aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/zstd/lib/decompress/huf_decompress.c
blob: 5b217ac586cc36ce1fbf60001a70d1c5561a8a2d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
/* ******************************************************************
 * huff0 huffman decoder,
 * part of Finite State Entropy library
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 *
 *  You can contact the author at :
 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
****************************************************************** */

/* **************************************************************
*  Dependencies
****************************************************************/
#include "../common/zstd_deps.h"  /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h"  /* BIT_* */
#include "../common/fse.h"        /* to compress headers */
#include "../common/huf.h"
#include "../common/error_private.h"
#include "../common/zstd_internal.h"
#include "../common/bits.h"       /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */

/* **************************************************************
*  Constants
****************************************************************/

#define HUF_DECODER_FAST_TABLELOG 11

/* **************************************************************
*  Macros
****************************************************************/

/* These two optional macros force the use one way or another of the two
 * Huffman decompression implementations. You can't force in both directions
 * at the same time.
 */
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
    defined(HUF_FORCE_DECOMPRESS_X2)
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
#endif

/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
 * supported at runtime, so we can add the BMI2 target attribute.
 * When it is disabled, we will still get BMI2 if it is enabled statically.
 */
#if DYNAMIC_BMI2
# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
#else
# define HUF_FAST_BMI2_ATTRS
#endif

#ifdef __cplusplus
# define HUF_EXTERN_C extern "C"
#else
# define HUF_EXTERN_C
#endif
#define HUF_ASM_DECL HUF_EXTERN_C

#if DYNAMIC_BMI2
# define HUF_NEED_BMI2_FUNCTION 1
#else
# define HUF_NEED_BMI2_FUNCTION 0
#endif

/* **************************************************************
*  Error Management
****************************************************************/
#define HUF_isError ERR_isError


/* **************************************************************
*  Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a)         HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))


/* **************************************************************
*  BMI2 Variant Wrappers
****************************************************************/
typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
                                              const void *cSrc,
                                              size_t cSrcSize,
                                              const HUF_DTable *DTable);

#if DYNAMIC_BMI2

#define HUF_DGEN(fn)                                                        \
                                                                            \
    static size_t fn##_default(                                             \
                  void* dst,  size_t dstSize,                               \
            const void* cSrc, size_t cSrcSize,                              \
            const HUF_DTable* DTable)                                       \
    {                                                                       \
        return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
    }                                                                       \
                                                                            \
    static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2(                          \
                  void* dst,  size_t dstSize,                               \
            const void* cSrc, size_t cSrcSize,                              \
            const HUF_DTable* DTable)                                       \
    {                                                                       \
        return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
    }                                                                       \
                                                                            \
    static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
                     size_t cSrcSize, HUF_DTable const* DTable, int flags)  \
    {                                                                       \
        if (flags & HUF_flags_bmi2) {                                       \
            return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);         \
        }                                                                   \
        return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable);          \
    }

#else

#define HUF_DGEN(fn)                                                        \
    static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
                     size_t cSrcSize, HUF_DTable const* DTable, int flags)  \
    {                                                                       \
        (void)flags;                                                        \
        return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
    }

#endif


/*-***************************/
/*  generic DTableDesc       */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;

static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
    DTableDesc dtd;
    ZSTD_memcpy(&dtd, table, sizeof(dtd));
    return dtd;
}

static size_t HUF_initFastDStream(BYTE const* ip) {
    BYTE const lastByte = ip[7];
    size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
    size_t const value = MEM_readLEST(ip) | 1;
    assert(bitsConsumed <= 8);
    assert(sizeof(size_t) == 8);
    return value << bitsConsumed;
}


/**
 * The input/output arguments to the Huffman fast decoding loop:
 *
 * ip [in/out] - The input pointers, must be updated to reflect what is consumed.
 * op [in/out] - The output pointers, must be updated to reflect what is written.
 * bits [in/out] - The bitstream containers, must be updated to reflect the current state.
 * dt [in] - The decoding table.
 * ilimit [in] - The input limit, stop when any input pointer is below ilimit.
 * oend [in] - The end of the output stream. op[3] must not cross oend.
 * iend [in] - The end of each input stream. ip[i] may cross iend[i],
 *             as long as it is above ilimit, but that indicates corruption.
 */
typedef struct {
    BYTE const* ip[4];
    BYTE* op[4];
    U64 bits[4];
    void const* dt;
    BYTE const* ilimit;
    BYTE* oend;
    BYTE const* iend[4];
} HUF_DecompressFastArgs;

typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);

/**
 * Initializes args for the fast decoding loop.
 * @returns 1 on success
 *          0 if the fallback implementation should be used.
 *          Or an error code on failure.
 */
static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
{
    void const* dt = DTable + 1;
    U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;

    const BYTE* const ilimit = (const BYTE*)src + 6 + 8;

    BYTE* const oend = (BYTE*)dst + dstSize;

    /* The fast decoding loop assumes 64-bit little-endian.
     * This condition is false on x32.
     */
    if (!MEM_isLittleEndian() || MEM_32bits())
        return 0;

    /* strict minimum : jump table + 1 byte per stream */
    if (srcSize < 10)
        return ERROR(corruption_detected);

    /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
     * If table log is not correct at this point, fallback to the old decoder.
     * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
     */
    if (dtLog != HUF_DECODER_FAST_TABLELOG)
        return 0;

    /* Read the jump table. */
    {
        const BYTE* const istart = (const BYTE*)src;
        size_t const length1 = MEM_readLE16(istart);
        size_t const length2 = MEM_readLE16(istart+2);
        size_t const length3 = MEM_readLE16(istart+4);
        size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
        args->iend[0] = istart + 6;  /* jumpTable */
        args->iend[1] = args->iend[0] + length1;
        args->iend[2] = args->iend[1] + length2;
        args->iend[3] = args->iend[2] + length3;

