aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/Pillow/py3/libImaging/Storage.c
blob: b1b03c515adfe107d598ee5ad51b2c381bd0fd37 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*
 * The Python Imaging Library
 * $Id$
 *
 * imaging storage object
 *
 * This baseline implementation is designed to efficiently handle
 * large images, provided they fit into the available memory.
 *
 * history:
 * 1995-06-15 fl   Created
 * 1995-09-12 fl   Updated API, compiles silently under ANSI C++
 * 1995-11-26 fl   Compiles silently under Borland 4.5 as well
 * 1996-05-05 fl   Correctly test status from Prologue
 * 1997-05-12 fl   Increased THRESHOLD (to speed up Tk interface)
 * 1997-05-30 fl   Added support for floating point images
 * 1997-11-17 fl   Added support for "RGBX" images
 * 1998-01-11 fl   Added support for integer images
 * 1998-03-05 fl   Exported Prologue/Epilogue functions
 * 1998-07-01 fl   Added basic "YCrCb" support
 * 1998-07-03 fl   Attach palette in prologue for "P" images
 * 1998-07-09 hk   Don't report MemoryError on zero-size images
 * 1998-07-12 fl   Change "YCrCb" to "YCbCr" (!)
 * 1998-10-26 fl   Added "I;16" and "I;16B" storage modes (experimental)
 * 1998-12-29 fl   Fixed allocation bug caused by previous fix
 * 1999-02-03 fl   Added "RGBa" and "BGR" modes (experimental)
 * 2001-04-22 fl   Fixed potential memory leak in ImagingCopyPalette
 * 2003-09-26 fl   Added "LA" and "PA" modes (experimental)
 * 2005-10-02 fl   Added image counter
 *
 * Copyright (c) 1998-2005 by Secret Labs AB
 * Copyright (c) 1995-2005 by Fredrik Lundh
 *
 * See the README file for information on usage and redistribution.
 */

#include "Imaging.h"
#include <string.h>

/* --------------------------------------------------------------------
 * Standard image object.
 */

Imaging
ImagingNewPrologueSubtype(const char *mode, int xsize, int ysize, int size) {
    Imaging im;

    /* linesize overflow check, roughly the current largest space req'd */
    if (xsize > (INT_MAX / 4) - 1) {
        return (Imaging)ImagingError_MemoryError();
    }

    im = (Imaging)calloc(1, size);
    if (!im) {
        return (Imaging)ImagingError_MemoryError();
    }

    /* Setup image descriptor */
    im->xsize = xsize;
    im->ysize = ysize;

    im->type = IMAGING_TYPE_UINT8;

    if (strcmp(mode, "1") == 0) {
        /* 1-bit images */
        im->bands = im->pixelsize = 1;
        im->linesize = xsize;

    } else if (strcmp(mode, "P") == 0) {
        /* 8-bit palette mapped images */
        im->bands = im->pixelsize = 1;
        im->linesize = xsize;
        im->palette = ImagingPaletteNew("RGB");

    } else if (strcmp(mode, "PA") == 0) {
        /* 8-bit palette with alpha */
        im->bands = 2;
        im->pixelsize = 4; /* store in image32 memory */
        im->linesize = xsize * 4;
        im->palette = ImagingPaletteNew("RGB");

    } else if (strcmp(mode, "L") == 0) {
        /* 8-bit grayscale (luminance) images */
        im->bands = im->pixelsize = 1;
        im->linesize = xsize;

    } else if (strcmp(mode, "LA") == 0) {
        /* 8-bit grayscale (luminance) with alpha */
        im->bands = 2;
        im->pixelsize = 4; /* store in image32 memory */
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "La") == 0) {
        /* 8-bit grayscale (luminance) with premultiplied alpha */
        im->bands = 2;
        im->pixelsize = 4; /* store in image32 memory */
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "F") == 0) {
        /* 32-bit floating point images */
        im->bands = 1;
        im->pixelsize = 4;
        im->linesize = xsize * 4;
        im->type = IMAGING_TYPE_FLOAT32;

    } else if (strcmp(mode, "I") == 0) {
        /* 32-bit integer images */
        im->bands = 1;
        im->pixelsize = 4;
        im->linesize = xsize * 4;
        im->type = IMAGING_TYPE_INT32;

