aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/Automat/py3/automat/_methodical.py
blob: 6c46c11e89ec3b53aa3de31f9a52d82b8be08925 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# -*- test-case-name: automat._test.test_methodical -*-
from __future__ import annotations

import collections
import sys
from dataclasses import dataclass, field
from functools import wraps
from inspect import getfullargspec as getArgsSpec
from itertools import count
from typing import Any, Callable, Hashable, Iterable, TypeVar

if sys.version_info < (3, 10):
    from typing_extensions import TypeAlias
else:
    from typing import TypeAlias

from ._core import Automaton, OutputTracer, Tracer, Transitioner
from ._introspection import preserveName

ArgSpec = collections.namedtuple(
    "ArgSpec",
    [
        "args",
        "varargs",
        "varkw",
        "defaults",
        "kwonlyargs",
        "kwonlydefaults",
        "annotations",
    ],
)


def _getArgSpec(func):
    """
    Normalize inspect.ArgSpec across python versions
    and convert mutable attributes to immutable types.

    :param Callable func: A function.
    :return: The function's ArgSpec.
    :rtype: ArgSpec
    """
    spec = getArgsSpec(func)
    return ArgSpec(
        args=tuple(spec.args),
        varargs=spec.varargs,
        varkw=spec.varkw,
        defaults=spec.defaults if spec.defaults else (),
        kwonlyargs=tuple(spec.kwonlyargs),
        kwonlydefaults=(
            tuple(spec.kwonlydefaults.items()) if spec.kwonlydefaults else ()
        ),
        annotations=tuple(spec.annotations.items()),
    )


def _getArgNames(spec):
    """
    Get the name of all arguments defined in a function signature.

    The name of * and ** arguments is normalized to "*args" and "**kwargs".

    :param ArgSpec spec: A function to interrogate for a signature.
    :return: The set of all argument names in `func`s signature.
    :rtype: Set[str]
    """
    return set(
        spec.args
        + spec.kwonlyargs
        + (("*args",) if spec.varargs else ())
        + (("**kwargs",) if spec.varkw else ())
        + spec.annotations
    )


def _keywords_only(f):
    """
    Decorate a function so all its arguments must be passed by keyword.

    A useful utility for decorators that take arguments so that they don't
    accidentally get passed the thing they're decorating as their first
    argument.

    Only works for methods right now.
    """

    @wraps(f)
    def g(self, **kw):
        return f(self, **kw)

    return g


@dataclass(frozen=True)
class MethodicalState(object):
    """
    A state for a L{MethodicalMachine}.
    """

    machine: MethodicalMachine = field(repr=False)
    method: Callable[..., Any] = field()
    serialized: bool = field(repr=False)

    def upon(
        self,
        input: MethodicalInput,
        enter: MethodicalState | None = None,
        outputs: Iterable[MethodicalOutput] | None = None,
        collector: Callable[[Iterable[T]], object] = list,
    ) -> None:
        """
        Declare a state transition within the L{MethodicalMachine} associated
        with this L{MethodicalState}: upon the receipt of the `input`, enter
        the `state`, emitting each output in `outputs`.

        @param input: The input triggering a state transition.

        @param enter: The resulting state.

        @param outputs: The outputs to be triggered as a result of the declared
            state transition.

        @param collector: The function to be used when collecting output return
            values.

        @raises TypeError: if any of the `outputs` signatures do not match the
            `inputs` signature.

        @raises ValueError: if the state transition from `self` via `input` has
            already been defined.
        """
        if enter is None:
            enter = self
        if outputs is None:
            outputs = []
        inputArgs = _getArgNames(input.argSpec)
        for output in outputs:
            outputArgs = _getArgNames(output.argSpec)
            if not outputArgs.issubset(inputArgs):
                raise TypeError(
                    "method {input} signature {inputSignature} "
                    "does not match output {output} "
                    "signature {outputSignature}".format(
                        input=input.method.__name__,
                        output=output.method.__name__,
                        inputSignature=getArgsSpec(input.method),
                        outputSignature=getArgsSpec(output.method),
                    )
                )
        self.machine._oneTransition(self, input, enter, outputs, collector)

    def _name(self) -> str:
        return self.method.__name__


def _transitionerFromInstance(
    oself: object,
    symbol: str,
    automaton: Automaton[MethodicalState, MethodicalInput, MethodicalOutput],
) -> Transitioner[MethodicalState, MethodicalInput, MethodicalOutput]:
    """
    Get a L{Transitioner}
    """
    transitioner = getattr(oself, symbol, None)
    if transitioner is None:
        transitioner = Transitioner(
            automaton,
            automaton.initialState,
        )
        setattr(oself, symbol, transitioner)
    return transitioner


def _empty():
    pass


def _docstring():
    """docstring"""


def assertNoCode(f: Callable[..., Any]) -> None:
    # The function body must be empty, i.e. "pass" or "return None", which
    # both yield the same bytecode: LOAD_CONST (None), RETURN_VALUE. We also
    # accept functions with only a docstring, which yields slightly different
    # bytecode, because the "None" is put in a different constant slot.

