
h.update(sharedSecret)
exchangeHash = h.digest()
if not serverKey.verify(signature, exchangeHash):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED,
b'bad signature')
return
self._keySetup(sharedSecret, exchangeHash)
def _keySetup(self, sharedSecret, exchangeHash):
"""
See SSHTransportBase._keySetup().
"""
SSHTransportBase._keySetup(self, sharedSecret, exchangeHash)
if self._gotNewKeys:
self.ssh_NEWKEYS(b'')
def ssh_NEWKEYS(self, packet):
"""
Called when we receive a MSG_NEWKEYS message. No payload.
If we've finished setting up our own keys, start using them.
Otherwise, remember that we've received this message.
@type packet: L{bytes}
@param packet: The message data.
"""
if packet != b'':
self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR,
b"NEWKEYS takes no data")
return
if not self.nextEncryptions.encBlockSize:
self._gotNewKeys = 1
return
self._newKeys()
self.connectionSecure()
def ssh_SERVICE_ACCEPT(self, packet):
"""
Called when we receive a MSG_SERVICE_ACCEPT message. Payload::
string service name
Start the service we requested.
@type packet: L{bytes}
@param packet: The message data.
"""
if packet == b'':
log.msg('got SERVICE_ACCEPT without payload')
else:
name = getNS(packet)[0]
if name != self.instance.name:
self.sendDisconnect(
DISCONNECT_PROTOCOL_ERROR,
b"received accept for service we did not request")
self.setService(self.instance)
def requestService(self, instance):
"""
Request that a service be run over this transport.
@type instance: subclass of L{twisted.conch.ssh.service.SSHService}
@param instance: The service to run.
"""
self.sendPacket(MSG_SERVICE_REQUEST, NS(instance.name))
self.instance = instance
# Client methods
def verifyHostKey(self, hostKey, fingerprint):
"""
Returns a Deferred that gets a callback if it is a valid key, or
an errback if not.
@type hostKey: L{bytes}
@param hostKey: The host key to verify.
@type fingerprint: L{bytes}
@param fingerprint: The fingerprint of the key.
@return: A deferred firing with C{True} if the key is valid.
"""
return defer.fail(NotImplementedError())
def connectionSecure(self):
"""
Called when the encryption has been set up. Generally,
requestService() is called to run another service over the transport.
"""
raise NotImplementedError()
class _NullEncryptionContext(object):
"""
An encryption context that does not actually encrypt anything.
"""
def update(self, data):
"""
'Encrypt' new data by doing nothing.
@type data: L{bytes}
@param data: The data to 'encrypt'.
@rtype: L{bytes}
@return: The 'encrypted' data.
"""
return data
class _DummyAlgorithm(object):
"""
An encryption algorithm that does not actually encrypt anything.
"""
block_size = 64
class _DummyCipher(object):
"""
A cipher for the none encryption method.
@ivar block_size: the block size of the encryption. In the case of the
none cipher, this is 8 bytes.
"""
algorithm = _DummyAlgorithm()
def encryptor(self):
"""
Construct a noop encryptor.
@return: The encryptor.
"""
return _NullEncryptionContext()
def decryptor(self):
"""
Construct a noop decryptor.
@return: The decryptor.
"""
return _NullEncryptionContext()
DH_GENERATOR, DH_PRIME = _kex.getDHGeneratorAndPrime(
b'diffie-hellman-group14-sha1')
MSG_DISCONNECT = 1
MSG_IGNORE = 2
MSG_UNIMPLEMENTED = 3
MSG_DEBUG = 4
MSG_SERVICE_REQUEST = 5
MSG_SERVICE_ACCEPT = 6
MSG_KEXINIT = 20
MSG_NEWKEYS = 21
MSG_KEXDH_INIT = 30
MSG_KEXDH_REPLY = 31
MSG_KEX_DH_GEX_REQUEST_OLD = 30
MSG_KEX_DH_GEX_REQUEST = 34
MSG_KEX_DH_GEX_GROUP = 31
MSG_KEX_DH_GEX_INIT = 32
MSG_KEX_DH_GEX_REPLY = 33
DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT = 1
DISCONNECT_PROTOCOL_ERROR = 2
DISCONNECT_KEY_EXCHANGE_FAILED = 3
DISCONNECT_RESERVED = 4
DISCONNECT_MAC_ERROR = 5
DISCONNECT_COMPRESSION_ERROR = 6
DISCONNECT_SERVICE_NOT_AVAILABLE = 7
DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED = 8
DISCONNECT_HOST_KEY_NOT_VERIFIABLE = 9
DISCONNECT_CONNECTION_LOST = 10
DISCONNECT_BY_APPLICATION = 11
DISCONNECT_TOO_MANY_CONNECTIONS = 12
DISCONNECT_AUTH_CANCELLED_BY_USER = 13
DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE = 14
DISCONNECT_ILLEGAL_USER_NAME = 15
messages = {}
for name, value in list(globals().items()):
# Avoid legacy messages which overlap with never ones
if name.startswith('MSG_') and not name.startswith('MSG_KEXDH_'):
messages[value] = name
# Check for regressions (#5352)
if 'MSG_KEXDH_INIT' in messages or 'MSG_KEXDH_REPLY' in messages:
raise RuntimeError(
"legacy SSH mnemonics should not end up in messages dict")
|