aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/zstd/lib/compress/zstd_lazy.c
blob: 67dd55fdb8060394698e2576e90154c328364e2a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

#include "zstd_compress_internal.h"
#include "zstd_lazy.h"
#include "../common/bits.h" /* ZSTD_countTrailingZeros64 */

#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
 || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
 || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
 || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)

#define kLazySkippingStep 8


/*-*************************************
*  Binary Tree search
***************************************/

static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_updateDUBT(ZSTD_matchState_t* ms,
                const BYTE* ip, const BYTE* iend,
                U32 mls)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32* const hashTable = ms->hashTable;
    U32  const hashLog = cParams->hashLog;

    U32* const bt = ms->chainTable;
    U32  const btLog  = cParams->chainLog - 1;
    U32  const btMask = (1 << btLog) - 1;

    const BYTE* const base = ms->window.base;
    U32 const target = (U32)(ip - base);
    U32 idx = ms->nextToUpdate;

    if (idx != target)
        DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
                    idx, target, ms->window.dictLimit);
    assert(ip + 8 <= iend);   /* condition for ZSTD_hashPtr */
    (void)iend;

    assert(idx >= ms->window.dictLimit);   /* condition for valid base+idx */
    for ( ; idx < target ; idx++) {
        size_t const h  = ZSTD_hashPtr(base + idx, hashLog, mls);   /* assumption : ip + 8 <= iend */
        U32    const matchIndex = hashTable[h];

        U32*   const nextCandidatePtr = bt + 2*(idx&btMask);
        U32*   const sortMarkPtr  = nextCandidatePtr + 1;

        DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
        hashTable[h] = idx;   /* Update Hash Table */
        *nextCandidatePtr = matchIndex;   /* update BT like a chain */
        *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
    }
    ms->nextToUpdate = target;
}


/** ZSTD_insertDUBT1() :
 *  sort one already inserted but unsorted position
 *  assumption : curr >= btlow == (curr - btmask)
 *  doesn't fail */
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
                 U32 curr, const BYTE* inputEnd,
                 U32 nbCompares, U32 btLow,
                 const ZSTD_dictMode_e dictMode)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32* const bt = ms->chainTable;
    U32  const btLog  = cParams->chainLog - 1;
    U32  const btMask = (1 << btLog) - 1;
    size_t commonLengthSmaller=0, commonLengthLarger=0;
    const BYTE* const base = ms->window.base;
    const BYTE* const dictBase = ms->window.dictBase;
    const U32 dictLimit = ms->window.dictLimit;
    const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
    const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
    const BYTE* const dictEnd = dictBase + dictLimit;
    const BYTE* const prefixStart = base + dictLimit;
    const BYTE* match;
    U32* smallerPtr = bt + 2*(curr&btMask);
    U32* largerPtr  = smallerPtr + 1;
    U32 matchIndex = *smallerPtr;   /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
    U32 dummy32;   /* to be nullified at the end */
    U32 const windowValid = ms->window.lowLimit;
    U32 const maxDistance = 1U << cParams->windowLog;
    U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;


    DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
                curr, dictLimit, windowLow);
    assert(curr >= btLow);
    assert(ip < iend);   /* condition for ZSTD_count */

    for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
        U32* const nextPtr = bt + 2*(matchIndex & btMask);
        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
        assert(matchIndex < curr);
        /* note : all candidates are now supposed sorted,
         * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
         * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */

        if ( (dictMode != ZSTD_extDict)
          || (matchIndex+matchLength >= dictLimit)  /* both in current segment*/
          || (curr < dictLimit) /* both in extDict */) {
            const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
                                     || (matchIndex+matchLength >= dictLimit)) ?
                                        base : dictBase;
            assert( (matchIndex+matchLength >= dictLimit)   /* might be wrong if extDict is incorrectly set to 0 */
                 || (curr < dictLimit) );
            match = mBase + matchIndex;
            matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
        } else {
            match = dictBase + matchIndex;
            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
            if (matchIndex+matchLength >= dictLimit)
                match = base + matchIndex;   /* preparation for next read of match[matchLength] */
        }

        DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
                    curr, matchIndex, (U32)matchLength);

        if (ip+matchLength == iend) {   /* equal : no way to know if inf or sup */
            break;   /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
        }

        if (match[matchLength] < ip[matchLength]) {  /* necessarily within buffer */
            /* match is smaller than current */
            *smallerPtr = matchIndex;             /* update smaller idx */
            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
            DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
                        matchIndex, btLow, nextPtr[1]);
            smallerPtr = nextPtr+1;               /* new "candidate" => larger than match, which was smaller than target */
            matchIndex = nextPtr[1];              /* new matchIndex, larger than previous and closer to current */
        } else {
            /* match is larger than current */
            *largerPtr = matchIndex;
            commonLengthLarger = matchLength;
            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
            DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
                        matchIndex, btLow, nextPtr[0]);
            largerPtr = nextPtr;
            matchIndex = nextPtr[0];
    }   }

    *smallerPtr = *largerPtr = 0;
}


static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_DUBT_findBetterDictMatch (
        const ZSTD_matchState_t* ms,
        const BYTE* const ip, const BYTE* const iend,
        size_t* offsetPtr,
        size_t bestLength,
        U32 nbCompares,
        U32 const mls,
        const ZSTD_dictMode_e dictMode)
{
    const ZSTD_matchState_t * const dms = ms->dictMatchState;
    const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
    const U32 * const dictHashTable = dms->hashTable;
    U32         const hashLog = dmsCParams->hashLog;
    size_t      const h  = ZSTD_hashPtr(ip, hashLog, mls);
    U32               dictMatchIndex = dictHashTable[h];

    const BYTE* const base = ms->window.base;
    const BYTE* const prefixStart = base + ms->window.dictLimit;
    U32         const curr = (U32)(ip-base);
    const BYTE* const dictBase = dms->window.base;
    const BYTE* const dictEnd = dms->window.nextSrc;
    U32         const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
    U32         const dictLowLimit = dms->window.lowLimit;
    U32         const dictIndexDelta = ms->window.lowLimit - dictHighLimit;

    U32*        const dictBt = dms->chainTable;
    U32         const btLog  = dmsCParams->chainLog - 1;
    U32         const btMask = (1 << btLog) - 1;
    U32         const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;

    size_t commonLengthSmaller=0, commonLengthLarger=0;

    (void)dictMode;
    assert(dictMode == ZSTD_dictMatchState);

    for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
        U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
        const BYTE* match = dictBase + dictMatchIndex;
        matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
        if (dictMatchIndex+matchLength >= dictHighLimit)
            match = base + dictMatchIndex + dictIndexDelta;   /* to prepare for next usage of match[matchLength] */

        if (matchLength > bestLength) {
            U32 matchIndex = dictMatchIndex + dictIndexDelta;
            if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
                DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
                    curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex);
                bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
            }
            if (ip+matchLength == iend) {   /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
                break;   /* drop, to guarantee consistency (miss a little bit of compression) */
            }
        }

        if (match[matchLength] < ip[matchLength]) {
            if (dictMatchIndex <= btLow) { break; }   /* beyond tree size, stop the search */
            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
            dictMatchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
        } else {
            /* match is larger than current */
            if (dictMatchIndex <= btLow) { break; }   /* beyond tree size, stop the search */
            commonLengthLarger = matchLength;
            dictMatchIndex = nextPtr[0];
        }
    }

    if (bestLength >= MINMATCH) {
        U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex;
        DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
                    curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
    }
    return bestLength;

}


static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
                        const BYTE* const ip, const BYTE* const iend,
                        size_t* offBasePtr,
                        U32 const mls,
                        const ZSTD_dictMode_e dictMode)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32*   const hashTable = ms->hashTable;
    U32    const hashLog = cParams->hashLog;
    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
    U32          matchIndex  = hashTable[h];

    const BYTE* const base = ms->window.base;
    U32    const curr = (U32)(ip-base);
    U32    const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);

    U32*   const bt = ms->chainTable;
    U32    const btLog  = cParams->chainLog - 1;
    U32    const btMask = (1 << btLog) - 1;
    U32    const btLow = (btMask >= curr) ? 0 : curr - btMask;
    U32    const unsortLimit = MAX(btLow, windowLow);