    } else if (
        strcmp(mode, "I;16") == 0 || strcmp(mode, "I;16L") == 0 ||
        strcmp(mode, "I;16B") == 0 || strcmp(mode, "I;16N") == 0) {
        /* EXPERIMENTAL */
        /* 16-bit raw integer images */
        im->bands = 1;
        im->pixelsize = 2;
        im->linesize = xsize * 2;
        im->type = IMAGING_TYPE_SPECIAL;

    } else if (strcmp(mode, "RGB") == 0) {
        /* 24-bit true colour images */
        im->bands = 3;
        im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "BGR;15") == 0) {
        /* EXPERIMENTAL */
        /* 15-bit reversed true colour */
        im->bands = 3;
        im->pixelsize = 2;
        im->linesize = (xsize * 2 + 3) & -4;
        im->type = IMAGING_TYPE_SPECIAL;

    } else if (strcmp(mode, "BGR;16") == 0) {
        /* EXPERIMENTAL */
        /* 16-bit reversed true colour */
        im->bands = 3;
        im->pixelsize = 2;
        im->linesize = (xsize * 2 + 3) & -4;
        im->type = IMAGING_TYPE_SPECIAL;

    } else if (strcmp(mode, "BGR;24") == 0) {
        /* EXPERIMENTAL */
        /* 24-bit reversed true colour */
        im->bands = 3;
        im->pixelsize = 3;
        im->linesize = (xsize * 3 + 3) & -4;
        im->type = IMAGING_TYPE_SPECIAL;

    } else if (strcmp(mode, "RGBX") == 0) {
        /* 32-bit true colour images with padding */
        im->bands = im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "RGBA") == 0) {
        /* 32-bit true colour images with alpha */
        im->bands = im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "RGBa") == 0) {
        /* 32-bit true colour images with premultiplied alpha */
        im->bands = im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "CMYK") == 0) {
        /* 32-bit colour separation */
        im->bands = im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "YCbCr") == 0) {
        /* 24-bit video format */
        im->bands = 3;
        im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "LAB") == 0) {
        /* 24-bit color, luminance, + 2 color channels */
        /* L is uint8, a,b are int8 */
        im->bands = 3;
        im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else if (strcmp(mode, "HSV") == 0) {
        /* 24-bit color, luminance, + 2 color channels */
        /* L is uint8, a,b are int8 */
        im->bands = 3;
        im->pixelsize = 4;
        im->linesize = xsize * 4;

    } else {
        free(im);
        return (Imaging)ImagingError_ValueError("unrecognized image mode");
    }

    /* Setup image descriptor */
    strcpy(im->mode, mode);

    /* Pointer array (allocate at least one line, to avoid MemoryError
       exceptions on platforms where calloc(0, x) returns NULL) */
    im->image = (char **)calloc((ysize > 0) ? ysize : 1, sizeof(void *));

    if (!im->image) {
        free(im);
        return (Imaging)ImagingError_MemoryError();
    }

    /* Initialize alias pointers to pixel data. */
    switch (im->pixelsize) {
        case 1:
        case 2:
        case 3:
            im->image8 = (UINT8 **)im->image;
            break;
        case 4:
            im->image32 = (INT32 **)im->image;
            break;
    }

    ImagingDefaultArena.stats_new_count += 1;

    return im;
}

Imaging
ImagingNewPrologue(const char *mode, int xsize, int ysize) {
    return ImagingNewPrologueSubtype(
        mode, xsize, ysize, sizeof(struct ImagingMemoryInstance));
}

void
ImagingDelete(Imaging im) {
    if (!im) {
        return;
    }

    if (im->palette) {
        ImagingPaletteDelete(im->palette);
    }

    if (im->destroy) {
        im->destroy(im);
    }

    if (im->image) {
        free(im->image);
    }

    free(im);
}

/* Array Storage Type */
/* ------------------ */
/* Allocate image as an array of line buffers. */

