aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/Pillow/py3/PIL/ImageChops.py
blob: 29a5c995fd802c9be16784f80707cfecb88b2002 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#
# The Python Imaging Library.
# $Id$
#
# standard channel operations
#
# History:
# 1996-03-24 fl   Created
# 1996-08-13 fl   Added logical operations (for "1" images)
# 2000-10-12 fl   Added offset method (from Image.py)
#
# Copyright (c) 1997-2000 by Secret Labs AB
# Copyright (c) 1996-2000 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#

from __future__ import annotations

from . import Image


def constant(image: Image.Image, value: int) -> Image.Image:
    """Fill a channel with a given gray level.

    :rtype: :py:class:`~PIL.Image.Image`
    """

    return Image.new("L", image.size, value)


def duplicate(image: Image.Image) -> Image.Image:
    """Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`.

    :rtype: :py:class:`~PIL.Image.Image`
    """

    return image.copy()


def invert(image: Image.Image) -> Image.Image:
    """
    Invert an image (channel). ::

        out = MAX - image

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image.load()
    return image._new(image.im.chop_invert())


def lighter(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Compares the two images, pixel by pixel, and returns a new image containing
    the lighter values. ::

        out = max(image1, image2)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_lighter(image2.im))


def darker(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Compares the two images, pixel by pixel, and returns a new image containing
    the darker values. ::

        out = min(image1, image2)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_darker(image2.im))


def difference(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Returns the absolute value of the pixel-by-pixel difference between the two
    images. ::

        out = abs(image1 - image2)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_difference(image2.im))


def multiply(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Superimposes two images on top of each other.

    If you multiply an image with a solid black image, the result is black. If
    you multiply with a solid white image, the image is unaffected. ::

        out = image1 * image2 / MAX

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_multiply(image2.im))


def screen(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Superimposes two inverted images on top of each other. ::

        out = MAX - ((MAX - image1) * (MAX - image2) / MAX)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_screen(image2.im))


def soft_light(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Superimposes two images on top of each other using the Soft Light algorithm

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_soft_light(image2.im))


def hard_light(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Superimposes two images on top of each other using the Hard Light algorithm

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_hard_light(image2.im))


def overlay(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """
    Superimposes two images on top of each other using the Overlay algorithm

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_overlay(image2.im))


def add(
    image1: Image.Image, image2: Image.Image, scale: float = 1.0, offset: float = 0
) -> Image.Image:
    """
    Adds two images, dividing the result by scale and adding the
    offset. If omitted, scale defaults to 1.0, and offset to 0.0. ::

        out = ((image1 + image2) / scale + offset)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_add(image2.im, scale, offset))


def subtract(
    image1: Image.Image, image2: Image.Image, scale: float = 1.0, offset: float = 0
) -> Image.Image:
    """
    Subtracts two images, dividing the result by scale and adding the offset.
    If omitted, scale defaults to 1.0, and offset to 0.0. ::

        out = ((image1 - image2) / scale + offset)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_subtract(image2.im, scale, offset))


def add_modulo(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """Add two images, without clipping the result. ::

        out = ((image1 + image2) % MAX)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_add_modulo(image2.im))


def subtract_modulo(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """Subtract two images, without clipping the result. ::

        out = ((image1 - image2) % MAX)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_subtract_modulo(image2.im))


def logical_and(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """Logical AND between two images.

    Both of the images must have mode "1". If you would like to perform a
    logical AND on an image with a mode other than "1", try
    :py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask
    as the second image. ::

        out = ((image1 and image2) % MAX)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_and(image2.im))


def logical_or(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """Logical OR between two images.

    Both of the images must have mode "1". ::

        out = ((image1 or image2) % MAX)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_or(image2.im))


def logical_xor(image1: Image.Image, image2: Image.Image) -> Image.Image:
    """Logical XOR between two images.

    Both of the images must have mode "1". ::

        out = ((bool(image1) != bool(image2)) % MAX)

    :rtype: :py:class:`~PIL.Image.Image`
    """

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_xor(image2.im))


def blend(image1: Image.Image, image2: Image.Image, alpha: float) -> Image.Image:
    """Blend images using constant transparency weight. Alias for
    :py:func:`PIL.Image.blend`.

    :rtype: :py:class:`~PIL.Image.Image`
    """

    return Image.blend(image1, image2, alpha)


def composite(
    image1: Image.Image, image2: Image.Image, mask: Image.Image
) -> Image.Image:
    """Create composite using transparency mask. Alias for
    :py:func:`PIL.Image.composite`.

    :rtype: :py:class:`~PIL.Image.Image`
    """

    return Image.composite(image1, image2, mask)


def offset(image: Image.Image, xoffset: int, yoffset: int | None = None) -> Image.Image:
    """Returns a copy of the image where data has been offset by the given
    distances. Data wraps around the edges. If ``yoffset`` is omitted, it
    is assumed to be equal to ``xoffset``.

    :param image: Input image.
    :param xoffset: The horizontal distance.
    :param yoffset: The vertical distance.  If omitted, both
        distances are set to the same value.
    :rtype: :py:class:`~PIL.Image.Image`
    """

    if yoffset is None:
        yoffset = xoffset
    image.load()
    return image._new(image.im.offset(xoffset, yoffset))