blob: 182eb62a7e6d90ec7624cf42c7100829e95899f0 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
/*
* The Python Imaging Library
* $Id$
*
* colour and luminance matrix transforms
*
* history:
* 1996-05-18 fl: created (brute force implementation)
*
* Copyright (c) Fredrik Lundh 1996.
* Copyright (c) Secret Labs AB 1997.
*
* See the README file for information on usage and redistribution.
*/
#include "Imaging.h"
#define CLIPF(v) ((v <= 0.0) ? 0 : (v >= 255.0F) ? 255 : (UINT8)v)
Imaging
ImagingConvertMatrix(Imaging im, const char *mode, float m[]) {
Imaging imOut;
int x, y;
ImagingSectionCookie cookie;
/* Assume there's enough data in the buffer */
if (!im) {
return (Imaging)ImagingError_ModeError();
}
if (strcmp(mode, "L") == 0 && im->bands == 3) {
imOut = ImagingNewDirty("L", im->xsize, im->ysize);
if (!imOut) {
return NULL;
}
ImagingSectionEnter(&cookie);
for (y = 0; y < im->ysize; y++) {
UINT8 *in = (UINT8 *)im->image[y];
UINT8 *out = (UINT8 *)imOut->image[y];
for (x = 0; x < im->xsize; x++) {
float v = m[0] * in[0] + m[1] * in[1] + m[2] * in[2] + m[3] + 0.5;
out[x] = CLIPF(v);
in += 4;
}
}
ImagingSectionLeave(&cookie);
} else if (strlen(mode) == 3 && im->bands == 3) {
imOut = ImagingNewDirty(mode, im->xsize, im->ysize);
if (!imOut) {
return NULL;
}
for (y = 0; y < im->ysize; y++) {
UINT8 *in = (UINT8 *)im->image[y];
UINT8 *out = (UINT8 *)imOut->image[y];
ImagingSectionEnter(&cookie);
for (x = 0; x < im->xsize; x++) {
float v0 = m[0] * in[0] + m[1] * in[1] + m[2] * in[2] + m[3] + 0.5;
float v1 = m[4] * in[0] + m[5] * in[1] + m[6] * in[2] + m[7] + 0.5;
float v2 = m[8] * in[0] + m[9] * in[1] + m[10] * in[2] + m[11] + 0.5;
out[0] = CLIPF(v0);
out[1] = CLIPF(v1);
out[2] = CLIPF(v2);
in += 4;
out += 4;
}
ImagingSectionLeave(&cookie);
}
} else {
return (Imaging)ImagingError_ModeError();
}
return imOut;
}
|