#define IMAGING_PAGE_SIZE (4096)

struct ImagingMemoryArena ImagingDefaultArena = {
    1,                 // alignment
    16 * 1024 * 1024,  // block_size
    0,                 // blocks_max
    0,                 // blocks_cached
    NULL,              // blocks_pool
    0,
    0,
    0,
    0,
    0  // Stats
};

int
ImagingMemorySetBlocksMax(ImagingMemoryArena arena, int blocks_max) {
    void *p;
    /* Free already cached blocks */
    ImagingMemoryClearCache(arena, blocks_max);

    if (blocks_max == 0 && arena->blocks_pool != NULL) {
        free(arena->blocks_pool);
        arena->blocks_pool = NULL;
    } else if (arena->blocks_pool != NULL) {
        p = realloc(arena->blocks_pool, sizeof(*arena->blocks_pool) * blocks_max);
        if (!p) {
            // Leave previous blocks_max value
            return 0;
        }
        arena->blocks_pool = p;
    } else {
        arena->blocks_pool = calloc(sizeof(*arena->blocks_pool), blocks_max);
        if (!arena->blocks_pool) {
            return 0;
        }
    }
    arena->blocks_max = blocks_max;

    return 1;
}

void
ImagingMemoryClearCache(ImagingMemoryArena arena, int new_size) {
    while (arena->blocks_cached > new_size) {
        arena->blocks_cached -= 1;
        free(arena->blocks_pool[arena->blocks_cached].ptr);
        arena->stats_freed_blocks += 1;
    }
}

ImagingMemoryBlock
memory_get_block(ImagingMemoryArena arena, int requested_size, int dirty) {
    ImagingMemoryBlock block = {NULL, 0};

    if (arena->blocks_cached > 0) {
        // Get block from cache
        arena->blocks_cached -= 1;
        block = arena->blocks_pool[arena->blocks_cached];
        // Reallocate if needed
        if (block.size != requested_size) {
            block.ptr = realloc(block.ptr, requested_size);
        }
        if (!block.ptr) {
            // Can't allocate, free previous pointer (it is still valid)
            free(arena->blocks_pool[arena->blocks_cached].ptr);
            arena->stats_freed_blocks += 1;
            return block;
        }
        if (!dirty) {
            memset(block.ptr, 0, requested_size);
        }
        arena->stats_reused_blocks += 1;
        if (block.ptr != arena->blocks_pool[arena->blocks_cached].ptr) {
            arena->stats_reallocated_blocks += 1;
        }
    } else {
        if (dirty) {
            block.ptr = malloc(requested_size);
        } else {
            block.ptr = calloc(1, requested_size);
        }
        arena->stats_allocated_blocks += 1;
    }
    block.size = requested_size;
    return block;
}

void
memory_return_block(ImagingMemoryArena arena, ImagingMemoryBlock block) {
    if (arena->blocks_cached < arena->blocks_max) {
        // Reduce block size
        if (block.size > arena->block_size) {
            block.size = arena->block_size;
            block.ptr = realloc(block.ptr, arena->block_size);
        }
        arena->blocks_pool[arena->blocks_cached] = block;
        arena->blocks_cached += 1;
    } else {
        free(block.ptr);
        arena->stats_freed_blocks += 1;
    }
}

static void
ImagingDestroyArray(Imaging im) {
    int y = 0;

    if (im->blocks) {
        while (im->blocks[y].ptr) {
            memory_return_block(&ImagingDefaultArena, im->blocks[y]);
            y += 1;
        }
        free(im->blocks);
    }
}

Imaging
ImagingAllocateArray(Imaging im, int dirty, int block_size) {
    int y, line_in_block, current_block;
    ImagingMemoryArena arena = &ImagingDefaultArena;
    ImagingMemoryBlock block = {NULL, 0};
    int aligned_linesize, lines_per_block, blocks_count;
    char *aligned_ptr = NULL;

    /* 0-width or 0-height image. No need to do anything */
    if (!im->linesize || !im->ysize) {
        return im;
    }

    aligned_linesize = (im->linesize + arena->alignment - 1) & -arena->alignment;
    lines_per_block = (block_size - (arena->alignment - 1)) / aligned_linesize;
    if (lines_per_block == 0) {
        lines_per_block = 1;
    }
    blocks_count = (im->ysize + lines_per_block - 1) / lines_per_block;
    // printf("NEW size: %dx%d, ls: %d, lpb: %d, blocks: %d\n",
    //        im->xsize, im->ysize, aligned_linesize, lines_per_block, blocks_count);

    /* One extra pointer is always NULL */
    im->blocks = calloc(sizeof(*im->blocks), blocks_count + 1);
    if (!im->blocks) {
        return (Imaging)ImagingError_MemoryError();
    }