        /* HUF_initFastDStream() requires this, and this small of an input
         * won't benefit from the ASM loop anyways.
         * length1 must be >= 16 so that ip[0] >= ilimit before the loop
         * starts.
         */
        if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
            return 0;
        if (length4 > srcSize) return ERROR(corruption_detected);   /* overflow */
    }
    /* ip[] contains the position that is currently loaded into bits[]. */
    args->ip[0] = args->iend[1] - sizeof(U64);
    args->ip[1] = args->iend[2] - sizeof(U64);
    args->ip[2] = args->iend[3] - sizeof(U64);
    args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);

    /* op[] contains the output pointers. */
    args->op[0] = (BYTE*)dst;
    args->op[1] = args->op[0] + (dstSize+3)/4;
    args->op[2] = args->op[1] + (dstSize+3)/4;
    args->op[3] = args->op[2] + (dstSize+3)/4;

    /* No point to call the ASM loop for tiny outputs. */
    if (args->op[3] >= oend)
        return 0;

    /* bits[] is the bit container.
        * It is read from the MSB down to the LSB.
        * It is shifted left as it is read, and zeros are
        * shifted in. After the lowest valid bit a 1 is
        * set, so that CountTrailingZeros(bits[]) can be used
        * to count how many bits we've consumed.
        */
    args->bits[0] = HUF_initFastDStream(args->ip[0]);
    args->bits[1] = HUF_initFastDStream(args->ip[1]);
    args->bits[2] = HUF_initFastDStream(args->ip[2]);
    args->bits[3] = HUF_initFastDStream(args->ip[3]);

    /* If ip[] >= ilimit, it is guaranteed to be safe to
        * reload bits[]. It may be beyond its section, but is
        * guaranteed to be valid (>= istart).
        */
    args->ilimit = ilimit;

    args->oend = oend;
    args->dt = dt;

    return 1;
}

static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
{
    /* Validate that we haven't overwritten. */
    if (args->op[stream] > segmentEnd)
        return ERROR(corruption_detected);
    /* Validate that we haven't read beyond iend[].
        * Note that ip[] may be < iend[] because the MSB is
        * the next bit to read, and we may have consumed 100%
        * of the stream, so down to iend[i] - 8 is valid.
        */
    if (args->ip[stream] < args->iend[stream] - 8)
        return ERROR(corruption_detected);

    /* Construct the BIT_DStream_t. */
    assert(sizeof(size_t) == 8);
    bit->bitContainer = MEM_readLEST(args->ip[stream]);
    bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
    bit->start = (const char*)args->iend[0];
    bit->limitPtr = bit->start + sizeof(size_t);
    bit->ptr = (const char*)args->ip[stream];

    return 0;
}


#ifndef HUF_FORCE_DECOMPRESS_X2

/*-***************************/
/*  single-symbol decoding   */
/*-***************************/
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1;   /* single-symbol decoding */

/**
 * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
 * a time.
 */
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
    U64 D4;
    if (MEM_isLittleEndian()) {
        D4 = (U64)((symbol << 8) + nbBits);
    } else {
        D4 = (U64)(symbol + (nbBits << 8));
    }
    assert(D4 < (1U << 16));
    D4 *= 0x0001000100010001ULL;
    return D4;
}

/**
 * Increase the tableLog to targetTableLog and rescales the stats.
 * If tableLog > targetTableLog this is a no-op.
 * @returns New tableLog
 */
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
{
    if (tableLog > targetTableLog)
        return tableLog;
    if (tableLog < targetTableLog) {
        U32 const scale = targetTableLog - tableLog;
        U32 s;
        /* Increase the weight for all non-zero probability symbols by scale. */
        for (s = 0; s < nbSymbols; ++s) {
            huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
        }
        /* Update rankVal to reflect the new weights.
         * All weights except 0 get moved to weight + scale.
         * Weights [1, scale] are empty.
         */
        for (s = targetTableLog; s > scale; --s) {
            rankVal[s] = rankVal[s - scale];
        }
        for (s = scale; s > 0; --s) {
            rankVal[s] = 0;
        }
    }
    return targetTableLog;
}

typedef struct {
        U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
        U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
        U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
        BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
        BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
} HUF_ReadDTableX1_Workspace;

size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
{
    U32 tableLog = 0;
    U32 nbSymbols = 0;
    size_t iSize;
    void* const dtPtr = DTable + 1;
    HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
    HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;

    DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
    if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);

    DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
    /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
    if (HUF_isError(iSize)) return iSize;


    /* Table header */
    {   DTableDesc dtd = HUF_getDTableDesc(DTable);
        U32 const maxTableLog = dtd.maxTableLog + 1;
        U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
        tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
        if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, Huffman tree cannot fit in */
        dtd.tableType = 0;
        dtd.tableLog = (BYTE)tableLog;
        ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
    }

    /* Compute symbols and rankStart given rankVal:
     *
     * rankVal already contains the number of values of each weight.
     *
     * symbols contains the symbols ordered by weight. First are the rankVal[0]
     * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
     * symbols[0] is filled (but unused) to avoid a branch.
     *
     * rankStart contains the offset where each rank belongs in the DTable.
     * rankStart[0] is not filled because there are no entries in the table for
     * weight 0.
     */
    {   int n;
        U32 nextRankStart = 0;
        int const unroll = 4;
        int const nLimit = (int)nbSymbols - unroll + 1;
        for (n=0; n<(int)tableLog+1; n++) {
            U32 const curr = nextRankStart;
            nextRankStart += wksp->rankVal[n];
            wksp->rankStart[n] = curr;
        }
        for (n=0; n < nLimit; n += unroll) {
            int u;
            for (u=0; u < unroll; ++u) {
                size_t const w = wksp->huffWeight[n+u];
                wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
            }
        }
        for (; n < (int)nbSymbols; ++n) {
            size_t const w = wksp->huffWeight[n];
            wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
        }
    }

