aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/zstd06/decompress/huf_decompress.c
blob: f6e6ec6c9af4b3d972f9d2e8d64c10067934690a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/* ******************************************************************
   Huffman decoder, part of New Generation Entropy library
   Copyright (C) 2013-2016, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
    - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
/* inline is defined */
#elif defined(_MSC_VER)
#  define inline __inline
#else
#  define inline /* disable inline */
#endif


#ifdef _MSC_VER    /* Visual Studio */
#  define FORCE_INLINE static __forceinline
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#else
#  ifdef __GNUC__
#    define FORCE_INLINE static inline __attribute__((always_inline))
#  else
#    define FORCE_INLINE static inline
#  endif
#endif


/* **************************************************************
*  Includes
****************************************************************/
#include <stdlib.h>     /* malloc, free, qsort */
#include <string.h>     /* memcpy, memset */
#include <stdio.h>      /* printf (debug) */
#include "huf_static.h"
#include "bitstream.h"
#include "fse.h"        /* header compression */



/* **************************************************************
*  Error Management
****************************************************************/
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */



/* *******************************************************
*  HUF : Huffman block decompression
*********************************************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2;   /* single-symbol decoding */

typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4;  /* double-symbols decoding */

typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;



/*-***************************/
/*  single-symbol decoding   */
/*-***************************/

size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
{
    BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];   /* large enough for values from 0 to 16 */
    U32 tableLog = 0;
    size_t iSize;
    U32 nbSymbols = 0;
    U32 n;
    U32 nextRankStart;
    void* const dtPtr = DTable + 1;
    HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;

    HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16));   /* if compilation fails here, assertion is false */
    //memset(huffWeight, 0, sizeof(huffWeight));   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge);   /* DTable is too small */
    DTable[0] = (U16)tableLog;   /* maybe should separate sizeof allocated DTable, from used size of DTable, in case of re-use */

    /* Prepare ranks */
    nextRankStart = 0;
    for (n=1; n<tableLog+1; n++) {
        U32 current = nextRankStart;
        nextRankStart += (rankVal[n] << (n-1));
        rankVal[n] = current;
    }

    /* fill DTable */
    for (n=0; n<nbSymbols; n++) {
        const U32 w = huffWeight[n];
        const U32 length = (1 << w) >> 1;
        U32 i;
        HUF_DEltX2 D;
        D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
        for (i = rankVal[w]; i < rankVal[w] + length; i++)
            dt[i] = D;
        rankVal[w] += length;
    }

    return iSize;
}


static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
    const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
    const BYTE c = dt[val].byte;
    BIT_skipBits(Dstream, dt[val].nbBits);
    return c;
}

#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
    *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
    if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
        HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)

#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
    if (MEM_64bits()) \
        HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)

static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
    BYTE* const pStart = p;

    /* up to 4 symbols at a time */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
        HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
        HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
    }

    /* closer to the end */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

    /* no more data to retrieve from bitstream, hence no need to reload */
    while (p < pEnd)
        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

    return pEnd-pStart;
}

size_t HUF_decompress1X2_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U16* DTable)
{
    BYTE* op = (BYTE*)dst;
    BYTE* const oend = op + dstSize;
    const U32 dtLog = DTable[0];
    const void* dtPtr = DTable;
    const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr)+1;
    BIT_DStream_t bitD;

    { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
      if (HUF_isError(errorCode)) return errorCode; }

    HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);

    /* check */
    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    return dstSize;
}

size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
    if (HUF_isError(errorCode)) return errorCode;
    if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
    ip += errorCode;
    cSrcSize -= errorCode;

    return HUF_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}


size_t HUF_decompress4X2_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U16* DTable)
{
    /* Check */
    if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */

    {   const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable;
        const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1;
        const U32 dtLog = DTable[0];
        size_t errorCode;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        const size_t length1 = MEM_readLE16(istart);
        const size_t length2 = MEM_readLE16(istart+2);
        const size_t length3 = MEM_readLE16(istart+4);
        size_t length4;
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        const size_t segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal;

        length4 = cSrcSize - (length1 + length2 + length3 + 6);
        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        errorCode = BIT_initDStream(&bitD1, istart1, length1);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD2, istart2, length2);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD3, istart3, length3);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD4, istart4, length4);
        if (HUF_isError(errorCode)) return errorCode;

        /* 16-32 symbols per loop (4-8 symbols per stream) */
        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
            HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
            HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
            HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
            HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
            HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 supposed already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
        if (!endSignal) return ERROR(corruption_detected);

        /* decoded size */
        return dstSize;
    }
}


size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
    if (HUF_isError(errorCode)) return errorCode;
    if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
    ip += errorCode;
    cSrcSize -= errorCode;

    return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}


/* *************************/
/* double-symbols decoding */
/* *************************/

static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
                           const U32* rankValOrigin, const int minWeight,
                           const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
                           U32 nbBitsBaseline, U16 baseSeq)
{
    HUF_DEltX4 DElt;
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];

