1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
/*
* The Python Imaging Library
* $Id$
*
* various special effects and image generators
*
* history:
* 1997-05-21 fl Just for fun
* 1997-06-05 fl Added mandelbrot generator
* 2003-05-24 fl Added perlin_turbulence generator (in progress)
*
* Copyright (c) 1997-2003 by Fredrik Lundh.
* Copyright (c) 1997 by Secret Labs AB.
*
* See the README file for information on usage and redistribution.
*/
#include "Imaging.h"
#include <math.h>
Imaging
ImagingEffectMandelbrot(int xsize, int ysize, double extent[4], int quality)
{
/* Generate a Mandelbrot set covering the given extent */
Imaging im;
int x, y, k;
double width, height;
double x1, y1, xi2, yi2, cr, ci, radius;
double dr, di;
/* Check arguments */
width = extent[2] - extent[0];
height = extent[3] - extent[1];
if (width < 0.0 || height < 0.0 || quality < 2)
return (Imaging) ImagingError_ValueError(NULL);
im = ImagingNewDirty("L", xsize, ysize);
if (!im)
return NULL;
dr = width/(xsize-1);
di = height/(ysize-1);
radius = 100.0;
for (y = 0; y < ysize; y++) {
UINT8* buf = im->image8[y];
for (x = 0; x < xsize; x++) {
x1 = y1 = xi2 = yi2 = 0.0;
cr = x*dr + extent[0];
ci = y*di + extent[1];
for (k = 1;; k++) {
y1 = 2*x1*y1 + ci;
x1 = xi2 - yi2 + cr;
xi2 = x1*x1;
yi2 = y1*y1;
if ((xi2 + yi2) > radius) {
buf[x] = k*255/quality;
break;
}
if (k > quality) {
buf[x] = 0;
break;
}
}
}
}
return im;
}
Imaging
ImagingEffectNoise(int xsize, int ysize, float sigma)
{
/* Generate Gaussian noise centered around 128 */
Imaging imOut;
int x, y;
int nextok;
double this, next;
imOut = ImagingNewDirty("L", xsize, ysize);
if (!imOut)
return NULL;
next = 0.0;
nextok = 0;
for (y = 0; y < imOut->ysize; y++) {
UINT8* out = imOut->image8[y];
for (x = 0; x < imOut->xsize; x++) {
if (nextok) {
this = next;
nextok = 0;
} else {
/* after numerical recipes */
double v1, v2, radius, factor;
do {
v1 = rand()*(2.0/RAND_MAX) - 1.0;
v2 = rand()*(2.0/RAND_MAX) - 1.0;
radius= v1*v1 + v2*v2;
} while (radius >= 1.0);
factor = sqrt(-2.0*log(radius)/radius);
this = factor * v1;
next = factor * v2;
}
out[x] = CLIP8(128 + sigma * this);
}
}
return imOut;
}
Imaging
ImagingEffectSpread(Imaging imIn, int distance)
{
/* Randomly spread pixels in an image */
Imaging imOut;
int x, y;
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize);
if (!imOut)
return NULL;
#define SPREAD(type, image)\
for (y = 0; y < imOut->ysize; y++)\
for (x = 0; x < imOut->xsize; x++) {\
int xx = x + (rand() % distance) - distance/2;\
int yy = y + (rand() % distance) - distance/2;\
if (xx >= 0 && xx < imIn->xsize && yy >= 0 && yy < imIn->ysize) {\
imOut->image[yy][xx] = imIn->image[y][x];\
imOut->image[y][x] = imIn->image[yy][xx];\
} else\
imOut->image[y][x] = imIn->image[y][x];\
}
if (imIn->image8) {
SPREAD(UINT8, image8);
} else {
SPREAD(INT32, image32);
}
ImagingCopyPalette(imOut, imIn);
return imOut;
}
|