    /* fill DTable
     * We fill all entries of each weight in order.
     * That way length is a constant for each iteration of the outer loop.
     * We can switch based on the length to a different inner loop which is
     * optimized for that particular case.
     */
    {   U32 w;
        int symbol = wksp->rankVal[0];
        int rankStart = 0;
        for (w=1; w<tableLog+1; ++w) {
            int const symbolCount = wksp->rankVal[w];
            int const length = (1 << w) >> 1;
            int uStart = rankStart;
            BYTE const nbBits = (BYTE)(tableLog + 1 - w);
            int s;
            int u;
            switch (length) {
            case 1:
                for (s=0; s<symbolCount; ++s) {
                    HUF_DEltX1 D;
                    D.byte = wksp->symbols[symbol + s];
                    D.nbBits = nbBits;
                    dt[uStart] = D;
                    uStart += 1;
                }
                break;
            case 2:
                for (s=0; s<symbolCount; ++s) {
                    HUF_DEltX1 D;
                    D.byte = wksp->symbols[symbol + s];
                    D.nbBits = nbBits;
                    dt[uStart+0] = D;
                    dt[uStart+1] = D;
                    uStart += 2;
                }
                break;
            case 4:
                for (s=0; s<symbolCount; ++s) {
                    U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
                    MEM_write64(dt + uStart, D4);
                    uStart += 4;
                }
                break;
            case 8:
                for (s=0; s<symbolCount; ++s) {
                    U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
                    MEM_write64(dt + uStart, D4);
                    MEM_write64(dt + uStart + 4, D4);
                    uStart += 8;
                }
                break;
            default:
                for (s=0; s<symbolCount; ++s) {
                    U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
                    for (u=0; u < length; u += 16) {
                        MEM_write64(dt + uStart + u + 0, D4);
                        MEM_write64(dt + uStart + u + 4, D4);
                        MEM_write64(dt + uStart + u + 8, D4);
                        MEM_write64(dt + uStart + u + 12, D4);
                    }
                    assert(u == length);
                    uStart += length;
                }
                break;
            }
            symbol += symbolCount;
            rankStart += symbolCount * length;
        }
    }
    return iSize;
}

FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
{
    size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
    BYTE const c = dt[val].byte;
    BIT_skipBits(Dstream, dt[val].nbBits);
    return c;
}

#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
    *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr)  \
    if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
        HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)

#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
    if (MEM_64bits()) \
        HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)

HINT_INLINE size_t
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
{
    BYTE* const pStart = p;

    /* up to 4 symbols at a time */
    if ((pEnd - p) > 3) {
        while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
            HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
            HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
            HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
            HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
        }
    } else {
        BIT_reloadDStream(bitDPtr);
    }

    /* [0-3] symbols remaining */
    if (MEM_32bits())
        while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
            HUF_DECODE_SYMBOLX1_0(p, bitDPtr);

    /* no more data to retrieve from bitstream, no need to reload */
    while (p < pEnd)
        HUF_DECODE_SYMBOLX1_0(p, bitDPtr);

    return (size_t)(pEnd-pStart);
}

FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    BYTE* op = (BYTE*)dst;
    BYTE* const oend = op + dstSize;
    const void* dtPtr = DTable + 1;
    const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
    BIT_DStream_t bitD;
    DTableDesc const dtd = HUF_getDTableDesc(DTable);
    U32 const dtLog = dtd.tableLog;

    CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );

    HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);

    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    return dstSize;
}

/* HUF_decompress4X1_usingDTable_internal_body():
 * Conditions :
 * @dstSize >= 6
 */
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    /* Check */
    if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */

    {   const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        BYTE* const olimit = oend - 3;
        const void* const dtPtr = DTable + 1;
        const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        size_t const length1 = MEM_readLE16(istart);
        size_t const length2 = MEM_readLE16(istart+2);
        size_t const length3 = MEM_readLE16(istart+4);
        size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        const size_t segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        DTableDesc const dtd = HUF_getDTableDesc(DTable);
        U32 const dtLog = dtd.tableLog;
        U32 endSignal = 1;

        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        if (opStart4 > oend) return ERROR(corruption_detected);      /* overflow */
        if (dstSize < 6) return ERROR(corruption_detected);         /* stream 4-split doesn't work */
        CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
        CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
        CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
        CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );

        /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
        if ((size_t)(oend - op4) >= sizeof(size_t)) {
            for ( ; (endSignal) & (op4 < olimit) ; ) {
                HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
                HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
                HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
                HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
                HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
                HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
                HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
                HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
                HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
                HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
                HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
                HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
                HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
                HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
                HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
                HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
                endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
                endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
                endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
                endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
            }
        }

        /* check corruption */
        /* note : should not be necessary : op# advance in lock step, and we control op4.
         *        but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 supposed already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX1(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
          if (!endCheck) return ERROR(corruption_detected); }

        /* decoded size */
        return dstSize;
    }
}

#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
                    size_t cSrcSize, HUF_DTable const* DTable) {
    return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif

static
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
                    size_t cSrcSize, HUF_DTable const* DTable) {
    return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}

#if ZSTD_ENABLE_ASM_X86_64_BMI2

HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;