    U32*         nextCandidate = bt + 2*(matchIndex&btMask);
    U32*         unsortedMark = bt + 2*(matchIndex&btMask) + 1;
    U32          nbCompares = 1U << cParams->searchLog;
    U32          nbCandidates = nbCompares;
    U32          previousCandidate = 0;

    DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
    assert(ip <= iend-8);   /* required for h calculation */
    assert(dictMode != ZSTD_dedicatedDictSearch);

    /* reach end of unsorted candidates list */
    while ( (matchIndex > unsortLimit)
         && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
         && (nbCandidates > 1) ) {
        DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
                    matchIndex);
        *unsortedMark = previousCandidate;  /* the unsortedMark becomes a reversed chain, to move up back to original position */
        previousCandidate = matchIndex;
        matchIndex = *nextCandidate;
        nextCandidate = bt + 2*(matchIndex&btMask);
        unsortedMark = bt + 2*(matchIndex&btMask) + 1;
        nbCandidates --;
    }

    /* nullify last candidate if it's still unsorted
     * simplification, detrimental to compression ratio, beneficial for speed */
    if ( (matchIndex > unsortLimit)
      && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
        DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
                    matchIndex);
        *nextCandidate = *unsortedMark = 0;
    }

    /* batch sort stacked candidates */
    matchIndex = previousCandidate;
    while (matchIndex) {  /* will end on matchIndex == 0 */
        U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
        U32 const nextCandidateIdx = *nextCandidateIdxPtr;
        ZSTD_insertDUBT1(ms, matchIndex, iend,
                         nbCandidates, unsortLimit, dictMode);
        matchIndex = nextCandidateIdx;
        nbCandidates++;
    }

    /* find longest match */
    {   size_t commonLengthSmaller = 0, commonLengthLarger = 0;
        const BYTE* const dictBase = ms->window.dictBase;
        const U32 dictLimit = ms->window.dictLimit;
        const BYTE* const dictEnd = dictBase + dictLimit;
        const BYTE* const prefixStart = base + dictLimit;
        U32* smallerPtr = bt + 2*(curr&btMask);
        U32* largerPtr  = bt + 2*(curr&btMask) + 1;
        U32 matchEndIdx = curr + 8 + 1;
        U32 dummy32;   /* to be nullified at the end */
        size_t bestLength = 0;

        matchIndex  = hashTable[h];
        hashTable[h] = curr;   /* Update Hash Table */

        for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
            U32* const nextPtr = bt + 2*(matchIndex & btMask);
            size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
            const BYTE* match;

            if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
                match = base + matchIndex;
                matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
            } else {
                match = dictBase + matchIndex;
                matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
                if (matchIndex+matchLength >= dictLimit)
                    match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
            }

            if (matchLength > bestLength) {
                if (matchLength > matchEndIdx - matchIndex)
                    matchEndIdx = matchIndex + (U32)matchLength;
                if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) )
                    bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex);
                if (ip+matchLength == iend) {   /* equal : no way to know if inf or sup */
                    if (dictMode == ZSTD_dictMatchState) {
                        nbCompares = 0; /* in addition to avoiding checking any
                                         * further in this loop, make sure we
                                         * skip checking in the dictionary. */
                    }
                    break;   /* drop, to guarantee consistency (miss a little bit of compression) */
                }
            }

            if (match[matchLength] < ip[matchLength]) {
                /* match is smaller than current */
                *smallerPtr = matchIndex;             /* update smaller idx */
                commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
                if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
                smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
                matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
            } else {
                /* match is larger than current */
                *largerPtr = matchIndex;
                commonLengthLarger = matchLength;
                if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
                largerPtr = nextPtr;
                matchIndex = nextPtr[0];
        }   }

        *smallerPtr = *largerPtr = 0;

        assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
        if (dictMode == ZSTD_dictMatchState && nbCompares) {
            bestLength = ZSTD_DUBT_findBetterDictMatch(
                    ms, ip, iend,
                    offBasePtr, bestLength, nbCompares,
                    mls, dictMode);
        }

        assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
        ms->nextToUpdate = matchEndIdx - 8;   /* skip repetitive patterns */
        if (bestLength >= MINMATCH) {
            U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex;
            DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
                        curr, (U32)bestLength, (U32)*offBasePtr, mIndex);
        }
        return bestLength;
    }
}


