aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/Pillow/py3/libImaging/Fill.c
blob: 5b6bfb89cd80cf2083a9b14e74bfe3f414462b5d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
 * The Python Imaging Library
 * $Id$
 *
 * fill image with constant pixel value
 *
 * history:
 * 95-11-26 fl moved from Imaging.c
 * 96-05-17 fl added radial fill, renamed wedge to linear
 * 98-06-23 fl changed ImageFill signature
 *
 * Copyright (c) Secret Labs AB 1997-98.  All rights reserved.
 * Copyright (c) Fredrik Lundh 1995-96.
 *
 * See the README file for information on usage and redistribution.
 */

#include "Imaging.h"

#include "math.h"

Imaging
ImagingFill(Imaging im, const void *colour) {
    int x, y;
    ImagingSectionCookie cookie;

    /* 0-width or 0-height image. No need to do anything */
    if (!im->linesize || !im->ysize) {
        return im;
    }

    if (im->type == IMAGING_TYPE_SPECIAL) {
        /* use generic API */
        ImagingAccess access = ImagingAccessNew(im);
        if (access) {
            for (y = 0; y < im->ysize; y++) {
                for (x = 0; x < im->xsize; x++) {
                    access->put_pixel(im, x, y, colour);
                }
            }
            ImagingAccessDelete(im, access);
        } else {
            /* wipe the image */
            for (y = 0; y < im->ysize; y++) {
                memset(im->image[y], 0, im->linesize);
            }
        }
    } else {
        INT32 c = 0L;
        ImagingSectionEnter(&cookie);
        memcpy(&c, colour, im->pixelsize);
        if (im->image32 && c != 0L) {
            for (y = 0; y < im->ysize; y++) {
                for (x = 0; x < im->xsize; x++) {
                    im->image32[y][x] = c;
                }
            }
        } else {
            unsigned char cc = (unsigned char)*(UINT8 *)colour;
            for (y = 0; y < im->ysize; y++) {
                memset(im->image[y], cc, im->linesize);
            }
        }
        ImagingSectionLeave(&cookie);
    }

    return im;
}

Imaging
ImagingFillLinearGradient(const char *mode) {
    Imaging im;
    int y;

    if (strlen(mode) != 1) {
        return (Imaging)ImagingError_ModeError();
    }

    im = ImagingNewDirty(mode, 256, 256);
    if (!im) {
        return NULL;
    }

    if (im->image8) {
        for (y = 0; y < 256; y++) {
            memset(im->image8[y], (unsigned char)y, 256);
        }
    } else {
        int x;
        for (y = 0; y < 256; y++) {
            for (x = 0; x < 256; x++) {
                if (im->type == IMAGING_TYPE_FLOAT32) {
                    IMAGING_PIXEL_FLOAT32(im, x, y) = y;
                } else {
                    IMAGING_PIXEL_INT32(im, x, y) = y;
                }
            }
        }
    }

    return im;
}

Imaging
ImagingFillRadialGradient(const char *mode) {
    Imaging im;
    int x, y;
    int d;

    if (strlen(mode) != 1) {
        return (Imaging)ImagingError_ModeError();
    }

    im = ImagingNewDirty(mode, 256, 256);
    if (!im) {
        return NULL;
    }

    for (y = 0; y < 256; y++) {
        for (x = 0; x < 256; x++) {
            d = (int)sqrt(
                (double)((x - 128) * (x - 128) + (y - 128) * (y - 128)) * 2.0);
            if (d >= 255) {
                d = 255;
            }
            if (im->image8) {
                im->image8[y][x] = d;
            } else {
                if (im->type == IMAGING_TYPE_FLOAT32) {
                    IMAGING_PIXEL_FLOAT32(im, x, y) = d;
                } else {
                    IMAGING_PIXEL_INT32(im, x, y) = d;
                }
            }
        }
    }

    return im;
}