#endif

static HUF_FAST_BMI2_ATTRS
void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
{
    U64 bits[4];
    BYTE const* ip[4];
    BYTE* op[4];
    U16 const* const dtable = (U16 const*)args->dt;
    BYTE* const oend = args->oend;
    BYTE const* const ilimit = args->ilimit;

    /* Copy the arguments to local variables */
    ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
    ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
    ZSTD_memcpy(&op, &args->op, sizeof(op));

    assert(MEM_isLittleEndian());
    assert(!MEM_32bits());

    for (;;) {
        BYTE* olimit;
        int stream;
        int symbol;

        /* Assert loop preconditions */
#ifndef NDEBUG
        for (stream = 0; stream < 4; ++stream) {
            assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
            assert(ip[stream] >= ilimit);
        }
#endif
        /* Compute olimit */
        {
            /* Each iteration produces 5 output symbols per stream */
            size_t const oiters = (size_t)(oend - op[3]) / 5;
            /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
             * per stream.
             */
            size_t const iiters = (size_t)(ip[0] - ilimit) / 7;
            /* We can safely run iters iterations before running bounds checks */
            size_t const iters = MIN(oiters, iiters);
            size_t const symbols = iters * 5;

            /* We can simply check that op[3] < olimit, instead of checking all
             * of our bounds, since we can't hit the other bounds until we've run
             * iters iterations, which only happens when op[3] == olimit.
             */
            olimit = op[3] + symbols;

            /* Exit fast decoding loop once we get close to the end. */
            if (op[3] + 20 > olimit)
                break;

            /* Exit the decoding loop if any input pointer has crossed the
             * previous one. This indicates corruption, and a precondition
             * to our loop is that ip[i] >= ip[0].
             */
            for (stream = 1; stream < 4; ++stream) {
                if (ip[stream] < ip[stream - 1])
                    goto _out;
            }
        }

#ifndef NDEBUG
        for (stream = 1; stream < 4; ++stream) {
            assert(ip[stream] >= ip[stream - 1]);
        }
#endif

        do {
            /* Decode 5 symbols in each of the 4 streams */
            for (symbol = 0; symbol < 5; ++symbol) {
                for (stream = 0; stream < 4; ++stream) {
                    int const index = (int)(bits[stream] >> 53);
                    int const entry = (int)dtable[index];
                    bits[stream] <<= (entry & 63);
                    op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF);
                }
            }
            /* Reload the bitstreams */
            for (stream = 0; stream < 4; ++stream) {
                int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
                int const nbBits = ctz & 7;
                int const nbBytes = ctz >> 3;
                op[stream] += 5;
                ip[stream] -= nbBytes;
                bits[stream] = MEM_read64(ip[stream]) | 1;
                bits[stream] <<= nbBits;
            }
        } while (op[3] < olimit);
    }

_out:

    /* Save the final values of each of the state variables back to args. */
    ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
    ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
    ZSTD_memcpy(&args->op, &op, sizeof(op));
}

/**
 * @returns @p dstSize on success (>= 6)
 *          0 if the fallback implementation should be used
 *          An error if an error occurred
 */
static HUF_FAST_BMI2_ATTRS
size_t
HUF_decompress4X1_usingDTable_internal_fast(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable,
    HUF_DecompressFastLoopFn loopFn)
{
    void const* dt = DTable + 1;
    const BYTE* const iend = (const BYTE*)cSrc + 6;
    BYTE* const oend = (BYTE*)dst + dstSize;
    HUF_DecompressFastArgs args;
    {   size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
        FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
        if (ret == 0)
            return 0;
    }

    assert(args.ip[0] >= args.ilimit);
    loopFn(&args);

    /* Our loop guarantees that ip[] >= ilimit and that we haven't
    * overwritten any op[].
    */
    assert(args.ip[0] >= iend);
    assert(args.ip[1] >= iend);
    assert(args.ip[2] >= iend);
    assert(args.ip[3] >= iend);
    assert(args.op[3] <= oend);
    (void)iend;

    /* finish bit streams one by one. */
    {   size_t const segmentSize = (dstSize+3) / 4;
        BYTE* segmentEnd = (BYTE*)dst;
        int i;
        for (i = 0; i < 4; ++i) {
            BIT_DStream_t bit;
            if (segmentSize <= (size_t)(oend - segmentEnd))
                segmentEnd += segmentSize;
            else
                segmentEnd = oend;
            FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
            /* Decompress and validate that we've produced exactly the expected length. */
            args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
            if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
        }
    }

    /* decoded size */
    assert(dstSize != 0);
    return dstSize;
}

HUF_DGEN(HUF_decompress1X1_usingDTable_internal)

static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
                    size_t cSrcSize, HUF_DTable const* DTable, int flags)
{
    HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
    HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;

#if DYNAMIC_BMI2
    if (flags & HUF_flags_bmi2) {
        fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
# if ZSTD_ENABLE_ASM_X86_64_BMI2
        if (!(flags & HUF_flags_disableAsm)) {
            loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
        }
# endif
    } else {
        return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
    }
#endif

#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
    if (!(flags & HUF_flags_disableAsm)) {
        loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
    }
#endif

    if (!(flags & HUF_flags_disableFast)) {
        size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
        if (ret != 0)
            return ret;
    }
    return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}

static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
                                   const void* cSrc, size_t cSrcSize,
                                   void* workSpace, size_t wkspSize, int flags)
{
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize; cSrcSize -= hSize;

    return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
}

#endif /* HUF_FORCE_DECOMPRESS_X2 */


#ifndef HUF_FORCE_DECOMPRESS_X1

/* *************************/
/* double-symbols decoding */
/* *************************/

typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2;  /* double-symbols decoding */
typedef struct { BYTE symbol; } sortedSymbol_t;
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];