/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
                const BYTE* const ip, const BYTE* const iLimit,
                      size_t* offBasePtr,
                const U32 mls /* template */,
                const ZSTD_dictMode_e dictMode)
{
    DEBUGLOG(7, "ZSTD_BtFindBestMatch");
    if (ip < ms->window.base + ms->nextToUpdate) return 0;   /* skipped area */
    ZSTD_updateDUBT(ms, ip, iLimit, mls);
    return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode);
}

/***********************************
* Dedicated dict search
***********************************/

void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
{
    const BYTE* const base = ms->window.base;
    U32 const target = (U32)(ip - base);
    U32* const hashTable = ms->hashTable;
    U32* const chainTable = ms->chainTable;
    U32 const chainSize = 1 << ms->cParams.chainLog;
    U32 idx = ms->nextToUpdate;
    U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
    U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
    U32 const cacheSize = bucketSize - 1;
    U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
    U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;

    /* We know the hashtable is oversized by a factor of `bucketSize`.
     * We are going to temporarily pretend `bucketSize == 1`, keeping only a
     * single entry. We will use the rest of the space to construct a temporary
     * chaintable.
     */
    U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
    U32* const tmpHashTable = hashTable;
    U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
    U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
    U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
    U32 hashIdx;

    assert(ms->cParams.chainLog <= 24);
    assert(ms->cParams.hashLog > ms->cParams.chainLog);
    assert(idx != 0);
    assert(tmpMinChain <= minChain);

    /* fill conventional hash table and conventional chain table */
    for ( ; idx < target; idx++) {
        U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
        if (idx >= tmpMinChain) {
            tmpChainTable[idx - tmpMinChain] = hashTable[h];
        }
        tmpHashTable[h] = idx;
    }

    /* sort chains into ddss chain table */
    {
        U32 chainPos = 0;
        for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
            U32 count;
            U32 countBeyondMinChain = 0;
            U32 i = tmpHashTable[hashIdx];
            for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
                /* skip through the chain to the first position that won't be
                 * in the hash cache bucket */
                if (i < minChain) {
                    countBeyondMinChain++;
                }
                i = tmpChainTable[i - tmpMinChain];
            }
            if (count == cacheSize) {
                for (count = 0; count < chainLimit;) {
                    if (i < minChain) {
                        if (!i || ++countBeyondMinChain > cacheSize) {
                            /* only allow pulling `cacheSize` number of entries
                             * into the cache or chainTable beyond `minChain`,
                             * to replace the entries pulled out of the
                             * chainTable into the cache. This lets us reach
                             * back further without increasing the total number
                             * of entries in the chainTable, guaranteeing the
                             * DDSS chain table will fit into the space
                             * allocated for the regular one. */
                            break;
                        }
                    }
                    chainTable[chainPos++] = i;
                    count++;
                    if (i < tmpMinChain) {
                        break;
                    }
                    i = tmpChainTable[i - tmpMinChain];
                }
            } else {
                count = 0;
            }
            if (count) {
                tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
            } else {
                tmpHashTable[hashIdx] = 0;
            }
        }
        assert(chainPos <= chainSize); /* I believe this is guaranteed... */
    }

    /* move chain pointers into the last entry of each hash bucket */
    for (hashIdx = (1 << hashLog); hashIdx; ) {
        U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
        U32 const chainPackedPointer = tmpHashTable[hashIdx];
        U32 i;
        for (i = 0; i < cacheSize; i++) {
            hashTable[bucketIdx + i] = 0;
        }
        hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
    }

    /* fill the buckets of the hash table */
    for (idx = ms->nextToUpdate; idx < target; idx++) {
        U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
                   << ZSTD_LAZY_DDSS_BUCKET_LOG;
        U32 i;
        /* Shift hash cache down 1. */
        for (i = cacheSize - 1; i; i--)
            hashTable[h + i] = hashTable[h + i - 1];
        hashTable[h] = idx;
    }