    # Unfortunately, this does not catch function bodies that return a
    # constant value, e.g. "return 1", because their code is identical to a
    # "return None". They differ in the contents of their constant table, but
    # checking that would require us to parse the bytecode, find the index
    # being returned, then making sure the table has a None at that index.

    if f.__code__.co_code not in (_empty.__code__.co_code, _docstring.__code__.co_code):
        raise ValueError("function body must be empty")


def _filterArgs(args, kwargs, inputSpec, outputSpec):
    """
    Filter out arguments that were passed to input that output won't accept.

    :param tuple args: The *args that input received.
    :param dict kwargs: The **kwargs that input received.
    :param ArgSpec inputSpec: The input's arg spec.
    :param ArgSpec outputSpec: The output's arg spec.
    :return: The args and kwargs that output will accept.
    :rtype: Tuple[tuple, dict]
    """
    named_args = tuple(zip(inputSpec.args[1:], args))
    if outputSpec.varargs:
        # Only return all args if the output accepts *args.
        return_args = args
    else:
        # Filter out arguments that don't appear
        # in the output's method signature.
        return_args = [v for n, v in named_args if n in outputSpec.args]

    # Get any of input's default arguments that were not passed.
    passed_arg_names = tuple(kwargs)
    for name, value in named_args:
        passed_arg_names += (name, value)
    defaults = zip(inputSpec.args[::-1], inputSpec.defaults[::-1])
    full_kwargs = {n: v for n, v in defaults if n not in passed_arg_names}
    full_kwargs.update(kwargs)

    if outputSpec.varkw:
        # Only pass all kwargs if the output method accepts **kwargs.
        return_kwargs = full_kwargs
    else:
        # Filter out names that the output method does not accept.
        all_accepted_names = outputSpec.args[1:] + outputSpec.kwonlyargs
        return_kwargs = {
            n: v for n, v in full_kwargs.items() if n in all_accepted_names
        }

    return return_args, return_kwargs


T = TypeVar("T")
R = TypeVar("R")


@dataclass(eq=False)
class MethodicalInput(object):
    """
    An input for a L{MethodicalMachine}.
    """

    automaton: Automaton[MethodicalState, MethodicalInput, MethodicalOutput] = field(
        repr=False
    )
    method: Callable[..., Any] = field()
    symbol: str = field(repr=False)
    collectors: dict[MethodicalState, Callable[[Iterable[T]], R]] = field(
        default_factory=dict, repr=False
    )

    argSpec: ArgSpec = field(init=False, repr=False)

    def __post_init__(self) -> None:
        self.argSpec = _getArgSpec(self.method)
        assertNoCode(self.method)

    def __get__(self, oself: object, type: None = None) -> object:
        """
        Return a function that takes no arguments and returns values returned
        by output functions produced by the given L{MethodicalInput} in
        C{oself}'s current state.
        """
        transitioner = _transitionerFromInstance(oself, self.symbol, self.automaton)

        @preserveName(self.method)
        @wraps(self.method)
        def doInput(*args: object, **kwargs: object) -> object:
            self.method(oself, *args, **kwargs)
            previousState = transitioner._state
            (outputs, outTracer) = transitioner.transition(self)
            collector = self.collectors[previousState]
            values = []
            for output in outputs:
                if outTracer is not None:
                    outTracer(output)
                a, k = _filterArgs(args, kwargs, self.argSpec, output.argSpec)
                value = output(oself, *a, **k)
                values.append(value)
            return collector(values)

        return doInput

    def _name(self) -> str:
        return self.method.__name__


@dataclass(frozen=True)
class MethodicalOutput(object):
    """
    An output for a L{MethodicalMachine}.
    """

    machine: MethodicalMachine = field(repr=False)
    method: Callable[..., Any]
    argSpec: ArgSpec = field(init=False, repr=False, compare=False)

    def __post_init__(self) -> None:
        self.__dict__["argSpec"] = _getArgSpec(self.method)

    def __get__(self, oself, type=None):
        """
        Outputs are private, so raise an exception when we attempt to get one.
        """
        raise AttributeError(
            "{cls}.{method} is a state-machine output method; "
            "to produce this output, call an input method instead.".format(
                cls=type.__name__, method=self.method.__name__
            )
        )

    def __call__(self, oself, *args, **kwargs):
        """
        Call the underlying method.
        """
        return self.method(oself, *args, **kwargs)

    def _name(self) -> str:
        return self.method.__name__


StringOutputTracer = Callable[[str], None]
StringTracer: TypeAlias = "Callable[[str, str, str], StringOutputTracer | None]"


def wrapTracer(
    wrapped: StringTracer | None,
) -> Tracer[MethodicalState, MethodicalInput, MethodicalOutput] | None:
    if wrapped is None:
        return None

    def tracer(
        state: MethodicalState,
        input: MethodicalInput,
        output: MethodicalState,
    ) -> OutputTracer[MethodicalOutput] | None:
        result = wrapped(state._name(), input._name(), output._name())
        if result is not None:
            return lambda out: result(out._name())
        return None