/**
 * Constructs a HUF_DEltX2 in a U32.
 */
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
    U32 seq;
    DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
    DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
    DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
    DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
    if (MEM_isLittleEndian()) {
        seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
        return seq + (nbBits << 16) + ((U32)level << 24);
    } else {
        seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
        return (seq << 16) + (nbBits << 8) + (U32)level;
    }
}

/**
 * Constructs a HUF_DEltX2.
 */
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
    HUF_DEltX2 DElt;
    U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
    DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
    ZSTD_memcpy(&DElt, &val, sizeof(val));
    return DElt;
}

/**
 * Constructs 2 HUF_DEltX2s and packs them into a U64.
 */
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
{
    U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
    return (U64)DElt + ((U64)DElt << 32);
}

/**
 * Fills the DTable rank with all the symbols from [begin, end) that are each
 * nbBits long.
 *
 * @param DTableRank The start of the rank in the DTable.
 * @param begin The first symbol to fill (inclusive).
 * @param end The last symbol to fill (exclusive).
 * @param nbBits Each symbol is nbBits long.
 * @param tableLog The table log.
 * @param baseSeq If level == 1 { 0 } else { the first level symbol }
 * @param level The level in the table. Must be 1 or 2.
 */
static void HUF_fillDTableX2ForWeight(
    HUF_DEltX2* DTableRank,
    sortedSymbol_t const* begin, sortedSymbol_t const* end,
    U32 nbBits, U32 tableLog,
    U16 baseSeq, int const level)
{
    U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
    const sortedSymbol_t* ptr;
    assert(level >= 1 && level <= 2);
    switch (length) {
    case 1:
        for (ptr = begin; ptr != end; ++ptr) {
            HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
            *DTableRank++ = DElt;
        }
        break;
    case 2:
        for (ptr = begin; ptr != end; ++ptr) {
            HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
            DTableRank[0] = DElt;
            DTableRank[1] = DElt;
            DTableRank += 2;
        }
        break;
    case 4:
        for (ptr = begin; ptr != end; ++ptr) {
            U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
            ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
            ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
            DTableRank += 4;
        }
        break;
    case 8:
        for (ptr = begin; ptr != end; ++ptr) {
            U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
            ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
            ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
            ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
            ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
            DTableRank += 8;
        }
        break;
    default:
        for (ptr = begin; ptr != end; ++ptr) {
            U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
            HUF_DEltX2* const DTableRankEnd = DTableRank + length;
            for (; DTableRank != DTableRankEnd; DTableRank += 8) {
                ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
                ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
                ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
                ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
            }
        }
        break;
    }
}

/* HUF_fillDTableX2Level2() :
 * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
                           const U32* rankVal, const int minWeight, const int maxWeight1,
                           const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
                           U32 nbBitsBaseline, U16 baseSeq)
{
    /* Fill skipped values (all positions up to rankVal[minWeight]).
     * These are positions only get a single symbol because the combined weight
     * is too large.
     */
    if (minWeight>1) {
        U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
        U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
        int const skipSize = rankVal[minWeight];
        assert(length > 1);
        assert((U32)skipSize < length);
        switch (length) {
        case 2:
            assert(skipSize == 1);
            ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
            break;
        case 4:
            assert(skipSize <= 4);
            ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
            ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
            break;
        default:
            {
                int i;
                for (i = 0; i < skipSize; i += 8) {
                    ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
                    ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
                    ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
                    ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
                }
            }
        }
    }

    /* Fill each of the second level symbols by weight. */
    {
        int w;
        for (w = minWeight; w < maxWeight1; ++w) {
            int const begin = rankStart[w];
            int const end = rankStart[w+1];
            U32 const nbBits = nbBitsBaseline - w;
            U32 const totalBits = nbBits + consumedBits;
            HUF_fillDTableX2ForWeight(
                DTable + rankVal[w],
                sortedSymbols + begin, sortedSymbols + end,
                totalBits, targetLog,
                baseSeq, /* level */ 2);
        }
    }
}

static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
                           const sortedSymbol_t* sortedList,
                           const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
                           const U32 nbBitsBaseline)
{
    U32* const rankVal = rankValOrigin[0];
    const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
    const U32 minBits  = nbBitsBaseline - maxWeight;
    int w;
    int const wEnd = (int)maxWeight + 1;

    /* Fill DTable in order of weight. */
    for (w = 1; w < wEnd; ++w) {
        int const begin = (int)rankStart[w];
        int const end = (int)rankStart[w+1];
        U32 const nbBits = nbBitsBaseline - w;

        if (targetLog-nbBits >= minBits) {
            /* Enough room for a second symbol. */
            int start = rankVal[w];
            U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
            int minWeight = nbBits + scaleLog;
            int s;
            if (minWeight < 1) minWeight = 1;
            /* Fill the DTable for every symbol of weight w.
             * These symbols get at least 1 second symbol.
             */
            for (s = begin; s != end; ++s) {
                HUF_fillDTableX2Level2(
                    DTable + start, targetLog, nbBits,
                    rankValOrigin[nbBits], minWeight, wEnd,
                    sortedList, rankStart,
                    nbBitsBaseline, sortedList[s].symbol);
                start += length;
            }
        } else {
            /* Only a single symbol. */
            HUF_fillDTableX2ForWeight(
                DTable + rankVal[w],
                sortedList + begin, sortedList + end,
                nbBits, targetLog,
                /* baseSeq */ 0, /* level */ 1);
        }
    }
}

typedef struct {
    rankValCol_t rankVal[HUF_TABLELOG_MAX];
    U32 rankStats[HUF_TABLELOG_MAX + 1];
    U32 rankStart0[HUF_TABLELOG_MAX + 3];
    sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
    BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
    U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
} HUF_ReadDTableX2_Workspace;

size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
                       const void* src, size_t srcSize,
                             void* workSpace, size_t wkspSize, int flags)
{
    U32 tableLog, maxW, nbSymbols;
    DTableDesc dtd = HUF_getDTableDesc(DTable);
    U32 maxTableLog = dtd.maxTableLog;
    size_t iSize;
    void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
    HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
    U32 *rankStart;

    HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;

    if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);

    rankStart = wksp->rankStart0 + 1;
    ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
    ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));

    DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable));   /* if compiler fails here, assertion is wrong */
    if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    /* ZSTD_memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
    if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;

    /* find maxWeight */
    for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */

    /* Get start index of each weight */
    {   U32 w, nextRankStart = 0;
        for (w=1; w<maxW+1; w++) {
            U32 curr = nextRankStart;
            nextRankStart += wksp->rankStats[w];
            rankStart[w] = curr;
        }
        rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
        rankStart[maxW+1] = nextRankStart;
    }

    /* sort symbols by weight */
    {   U32 s;
        for (s=0; s<nbSymbols; s++) {
            U32 const w = wksp->weightList[s];
            U32 const r = rankStart[w]++;
            wksp->sortedSymbol[r].symbol = (BYTE)s;
        }
        rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
    }

    /* Build rankVal */
    {   U32* const rankVal0 = wksp->rankVal[0];
        {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
            U32 nextRankVal = 0;
            U32 w;
            for (w=1; w<maxW+1; w++) {
                U32 curr = nextRankVal;
                nextRankVal += wksp->rankStats[w] << (w+rescale);
                rankVal0[w] = curr;
        }   }
        {   U32 const minBits = tableLog+1 - maxW;
            U32 consumed;
            for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
                U32* const rankValPtr = wksp->rankVal[consumed];
                U32 w;
                for (w = 1; w < maxW+1; w++) {
                    rankValPtr[w] = rankVal0[w] >> consumed;
    }   }   }   }

    HUF_fillDTableX2(dt, maxTableLog,
                   wksp->sortedSymbol,
                   wksp->rankStart0, wksp->rankVal, maxW,
                   tableLog+1);

    dtd.tableLog = (BYTE)maxTableLog;
    dtd.tableType = 1;
    ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
    return iSize;
}


FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
    size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
    ZSTD_memcpy(op, &dt[val].sequence, 2);
    BIT_skipBits(DStream, dt[val].nbBits);
    return dt[val].length;
}

FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
    size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
    ZSTD_memcpy(op, &dt[val].sequence, 1);
    if (dt[val].length==1) {
        BIT_skipBits(DStream, dt[val].nbBits);
    } else {
        if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
            BIT_skipBits(DStream, dt[val].nbBits);
            if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
                /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
                DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
        }
    }
    return 1;
}

#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
    ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
    if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
        ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
    if (MEM_64bits()) \
        ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)

HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
                const HUF_DEltX2* const dt, const U32 dtLog)
{
    BYTE* const pStart = p;

    /* up to 8 symbols at a time */
    if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
        if (dtLog <= 11 && MEM_64bits()) {
            /* up to 10 symbols at a time */
            while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
                HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
            }
        } else {
            /* up to 8 symbols at a time */
            while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
                HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
                HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
            }
        }
    } else {
        BIT_reloadDStream(bitDPtr);
    }

    /* closer to end : up to 2 symbols at a time */
    if ((size_t)(pEnd - p) >= 2) {
        while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
            HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

        while (p <= pEnd-2)
            HUF_DECODE_SYMBOLX2_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
    }

    if (p < pEnd)
        p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);

    return p-pStart;
}

FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    BIT_DStream_t bitD;

    /* Init */
    CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );

    /* decode */
    {   BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
        const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
        DTableDesc const dtd = HUF_getDTableDesc(DTable);
        HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
    }

    /* check */
    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    /* decoded size */
    return dstSize;
}

/* HUF_decompress4X2_usingDTable_internal_body():
 * Conditions:
 * @dstSize >= 6
 */
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */

    {   const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        BYTE* const olimit = oend - (sizeof(size_t)-1);
        const void* const dtPtr = DTable+1;
        const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        size_t const length1 = MEM_readLE16(istart);
        size_t const length2 = MEM_readLE16(istart+2);
        size_t const length3 = MEM_readLE16(istart+4);
        size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        size_t const segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal = 1;
        DTableDesc const dtd = HUF_getDTableDesc(DTable);
        U32 const dtLog = dtd.tableLog;

        if (length4 > cSrcSize) return ERROR(corruption_detected);  /* overflow */
        if (opStart4 > oend) return ERROR(corruption_detected);     /* overflow */
        if (dstSize < 6) return ERROR(corruption_detected);         /* stream 4-split doesn't work */
        CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
        CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
        CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
        CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );

        /* 16-32 symbols per loop (4-8 symbols per stream) */
        if ((size_t)(oend - op4) >= sizeof(size_t)) {
            for ( ; (endSignal) & (op4 < olimit); ) {
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
                HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
                endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
                endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
                HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
                HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
                HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
                HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
                endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
                endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
#else
                HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
                HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
                HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
                HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
                HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
                HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
                HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
                endSignal = (U32)LIKELY((U32)
                            (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
                        & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
                        & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
                        & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
#endif
            }
        }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
          if (!endCheck) return ERROR(corruption_detected); }