    /* get pre-calculated rankVal */
    memcpy(rankVal, rankValOrigin, sizeof(rankVal));

    /* fill skipped values */
    if (minWeight>1) {
        U32 i, skipSize = rankVal[minWeight];
        MEM_writeLE16(&(DElt.sequence), baseSeq);
        DElt.nbBits   = (BYTE)(consumed);
        DElt.length   = 1;
        for (i = 0; i < skipSize; i++)
            DTable[i] = DElt;
    }

    /* fill DTable */
    { U32 s; for (s=0; s<sortedListSize; s++) {   /* note : sortedSymbols already skipped */
        const U32 symbol = sortedSymbols[s].symbol;
        const U32 weight = sortedSymbols[s].weight;
        const U32 nbBits = nbBitsBaseline - weight;
        const U32 length = 1 << (sizeLog-nbBits);
        const U32 start = rankVal[weight];
        U32 i = start;
        const U32 end = start + length;

        MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
        DElt.nbBits = (BYTE)(nbBits + consumed);
        DElt.length = 2;
        do { DTable[i++] = DElt; } while (i<end);   /* since length >= 1 */

        rankVal[weight] += length;
    }}
}

typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];

static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
                           const sortedSymbol_t* sortedList, const U32 sortedListSize,
                           const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
                           const U32 nbBitsBaseline)
{
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
    const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
    const U32 minBits  = nbBitsBaseline - maxWeight;
    U32 s;

    memcpy(rankVal, rankValOrigin, sizeof(rankVal));

    /* fill DTable */
    for (s=0; s<sortedListSize; s++) {
        const U16 symbol = sortedList[s].symbol;
        const U32 weight = sortedList[s].weight;
        const U32 nbBits = nbBitsBaseline - weight;
        const U32 start = rankVal[weight];
        const U32 length = 1 << (targetLog-nbBits);

        if (targetLog-nbBits >= minBits) {   /* enough room for a second symbol */
            U32 sortedRank;
            int minWeight = nbBits + scaleLog;
            if (minWeight < 1) minWeight = 1;
            sortedRank = rankStart[minWeight];
            HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
                           rankValOrigin[nbBits], minWeight,
                           sortedList+sortedRank, sortedListSize-sortedRank,
                           nbBitsBaseline, symbol);
        } else {
            HUF_DEltX4 DElt;
            MEM_writeLE16(&(DElt.sequence), symbol);
            DElt.nbBits = (BYTE)(nbBits);
            DElt.length = 1;
            {   U32 u;
                const U32 end = start + length;
                for (u = start; u < end; u++) DTable[u] = DElt;
        }   }
        rankVal[weight] += length;
    }
}

size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
{
    BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
    sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
    U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
    U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
    U32* const rankStart = rankStart0+1;
    rankVal_t rankVal;
    U32 tableLog, maxW, sizeOfSort, nbSymbols;
    const U32 memLog = DTable[0];
    size_t iSize;
    void* dtPtr = DTable;
    HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1;

    HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32));   /* if compilation fails here, assertion is false */
    if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
    //memset(weightList, 0, sizeof(weightList));   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > memLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */

    /* find maxWeight */
    for (maxW = tableLog; rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */

    /* Get start index of each weight */
    {   U32 w, nextRankStart = 0;
        for (w=1; w<maxW+1; w++) {
            U32 current = nextRankStart;
            nextRankStart += rankStats[w];
            rankStart[w] = current;
        }
        rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
        sizeOfSort = nextRankStart;
    }

    /* sort symbols by weight */
    {   U32 s;
        for (s=0; s<nbSymbols; s++) {
            U32 const w = weightList[s];
            U32 const r = rankStart[w]++;
            sortedSymbol[r].symbol = (BYTE)s;
            sortedSymbol[r].weight = (BYTE)w;
        }
        rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
    }

    /* Build rankVal */
    {   U32* const rankVal0 = rankVal[0];
        {   int const rescale = (memLog-tableLog) - 1;   /* tableLog <= memLog */
            U32 nextRankVal = 0;
            U32 w;
            for (w=1; w<maxW+1; w++) {
                U32 current = nextRankVal;
                nextRankVal += rankStats[w] << (w+rescale);
                rankVal0[w] = current;
        }   }
        {   U32 const minBits = tableLog+1 - maxW;
            U32 consumed;
            for (consumed = minBits; consumed < memLog - minBits + 1; consumed++) {
                U32* const rankValPtr = rankVal[consumed];
                U32 w;
                for (w = 1; w < maxW+1; w++) {
                    rankValPtr[w] = rankVal0[w] >> consumed;
    }   }   }   }