    return tracer


@dataclass(eq=False)
class MethodicalTracer(object):
    automaton: Automaton[MethodicalState, MethodicalInput, MethodicalOutput] = field(
        repr=False
    )
    symbol: str = field(repr=False)

    def __get__(
        self, oself: object, type: object = None
    ) -> Callable[[StringTracer], None]:
        transitioner = _transitionerFromInstance(oself, self.symbol, self.automaton)

        def setTrace(tracer: StringTracer | None) -> None:
            transitioner.setTrace(wrapTracer(tracer))

        return setTrace


counter = count()


def gensym():
    """
    Create a unique Python identifier.
    """
    return "_symbol_" + str(next(counter))


class MethodicalMachine(object):
    """
    A L{MethodicalMachine} is an interface to an L{Automaton} that uses methods
    on a class.
    """

    def __init__(self):
        self._automaton = Automaton()
        self._reducers = {}
        self._symbol = gensym()

    def __get__(self, oself, type=None):
        """
        L{MethodicalMachine} is an implementation detail for setting up
        class-level state; applications should never need to access it on an
        instance.
        """
        if oself is not None:
            raise AttributeError("MethodicalMachine is an implementation detail.")
        return self

    @_keywords_only
    def state(
        self, initial: bool = False, terminal: bool = False, serialized: Hashable = None
    ):
        """
        Declare a state, possibly an initial state or a terminal state.

        This is a decorator for methods, but it will modify the method so as
        not to be callable any more.

        @param initial: is this state the initial state?  Only one state on
            this L{automat.MethodicalMachine} may be an initial state; more
            than one is an error.

        @param terminal: Is this state a terminal state?  i.e. a state that the
            machine can end up in?  (This is purely informational at this
            point.)

        @param serialized: a serializable value to be used to represent this
            state to external systems.  This value should be hashable; L{str}
            is a good type to use.
        """

        def decorator(stateMethod):
            state = MethodicalState(
                machine=self, method=stateMethod, serialized=serialized
            )
            if initial:
                self._automaton.initialState = state
            return state

        return decorator

    @_keywords_only
    def input(self):
        """
        Declare an input.

        This is a decorator for methods.
        """

        def decorator(inputMethod):
            return MethodicalInput(
                automaton=self._automaton, method=inputMethod, symbol=self._symbol
            )

        return decorator

    @_keywords_only
    def output(self):
        """
        Declare an output.

        This is a decorator for methods.

        This method will be called when the state machine transitions to this
        state as specified in the decorated `output` method.
        """

        def decorator(outputMethod):
            return MethodicalOutput(machine=self, method=outputMethod)

        return decorator

    def _oneTransition(self, startState, inputToken, endState, outputTokens, collector):
        """
        See L{MethodicalState.upon}.
        """
        # FIXME: tests for all of this (some of it is wrong)
        # if not isinstance(startState, MethodicalState):
        #     raise NotImplementedError("start state {} isn't a state"
        #                               .format(startState))
        # if not isinstance(inputToken, MethodicalInput):
        #     raise NotImplementedError("start state {} isn't an input"
        #                               .format(inputToken))
        # if not isinstance(endState, MethodicalState):
        #     raise NotImplementedError("end state {} isn't a state"
        #                               .format(startState))
        # for output in outputTokens:
        #     if not isinstance(endState, MethodicalState):
        #         raise NotImplementedError("output state {} isn't a state"
        #                                   .format(endState))
        self._automaton.addTransition(
            startState, inputToken, endState, tuple(outputTokens)
        )
        inputToken.collectors[startState] = collector

    @_keywords_only
    def serializer(self):
        """ """

        def decorator(decoratee):
            @wraps(decoratee)
            def serialize(oself):
                transitioner = _transitionerFromInstance(
                    oself, self._symbol, self._automaton
                )
                return decoratee(oself, transitioner._state.serialized)

            return serialize

        return decorator

    @_keywords_only
    def unserializer(self):
        """ """

        def decorator(decoratee):
            @wraps(decoratee)
            def unserialize(oself, *args, **kwargs):
                state = decoratee(oself, *args, **kwargs)
                mapping = {}
                for eachState in self._automaton.states():
                    mapping[eachState.serialized] = eachState
                transitioner = _transitionerFromInstance(
                    oself, self._symbol, self._automaton
                )
                transitioner._state = mapping[state]
                return None  # it's on purpose

            return unserialize

        return decorator

    @property
    def _setTrace(self) -> MethodicalTracer:
        return MethodicalTracer(self._automaton, self._symbol)

    def asDigraph(self):
        """
        Generate a L{graphviz.Digraph} that represents this machine's
        states and transitions.

        @return: L{graphviz.Digraph} object; for more information, please
            see the documentation for
            U{graphviz<https://graphviz.readthedocs.io/>}

        """
        from ._visualize import makeDigraph

        return makeDigraph(
            self._automaton,
            stateAsString=lambda state: state.method.__name__,
            inputAsString=lambda input: input.method.__name__,
            outputAsString=lambda output: output.method.__name__,
        )