1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/*
* The Python Imaging Library.
* $Id$
*
* decoder for Sgi RLE data.
*
* history:
* 2017-07-28 mb fixed for images larger than 64KB
* 2017-07-20 mb created
*
* Copyright (c) Mickael Bonfill 2017.
*
* See the README file for information on usage and redistribution.
*/
#include "Imaging.h"
#include "Sgi.h"
#define SGI_HEADER_SIZE 512
#define RLE_COPY_FLAG 0x80
#define RLE_MAX_RUN 0x7f
static void
read4B(UINT32 *dest, UINT8 *buf) {
*dest = (UINT32)((buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]);
}
/*
SgiRleDecoding is done in a single channel row oriented set of RLE chunks.
* The file is arranged as
- SGI Header
- Rle Offset Table
- Rle Length Table
- Scanline Data
* Each RLE atom is c->bpc bytes wide (1 or 2)
* Each RLE Chunk is [specifier atom] [ 1 or n data atoms ]
* Copy Atoms are a byte with the high bit set, and the low 7 are
the number of bytes to copy from the source to the
destination. e.g.
CBBBBBBBB or 0CHLHLHLHLHLHL (B=byte, H/L = Hi low bytes)
* Run atoms do not have the high bit set, and the low 7 bits are
the number of copies of the next atom to copy to the
destination. e.g.:
RB -> BBBBB or RHL -> HLHLHLHLHL
The upshot of this is, there is no way to determine the required
length of the input buffer from reloffset and rlelength without
going through the data at that scan line.
Furthermore, there's no requirement that individual scan lines
pointed to from the rleoffset table are in any sort of order or
used only once, or even disjoint. There's also no requirement that
all of the data in the scan line area of the image file be used
*/
static int
expandrow(UINT8 *dest, UINT8 *src, int n, int z, int xsize, UINT8 *end_of_buffer) {
/*
* n here is the number of rlechunks
* z is the number of channels, for calculating the interleave
* offset to go to RGBA style pixels
* xsize is the row width
* end_of_buffer is the address of the end of the input buffer
*/
UINT8 pixel, count;
int x = 0;
for (; n > 0; n--) {
if (src > end_of_buffer) {
return -1;
}
pixel = *src++;
if (n == 1 && pixel != 0) {
return n;
}
count = pixel & RLE_MAX_RUN;
if (!count) {
return count;
}
if (x + count > xsize) {
return -1;
}
x += count;
if (pixel & RLE_COPY_FLAG) {
if (src + count > end_of_buffer) {
return -1;
}
while (count--) {
*dest = *src++;
dest += z;
}
} else {
if (src > end_of_buffer) {
return -1;
}
pixel = *src++;
while (count--) {
*dest = pixel;
dest += z;
}
}
}
return 0;
}
static int
expandrow2(UINT8 *dest, const UINT8 *src, int n, int z, int xsize, UINT8 *end_of_buffer) {
UINT8 pixel, count;
int x = 0;
for (; n > 0; n--) {
if (src + 1 > end_of_buffer) {
return -1;
}
pixel = src[1];
src += 2;
if (n == 1 && pixel != 0) {
return n;
}
count = pixel & RLE_MAX_RUN;
if (!count) {
return count;
}
if (x + count > xsize) {
return -1;
}
x += count;
if (pixel & RLE_COPY_FLAG) {
if (src + 2 * count > end_of_buffer) {
return -1;
}
while (count--) {
memcpy(dest, src, 2);
src += 2;
dest += z * 2;
}
} else {
if (src + 2 > end_of_buffer) {
return -1;
}
while (count--) {
memcpy(dest, src, 2);
dest += z * 2;
}
src += 2;
}
}
return 0;
}
int
