1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
/*
* The Python Imaging Library
* $Id$
*
* heap data type used by the image quantizer
*
* history:
* 98-09-10 tjs Contributed
* 98-12-29 fl Added to PIL 1.0b1
*
* Written by Toby J Sargeant <tjs@longford.cs.monash.edu.au>.
*
* Copyright (c) 1998 by Toby J Sargeant
* Copyright (c) 1998 by Secret Labs AB
*
* See the README file for information on usage and redistribution.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include "QuantHeap.h"
struct _Heap {
void **heap;
unsigned int heapsize;
unsigned int heapcount;
HeapCmpFunc cf;
};
#define INITIAL_SIZE 256
// #define DEBUG
#ifdef DEBUG
static int
_heap_test(Heap *);
#endif
void
ImagingQuantHeapFree(Heap *h) {
free(h->heap);
free(h);
}
static int
_heap_grow(Heap *h, unsigned int newsize) {
void *newheap;
if (!newsize) {
newsize = h->heapsize << 1;
}
if (newsize < h->heapsize) {
return 0;
}
if (newsize > INT_MAX / sizeof(void *)) {
return 0;
}
/* malloc check ok, using calloc for overflow, also checking
above due to memcpy below*/
newheap = calloc(newsize, sizeof(void *));
if (!newheap) {
return 0;
}
memcpy(newheap, h->heap, sizeof(void *) * h->heapsize);
free(h->heap);
h->heap = newheap;
h->heapsize = newsize;
return 1;
}
#ifdef DEBUG
static int
_heap_test(Heap *h) {
unsigned int k;
for (k = 1; k * 2 <= h->heapcount; k++) {
if (h->cf(h, h->heap[k], h->heap[k * 2]) < 0) {
printf("heap is bad\n");
return 0;
}
if (k * 2 + 1 <= h->heapcount && h->cf(h, h->heap[k], h->heap[k * 2 + 1]) < 0) {
printf("heap is bad\n");
return 0;
}
}
return 1;
}
#endif
int
ImagingQuantHeapRemove(Heap *h, void **r) {
unsigned int k, l;
void *v;
if (!h->heapcount) {
return 0;
}
*r = h->heap[1];
v = h->heap[h->heapcount--];
for (k = 1; k * 2 <= h->heapcount; k = l) {
l = k * 2;
if (l < h->heapcount) {
if (h->cf(h, h->heap[l], h->heap[l + 1]) < 0) {
l++;
}
}
if (h->cf(h, v, h->heap[l]) > 0) {
break;
}
h->heap[k] = h->heap[l];
}
h->heap[k] = v;
#ifdef DEBUG
if (!_heap_test(h)) {
printf("oops - heap_remove messed up the heap\n");
exit(1);
}
#endif
return 1;
}
int
ImagingQuantHeapAdd(Heap *h, void *val) {
int k;
if (h->heapcount == h->heapsize - 1) {
_heap_grow(h, 0);
}
k = ++h->heapcount;
while (k != 1) {
if (h->cf(h, val, h->heap[k / 2]) <= 0) {
break;
}
h->heap[k] = h->heap[k / 2];
k >>= 1;
}
h->heap[k] = val;
#ifdef DEBUG
if (!_heap_test(h)) {
printf("oops - heap_add messed up the heap\n");
exit(1);
}
#endif
return 1;
}
int
ImagingQuantHeapTop(Heap *h, void **r) {
if (!h->heapcount) {
return 0;
}
*r = h->heap[1];
return 1;
}
Heap *
ImagingQuantHeapNew(HeapCmpFunc cf) {
Heap *h;
/* malloc check ok, small constant allocation */
h = malloc(sizeof(Heap));
if (!h) {
return NULL;
}
h->heapsize = INITIAL_SIZE;
/* malloc check ok, using calloc for overflow */
h->heap = calloc(h->heapsize, sizeof(void *));
if (!h->heap) {
free(h);
return NULL;
}
h->heapcount = 0;
h->cf = cf;
return h;
}
|