    /* Allocate image as an array of lines */
    line_in_block = 0;
    current_block = 0;
    for (y = 0; y < im->ysize; y++) {
        if (line_in_block == 0) {
            int required;
            int lines_remaining = lines_per_block;
            if (lines_remaining > im->ysize - y) {
                lines_remaining = im->ysize - y;
            }
            required = lines_remaining * aligned_linesize + arena->alignment - 1;
            block = memory_get_block(arena, required, dirty);
            if (!block.ptr) {
                ImagingDestroyArray(im);
                return (Imaging)ImagingError_MemoryError();
            }
            im->blocks[current_block] = block;
            /* Bulletproof code from libc _int_memalign */
            aligned_ptr = (char *)(
                ((size_t) (block.ptr + arena->alignment - 1)) &
                -((Py_ssize_t) arena->alignment));
        }

        im->image[y] = aligned_ptr + aligned_linesize * line_in_block;

        line_in_block += 1;
        if (line_in_block >= lines_per_block) {
            /* Reset counter and start new block */
            line_in_block = 0;
            current_block += 1;
        }
    }

    im->destroy = ImagingDestroyArray;

    return im;
}

/* Block Storage Type */
/* ------------------ */
/* Allocate image as a single block. */

static void
ImagingDestroyBlock(Imaging im) {
    if (im->block) {
        free(im->block);
    }
}

Imaging
ImagingAllocateBlock(Imaging im) {
    Py_ssize_t y, i;

    /* overflow check for malloc */
    if (im->linesize && im->ysize > INT_MAX / im->linesize) {
        return (Imaging)ImagingError_MemoryError();
    }

    if (im->ysize * im->linesize <= 0) {
        /* some platforms return NULL for malloc(0); this fix
           prevents MemoryError on zero-sized images on such
           platforms */
        im->block = (char *)malloc(1);
    } else {
        /* malloc check ok, overflow check above */
        im->block = (char *)calloc(im->ysize, im->linesize);
    }

    if (!im->block) {
        return (Imaging)ImagingError_MemoryError();
    }

    for (y = i = 0; y < im->ysize; y++) {
        im->image[y] = im->block + i;
        i += im->linesize;
    }

    im->destroy = ImagingDestroyBlock;

    return im;
}

/* --------------------------------------------------------------------
 * Create a new, internally allocated, image.
 */

Imaging
ImagingNewInternal(const char *mode, int xsize, int ysize, int dirty) {
    Imaging im;

    if (xsize < 0 || ysize < 0) {
        return (Imaging)ImagingError_ValueError("bad image size");
    }

    im = ImagingNewPrologue(mode, xsize, ysize);
    if (!im) {
        return NULL;
    }

    if (ImagingAllocateArray(im, dirty, ImagingDefaultArena.block_size)) {
        return im;
    }

    ImagingError_Clear();

    // Try to allocate the image once more with smallest possible block size
    if (ImagingAllocateArray(im, dirty, IMAGING_PAGE_SIZE)) {
        return im;
    }

    ImagingDelete(im);
    return NULL;
}

Imaging
ImagingNew(const char *mode, int xsize, int ysize) {
    return ImagingNewInternal(mode, xsize, ysize, 0);
}

Imaging
ImagingNewDirty(const char *mode, int xsize, int ysize) {
    return ImagingNewInternal(mode, xsize, ysize, 1);
}

Imaging
ImagingNewBlock(const char *mode, int xsize, int ysize) {
    Imaging im;

    if (xsize < 0 || ysize < 0) {
        return (Imaging)ImagingError_ValueError("bad image size");
    }

    im = ImagingNewPrologue(mode, xsize, ysize);
    if (!im) {
        return NULL;
    }

    if (ImagingAllocateBlock(im)) {
        return im;
    }

    ImagingDelete(im);
    return NULL;
}

Imaging
ImagingNew2Dirty(const char *mode, Imaging imOut, Imaging imIn) {
    /* allocate or validate output image */

    if (imOut) {
        /* make sure images match */
        if (strcmp(imOut->mode, mode) != 0 || imOut->xsize != imIn->xsize ||
            imOut->ysize != imIn->ysize) {
            return ImagingError_Mismatch();
        }
    } else {
        /* create new image */
        imOut = ImagingNewDirty(mode, imIn->xsize, imIn->ysize);
        if (!imOut) {
            return NULL;
        }
    }

    return imOut;
}

void
ImagingCopyPalette(Imaging destination, Imaging source) {
    if (source->palette) {
        if (destination->palette) {
            ImagingPaletteDelete(destination->palette);
        }
        destination->palette = ImagingPaletteDuplicate(source->palette);
    }
}