    HUF_fillDTableX4(dt, memLog,
                   sortedSymbol, sizeOfSort,
                   rankStart0, rankVal, maxW,
                   tableLog+1);

    return iSize;
}


static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
    const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
    memcpy(op, dt+val, 2);
    BIT_skipBits(DStream, dt[val].nbBits);
    return dt[val].length;
}

static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
    const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
    memcpy(op, dt+val, 1);
    if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
    else {
        if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
            BIT_skipBits(DStream, dt[val].nbBits);
            if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
                DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);   /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
    }   }
    return 1;
}


#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
    ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
    if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
        ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
    if (MEM_64bits()) \
        ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
    BYTE* const pStart = p;

    /* up to 8 symbols at a time */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) {
        HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
        HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
    }

    /* closer to the end */
    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);

    while (p <= pEnd-2)
        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */

    if (p < pEnd)
        p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);

    return p-pStart;
}


size_t HUF_decompress1X4_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U32* DTable)
{
    const BYTE* const istart = (const BYTE*) cSrc;
    BYTE* const ostart = (BYTE*) dst;
    BYTE* const oend = ostart + dstSize;

    const U32 dtLog = DTable[0];
    const void* const dtPtr = DTable;
    const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;

    /* Init */
    BIT_DStream_t bitD;
    { size_t const errorCode = BIT_initDStream(&bitD, istart, cSrcSize);
      if (HUF_isError(errorCode)) return errorCode; }

    /* decode */
    HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtLog);

    /* check */
    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    /* decoded size */
    return dstSize;
}

size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize;
    cSrcSize -= hSize;

    return HUF_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}

size_t HUF_decompress4X4_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U32* DTable)
{
    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */

    {   const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable;
        const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
        const U32 dtLog = DTable[0];
        size_t errorCode;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        const size_t length1 = MEM_readLE16(istart);
        const size_t length2 = MEM_readLE16(istart+2);
        const size_t length3 = MEM_readLE16(istart+4);
        size_t length4;
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        const size_t segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal;

        length4 = cSrcSize - (length1 + length2 + length3 + 6);
        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        errorCode = BIT_initDStream(&bitD1, istart1, length1);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD2, istart2, length2);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD3, istart3, length3);
        if (HUF_isError(errorCode)) return errorCode;
        errorCode = BIT_initDStream(&bitD4, istart4, length4);
        if (HUF_isError(errorCode)) return errorCode;

        /* 16-32 symbols per loop (4-8 symbols per stream) */
        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_0(op4, &bitD4);

            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 supposed already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX4(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
        if (!endSignal) return ERROR(corruption_detected);

        /* decoded size */
        return dstSize;
    }
}


size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;

    size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize;
    cSrcSize -= hSize;

    return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}




/* ********************************/
/* Generic decompression selector */
/* ********************************/

typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
    /* single, double, quad */
    {{0,0}, {1,1}, {2,2}},  /* Q==0 : impossible */
    {{0,0}, {1,1}, {2,2}},  /* Q==1 : impossible */
    {{  38,130}, {1313, 74}, {2151, 38}},   /* Q == 2 : 12-18% */
    {{ 448,128}, {1353, 74}, {2238, 41}},   /* Q == 3 : 18-25% */
    {{ 556,128}, {1353, 74}, {2238, 47}},   /* Q == 4 : 25-32% */
    {{ 714,128}, {1418, 74}, {2436, 53}},   /* Q == 5 : 32-38% */
    {{ 883,128}, {1437, 74}, {2464, 61}},   /* Q == 6 : 38-44% */
    {{ 897,128}, {1515, 75}, {2622, 68}},   /* Q == 7 : 44-50% */
    {{ 926,128}, {1613, 75}, {2730, 75}},   /* Q == 8 : 50-56% */
    {{ 947,128}, {1729, 77}, {3359, 77}},   /* Q == 9 : 56-62% */
    {{1107,128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
    {{1177,128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
    {{1242,128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
    {{1349,128}, {2644,106}, {5260,106}},   /* Q ==13 : 81-87% */
    {{1455,128}, {2422,124}, {4174,124}},   /* Q ==14 : 87-93% */
    {{ 722,128}, {1891,145}, {1936,146}},   /* Q ==15 : 93-99% */
};

typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);

size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    static const decompressionAlgo decompress[2] = { HUF_decompress4X2, HUF_decompress4X4 };
    U32 Dtime[3];   /* decompression time estimation */

    /* validation checks */
    if (dstSize == 0) return ERROR(dstSize_tooSmall);
    if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
    if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
    if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */

    /* decoder timing evaluation */
    {   U32 const Q = (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 since dstSize > cSrcSize */
        U32 const D256 = (U32)(dstSize >> 8);
        U32 n; for (n=0; n<3; n++)
            Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
    }

    Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */

    {   U32 algoNb = 0;
        if (Dtime[1] < Dtime[0]) algoNb = 1;
        return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
    }
}