        /* decoded size */
        return dstSize;
    }
}

#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
                    size_t cSrcSize, HUF_DTable const* DTable) {
    return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif

static
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
                    size_t cSrcSize, HUF_DTable const* DTable) {
    return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}

#if ZSTD_ENABLE_ASM_X86_64_BMI2

HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;

#endif

static HUF_FAST_BMI2_ATTRS
void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
{
    U64 bits[4];
    BYTE const* ip[4];
    BYTE* op[4];
    BYTE* oend[4];
    HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
    BYTE const* const ilimit = args->ilimit;

    /* Copy the arguments to local registers. */
    ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
    ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
    ZSTD_memcpy(&op, &args->op, sizeof(op));

    oend[0] = op[1];
    oend[1] = op[2];
    oend[2] = op[3];
    oend[3] = args->oend;

    assert(MEM_isLittleEndian());
    assert(!MEM_32bits());

    for (;;) {
        BYTE* olimit;
        int stream;
        int symbol;

        /* Assert loop preconditions */
#ifndef NDEBUG
        for (stream = 0; stream < 4; ++stream) {
            assert(op[stream] <= oend[stream]);
            assert(ip[stream] >= ilimit);
        }
#endif
        /* Compute olimit */
        {
            /* Each loop does 5 table lookups for each of the 4 streams.
             * Each table lookup consumes up to 11 bits of input, and produces
             * up to 2 bytes of output.
             */
            /* We can consume up to 7 bytes of input per iteration per stream.
             * We also know that each input pointer is >= ip[0]. So we can run
             * iters loops before running out of input.
             */
            size_t iters = (size_t)(ip[0] - ilimit) / 7;
            /* Each iteration can produce up to 10 bytes of output per stream.
             * Each output stream my advance at different rates. So take the
             * minimum number of safe iterations among all the output streams.
             */
            for (stream = 0; stream < 4; ++stream) {
                size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
                iters = MIN(iters, oiters);
            }

            /* Each iteration produces at least 5 output symbols. So until
             * op[3] crosses olimit, we know we haven't executed iters
             * iterations yet. This saves us maintaining an iters counter,
             * at the expense of computing the remaining # of iterations
             * more frequently.
             */
            olimit = op[3] + (iters * 5);

            /* Exit the fast decoding loop if we are too close to the end. */
            if (op[3] + 10 > olimit)
                break;

            /* Exit the decoding loop if any input pointer has crossed the
             * previous one. This indicates corruption, and a precondition
             * to our loop is that ip[i] >= ip[0].
             */
            for (stream = 1; stream < 4; ++stream) {
                if (ip[stream] < ip[stream - 1])
                    goto _out;
            }
        }

#ifndef NDEBUG
        for (stream = 1; stream < 4; ++stream) {
            assert(ip[stream] >= ip[stream - 1]);
        }
#endif

        do {
            /* Do 5 table lookups for each of the first 3 streams */
            for (symbol = 0; symbol < 5; ++symbol) {
                for (stream = 0; stream < 3; ++stream) {
                    int const index = (int)(bits[stream] >> 53);
                    HUF_DEltX2 const entry = dtable[index];
                    MEM_write16(op[stream], entry.sequence);
                    bits[stream] <<= (entry.nbBits);
                    op[stream] += (entry.length);
                }
            }
            /* Do 1 table lookup from the final stream */
            {
                int const index = (int)(bits[3] >> 53);
                HUF_DEltX2 const entry = dtable[index];
                MEM_write16(op[3], entry.sequence);
                bits[3] <<= (entry.nbBits);
                op[3] += (entry.length);
            }
            /* Do 4 table lookups from the final stream & reload bitstreams */
            for (stream = 0; stream < 4; ++stream) {
                /* Do a table lookup from the final stream.
                 * This is interleaved with the reloading to reduce register
                 * pressure. This shouldn't be necessary, but compilers can
                 * struggle with codegen with high register pressure.
                 */
                {
                    int const index = (int)(bits[3] >> 53);
                    HUF_DEltX2 const entry = dtable[index];
                    MEM_write16(op[3], entry.sequence);
                    bits[3] <<= (entry.nbBits);
                    op[3] += (entry.length);
                }
                /* Reload the bistreams. The final bitstream must be reloaded
                 * after the 5th symbol was decoded.
                 */
                {
                    int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
                    int const nbBits = ctz & 7;
                    int const nbBytes = ctz >> 3;
                    ip[stream] -= nbBytes;
                    bits[stream] = MEM_read64(ip[stream]) | 1;
                    bits[stream] <<= nbBits;
                }
            }
        } while (op[3] < olimit);
    }

_out:

    /* Save the final values of each of the state variables back to args. */
    ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
    ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
    ZSTD_memcpy(&args->op, &op, sizeof(op));
}


static HUF_FAST_BMI2_ATTRS size_t
HUF_decompress4X2_usingDTable_internal_fast(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable,
    HUF_DecompressFastLoopFn loopFn) {
    void const* dt = DTable + 1;
    const BYTE* const iend = (const BYTE*)cSrc + 6;
    BYTE* const oend = (BYTE*)dst + dstSize;
    HUF_DecompressFastArgs args;
    {
        size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
        FORWARD_IF_ERROR(ret, "Failed to init asm args");
        if (ret == 0)
            return 0;
    }

    assert(args.ip[0] >= args.ilimit);
    loopFn(&args);

    /* note : op4 already verified within main loop */
    assert(args.ip[0] >= iend);
    assert(args.ip[1] >= iend);
    assert(args.ip[2] >= iend);
    assert(args.ip[3] >= iend);
    assert(args.op[3] <= oend);
    (void)iend;