    ms->nextToUpdate = target;
}

/* Returns the longest match length found in the dedicated dict search structure.
 * If none are longer than the argument ml, then ml will be returned.
 */
FORCE_INLINE_TEMPLATE
size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
                                            const ZSTD_matchState_t* const dms,
                                            const BYTE* const ip, const BYTE* const iLimit,
                                            const BYTE* const prefixStart, const U32 curr,
                                            const U32 dictLimit, const size_t ddsIdx) {
    const U32 ddsLowestIndex  = dms->window.dictLimit;
    const BYTE* const ddsBase = dms->window.base;
    const BYTE* const ddsEnd  = dms->window.nextSrc;
    const U32 ddsSize         = (U32)(ddsEnd - ddsBase);
    const U32 ddsIndexDelta   = dictLimit - ddsSize;
    const U32 bucketSize      = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
    const U32 bucketLimit     = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
    U32 ddsAttempt;
    U32 matchIndex;

    for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
        PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
    }

    {
        U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
        U32 const chainIndex = chainPackedPointer >> 8;

        PREFETCH_L1(&dms->chainTable[chainIndex]);
    }

    for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
        size_t currentMl=0;
        const BYTE* match;
        matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
        match = ddsBase + matchIndex;

        if (!matchIndex) {
            return ml;
        }

        /* guaranteed by table construction */
        (void)ddsLowestIndex;
        assert(matchIndex >= ddsLowestIndex);
        assert(match+4 <= ddsEnd);
        if (MEM_read32(match) == MEM_read32(ip)) {
            /* assumption : matchIndex <= dictLimit-4 (by table construction) */
            currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
        }

        /* save best solution */
        if (currentMl > ml) {
            ml = currentMl;
            *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
            if (ip+currentMl == iLimit) {
                /* best possible, avoids read overflow on next attempt */
                return ml;
            }
        }
    }

    {
        U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
        U32 chainIndex = chainPackedPointer >> 8;
        U32 const chainLength = chainPackedPointer & 0xFF;
        U32 const chainAttempts = nbAttempts - ddsAttempt;
        U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
        U32 chainAttempt;

        for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
            PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
        }

        for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
            size_t currentMl=0;
            const BYTE* match;
            matchIndex = dms->chainTable[chainIndex];
            match = ddsBase + matchIndex;

            /* guaranteed by table construction */
            assert(matchIndex >= ddsLowestIndex);
            assert(match+4 <= ddsEnd);
            if (MEM_read32(match) == MEM_read32(ip)) {
                /* assumption : matchIndex <= dictLimit-4 (by table construction) */
                currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
            }

            /* save best solution */
            if (currentMl > ml) {
                ml = currentMl;
                *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
                if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
            }
        }
    }
    return ml;
}


/* *********************************
*  Hash Chain
***********************************/
#define NEXT_IN_CHAIN(d, mask)   chainTable[(d) & (mask)]

/* Update chains up to ip (excluded)
   Assumption : always within prefix (i.e. not within extDict) */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
U32 ZSTD_insertAndFindFirstIndex_internal(
                        ZSTD_matchState_t* ms,
                        const ZSTD_compressionParameters* const cParams,
                        const BYTE* ip, U32 const mls, U32 const lazySkipping)
{
    U32* const hashTable  = ms->hashTable;
    const U32 hashLog = cParams->hashLog;
    U32* const chainTable = ms->chainTable;
    const U32 chainMask = (1 << cParams->chainLog) - 1;
    const BYTE* const base = ms->window.base;
    const U32 target = (U32)(ip - base);
    U32 idx = ms->nextToUpdate;

    while(idx < target) { /* catch up */
        size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
        NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
        hashTable[h] = idx;
        idx++;
        /* Stop inserting every position when in the lazy skipping mode. */
        if (lazySkipping)
            break;
    }

    ms->nextToUpdate = target;
    return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
}

