aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/Pillow/py3/PIL/ImageStat.py
blob: 13864e59cfc7b4fef7e272bd3716c9ea7b3a577f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#
# The Python Imaging Library.
# $Id$
#
# global image statistics
#
# History:
# 1996-04-05 fl   Created
# 1997-05-21 fl   Added mask; added rms, var, stddev attributes
# 1997-08-05 fl   Added median
# 1998-07-05 hk   Fixed integer overflow error
#
# Notes:
# This class shows how to implement delayed evaluation of attributes.
# To get a certain value, simply access the corresponding attribute.
# The __getattr__ dispatcher takes care of the rest.
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996-97.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations

import math


class Stat:
    def __init__(self, image_or_list, mask=None):
        try:
            if mask:
                self.h = image_or_list.histogram(mask)
            else:
                self.h = image_or_list.histogram()
        except AttributeError:
            self.h = image_or_list  # assume it to be a histogram list
        if not isinstance(self.h, list):
            msg = "first argument must be image or list"
            raise TypeError(msg)
        self.bands = list(range(len(self.h) // 256))

    def __getattr__(self, id):
        """Calculate missing attribute"""
        if id[:4] == "_get":
            raise AttributeError(id)
        # calculate missing attribute
        v = getattr(self, "_get" + id)()
        setattr(self, id, v)
        return v

    def _getextrema(self):
        """Get min/max values for each band in the image"""

        def minmax(histogram):
            res_min, res_max = 255, 0
            for i in range(256):
                if histogram[i]:
                    res_min = i
                    break
            for i in range(255, -1, -1):
                if histogram[i]:
                    res_max = i
                    break
            return res_min, res_max

        return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]

    def _getcount(self):
        """Get total number of pixels in each layer"""
        return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]

    def _getsum(self):
        """Get sum of all pixels in each layer"""

        v = []
        for i in range(0, len(self.h), 256):
            layer_sum = 0.0
            for j in range(256):
                layer_sum += j * self.h[i + j]
            v.append(layer_sum)
        return v

    def _getsum2(self):
        """Get squared sum of all pixels in each layer"""

        v = []
        for i in range(0, len(self.h), 256):
            sum2 = 0.0
            for j in range(256):
                sum2 += (j**2) * float(self.h[i + j])
            v.append(sum2)
        return v

    def _getmean(self):
        """Get average pixel level for each layer"""
        return [self.sum[i] / self.count[i] for i in self.bands]

    def _getmedian(self):
        """Get median pixel level for each layer"""

        v = []
        for i in self.bands:
            s = 0
            half = self.count[i] // 2
            b = i * 256
            for j in range(256):
                s = s + self.h[b + j]
                if s > half:
                    break
            v.append(j)
        return v

    def _getrms(self):
        """Get RMS for each layer"""
        return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]

    def _getvar(self):
        """Get variance for each layer"""
        return [
            (self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
            for i in self.bands
        ]

    def _getstddev(self):
        """Get standard deviation for each layer"""
        return [math.sqrt(self.var[i]) for i in self.bands]


Global = Stat  # compatibility