ImagingSgiRleDecode(Imaging im, ImagingCodecState state, UINT8 *buf, Py_ssize_t bytes) {
UINT8 *ptr;
SGISTATE *c;
int err = 0;
int status;
/* size check */
if (im->xsize > INT_MAX / im->bands || im->ysize > INT_MAX / im->bands) {
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
/* Get all data from File descriptor */
c = (SGISTATE *)state->context;
_imaging_seek_pyFd(state->fd, 0L, SEEK_END);
c->bufsize = _imaging_tell_pyFd(state->fd);
c->bufsize -= SGI_HEADER_SIZE;
c->tablen = im->bands * im->ysize;
/* below, we populate the starttab and lentab into the bufsize,
each with 4 bytes per element of tablen
Check here before we allocate any memory
*/
if (c->bufsize < 8 * c->tablen) {
state->errcode = IMAGING_CODEC_OVERRUN;
return -1;
}
ptr = malloc(sizeof(UINT8) * c->bufsize);
if (!ptr) {
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
_imaging_seek_pyFd(state->fd, SGI_HEADER_SIZE, SEEK_SET);
if (_imaging_read_pyFd(state->fd, (char *)ptr, c->bufsize) != c->bufsize) {
state->errcode = IMAGING_CODEC_UNKNOWN;
return -1;
}
/* decoder initialization */
state->count = 0;
state->y = 0;
if (state->ystep < 0) {
state->y = im->ysize - 1;
} else {
state->ystep = 1;
}
/* Allocate memory for RLE tables and rows */
free(state->buffer);
state->buffer = NULL;
/* malloc overflow check above */
state->buffer = calloc(im->xsize * im->bands, sizeof(UINT8) * 2);
c->starttab = calloc(c->tablen, sizeof(UINT32));
c->lengthtab = calloc(c->tablen, sizeof(UINT32));
if (!state->buffer || !c->starttab || !c->lengthtab) {
err = IMAGING_CODEC_MEMORY;
goto sgi_finish_decode;
}
/* populate offsets table */
for (c->tabindex = 0, c->bufindex = 0; c->tabindex < c->tablen;
c->tabindex++, c->bufindex += 4) {
read4B(&c->starttab[c->tabindex], &ptr[c->bufindex]);
}
/* populate lengths table */
for (c->tabindex = 0, c->bufindex = c->tablen * sizeof(UINT32);
c->tabindex < c->tablen;
c->tabindex++, c->bufindex += 4) {
read4B(&c->lengthtab[c->tabindex], &ptr[c->bufindex]);
}
/* read compressed rows */
for (c->rowno = 0; c->rowno < im->ysize; c->rowno++, state->y += state->ystep) {
for (c->channo = 0; c->channo < im->bands; c->channo++) {
c->rleoffset = c->starttab[c->rowno + c->channo * im->ysize];
c->rlelength = c->lengthtab[c->rowno + c->channo * im->ysize];
// Check for underflow of rleoffset-SGI_HEADER_SIZE
if (c->rleoffset < SGI_HEADER_SIZE) {
state->errcode = IMAGING_CODEC_OVERRUN;
goto sgi_finish_decode;
}
c->rleoffset -= SGI_HEADER_SIZE;
/* row decompression */
if (c->bpc == 1) {
status = expandrow(
&state->buffer[c->channo],
&ptr[c->rleoffset],
c->rlelength,
im->bands,
im->xsize,
&ptr[c->bufsize-1]);
} else {
status = expandrow2(
&state->buffer[c->channo * 2],
&ptr[c->rleoffset],
c->rlelength,
im->bands,
im->xsize,
&ptr[c->bufsize-1]);
}
if (status == -1) {
state->errcode = IMAGING_CODEC_OVERRUN;
goto sgi_finish_decode;
} else if (status == 1) {
goto sgi_finish_decode;
}
}
/* store decompressed data in image */
state->shuffle((UINT8 *)im->image[state->y], state->buffer, im->xsize);
}
sgi_finish_decode:;
free(c->starttab);
free(c->lengthtab);
free(ptr);
if (err != 0) {
state->errcode = err;
return -1;
}
return 0;
}
|