    /* finish bitStreams one by one */
    {
        size_t const segmentSize = (dstSize+3) / 4;
        BYTE* segmentEnd = (BYTE*)dst;
        int i;
        for (i = 0; i < 4; ++i) {
            BIT_DStream_t bit;
            if (segmentSize <= (size_t)(oend - segmentEnd))
                segmentEnd += segmentSize;
            else
                segmentEnd = oend;
            FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
            args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
            if (args.op[i] != segmentEnd)
                return ERROR(corruption_detected);
        }
    }

    /* decoded size */
    return dstSize;
}

static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
                    size_t cSrcSize, HUF_DTable const* DTable, int flags)
{
    HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
    HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;

#if DYNAMIC_BMI2
    if (flags & HUF_flags_bmi2) {
        fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
# if ZSTD_ENABLE_ASM_X86_64_BMI2
        if (!(flags & HUF_flags_disableAsm)) {
            loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
        }
# endif
    } else {
        return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
    }
#endif

#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
    if (!(flags & HUF_flags_disableAsm)) {
        loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
    }
#endif

    if (!(flags & HUF_flags_disableFast)) {
        size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
        if (ret != 0)
            return ret;
    }
    return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}

HUF_DGEN(HUF_decompress1X2_usingDTable_internal)

size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
                                   const void* cSrc, size_t cSrcSize,
                                   void* workSpace, size_t wkspSize, int flags)
{
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
                                               workSpace, wkspSize, flags);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize; cSrcSize -= hSize;

    return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
}

static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
                                   const void* cSrc, size_t cSrcSize,
                                   void* workSpace, size_t wkspSize, int flags)
{
    const BYTE* ip = (const BYTE*) cSrc;

    size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
                                         workSpace, wkspSize, flags);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize; cSrcSize -= hSize;

    return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
}

#endif /* HUF_FORCE_DECOMPRESS_X1 */


/* ***********************************/
/* Universal decompression selectors */
/* ***********************************/


#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
{
    /* single, double, quad */
    {{0,0}, {1,1}},  /* Q==0 : impossible */
    {{0,0}, {1,1}},  /* Q==1 : impossible */
    {{ 150,216}, { 381,119}},   /* Q == 2 : 12-18% */
    {{ 170,205}, { 514,112}},   /* Q == 3 : 18-25% */
    {{ 177,199}, { 539,110}},   /* Q == 4 : 25-32% */
    {{ 197,194}, { 644,107}},   /* Q == 5 : 32-38% */
    {{ 221,192}, { 735,107}},   /* Q == 6 : 38-44% */
    {{ 256,189}, { 881,106}},   /* Q == 7 : 44-50% */
    {{ 359,188}, {1167,109}},   /* Q == 8 : 50-56% */
    {{ 582,187}, {1570,114}},   /* Q == 9 : 56-62% */
    {{ 688,187}, {1712,122}},   /* Q ==10 : 62-69% */
    {{ 825,186}, {1965,136}},   /* Q ==11 : 69-75% */
    {{ 976,185}, {2131,150}},   /* Q ==12 : 75-81% */
    {{1180,186}, {2070,175}},   /* Q ==13 : 81-87% */
    {{1377,185}, {1731,202}},   /* Q ==14 : 87-93% */
    {{1412,185}, {1695,202}},   /* Q ==15 : 93-99% */
};
#endif

/** HUF_selectDecoder() :
 *  Tells which decoder is likely to decode faster,
 *  based on a set of pre-computed metrics.
 * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
 *  Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
    assert(dstSize > 0);
    assert(dstSize <= 128*1024);
#if defined(HUF_FORCE_DECOMPRESS_X1)
    (void)dstSize;
    (void)cSrcSize;
    return 0;
#elif defined(HUF_FORCE_DECOMPRESS_X2)
    (void)dstSize;
    (void)cSrcSize;
    return 1;
#else
    /* decoder timing evaluation */
    {   U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 */
        U32 const D256 = (U32)(dstSize >> 8);
        U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
        U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
        DTime1 += DTime1 >> 5;  /* small advantage to algorithm using less memory, to reduce cache eviction */
        return DTime1 < DTime0;
    }
#endif
}

size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
                                  const void* cSrc, size_t cSrcSize,
                                  void* workSpace, size_t wkspSize, int flags)
{
    /* validation checks */
    if (dstSize == 0) return ERROR(dstSize_tooSmall);
    if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
    if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
    if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */

    {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
        (void)algoNb;
        assert(algoNb == 0);
        return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
                                cSrcSize, workSpace, wkspSize, flags);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
        (void)algoNb;
        assert(algoNb == 1);
        return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
                                cSrcSize, workSpace, wkspSize, flags);
#else
        return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
                                cSrcSize, workSpace, wkspSize, flags):
                        HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
                                cSrcSize, workSpace, wkspSize, flags);
#endif
    }
}


size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
{
    DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
    (void)dtd;
    assert(dtd.tableType == 0);
    return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
    (void)dtd;
    assert(dtd.tableType == 1);
    return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
#else
    return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
                           HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
#endif
}

#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
{
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize; cSrcSize -= hSize;

    return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
}
#endif

size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
{
    DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
    (void)dtd;
    assert(dtd.tableType == 0);
    return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
    (void)dtd;
    assert(dtd.tableType == 1);
    return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
#else
    return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
                           HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
#endif
}

size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
{
    /* validation checks */
    if (dstSize == 0) return ERROR(dstSize_tooSmall);
    if (cSrcSize == 0) return ERROR(corruption_detected);

    {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
        (void)algoNb;
        assert(algoNb == 0);
        return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
        (void)algoNb;
        assert(algoNb == 1);
        return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
#else
        return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
                        HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
#endif
    }
}