U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0);
}

/* inlining is important to hardwire a hot branch (template emulation) */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_HcFindBestMatch(
                        ZSTD_matchState_t* ms,
                        const BYTE* const ip, const BYTE* const iLimit,
                        size_t* offsetPtr,
                        const U32 mls, const ZSTD_dictMode_e dictMode)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32* const chainTable = ms->chainTable;
    const U32 chainSize = (1 << cParams->chainLog);
    const U32 chainMask = chainSize-1;
    const BYTE* const base = ms->window.base;
    const BYTE* const dictBase = ms->window.dictBase;
    const U32 dictLimit = ms->window.dictLimit;
    const BYTE* const prefixStart = base + dictLimit;
    const BYTE* const dictEnd = dictBase + dictLimit;
    const U32 curr = (U32)(ip-base);
    const U32 maxDistance = 1U << cParams->windowLog;
    const U32 lowestValid = ms->window.lowLimit;
    const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
    const U32 isDictionary = (ms->loadedDictEnd != 0);
    const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
    const U32 minChain = curr > chainSize ? curr - chainSize : 0;
    U32 nbAttempts = 1U << cParams->searchLog;
    size_t ml=4-1;

    const ZSTD_matchState_t* const dms = ms->dictMatchState;
    const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
                         ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
    const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
                        ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;

    U32 matchIndex;

    if (dictMode == ZSTD_dedicatedDictSearch) {
        const U32* entry = &dms->hashTable[ddsIdx];
        PREFETCH_L1(entry);
    }

    /* HC4 match finder */
    matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping);

    for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
        size_t currentMl=0;
        if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
            const BYTE* const match = base + matchIndex;
            assert(matchIndex >= dictLimit);   /* ensures this is true if dictMode != ZSTD_extDict */
            /* read 4B starting from (match + ml + 1 - sizeof(U32)) */
            if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3))   /* potentially better */
                currentMl = ZSTD_count(ip, match, iLimit);
        } else {
            const BYTE* const match = dictBase + matchIndex;
            assert(match+4 <= dictEnd);
            if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
                currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
        }

        /* save best solution */
        if (currentMl > ml) {
            ml = currentMl;
            *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
            if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
        }

        if (matchIndex <= minChain) break;
        matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
    }

    assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
    if (dictMode == ZSTD_dedicatedDictSearch) {
        ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
                                                  ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
    } else if (dictMode == ZSTD_dictMatchState) {
        const U32* const dmsChainTable = dms->chainTable;
        const U32 dmsChainSize         = (1 << dms->cParams.chainLog);
        const U32 dmsChainMask         = dmsChainSize - 1;
        const U32 dmsLowestIndex       = dms->window.dictLimit;
        const BYTE* const dmsBase      = dms->window.base;
        const BYTE* const dmsEnd       = dms->window.nextSrc;
        const U32 dmsSize              = (U32)(dmsEnd - dmsBase);
        const U32 dmsIndexDelta        = dictLimit - dmsSize;
        const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;

        matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];

        for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
            size_t currentMl=0;
            const BYTE* const match = dmsBase + matchIndex;
            assert(match+4 <= dmsEnd);
            if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
                currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;

            /* save best solution */
            if (currentMl > ml) {
                ml = currentMl;
                assert(curr > matchIndex + dmsIndexDelta);
                *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
                if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
            }

            if (matchIndex <= dmsMinChain) break;

            matchIndex = dmsChainTable[matchIndex & dmsChainMask];
        }
    }

    return ml;
}

/* *********************************
* (SIMD) Row-based matchfinder
***********************************/
/* Constants for row-based hash */
#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
#define ZSTD_ROW_HASH_MAX_ENTRIES 64    /* absolute maximum number of entries per row, for all configurations */

#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)

typedef U64 ZSTD_VecMask;   /* Clarifies when we are interacting with a U64 representing a mask of matches */

/* ZSTD_VecMask_next():
 * Starting from the LSB, returns the idx of the next non-zero bit.
 * Basically counting the nb of trailing zeroes.
 */
MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
    return ZSTD_countTrailingZeros64(val);
}

/* ZSTD_row_nextIndex():
 * Returns the next index to insert at within a tagTable row, and updates the "head"
 * value to reflect the update. Essentially cycles backwards from [1, {entries per row})
 */
FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
    U32 next = (*tagRow-1) & rowMask;
    next += (next == 0) ? rowMask : 0; /* skip first position */
    *tagRow = (BYTE)next;
    return next;
}

/* ZSTD_isAligned():
 * Checks that a pointer is aligned to "align" bytes which must be a power of 2.
 */
MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
    assert((align & (align - 1)) == 0);
    return (((size_t)ptr) & (align - 1)) == 0;
}

/* ZSTD_row_prefetch():
 * Performs prefetching for the hashTable and tagTable at a given row.
 */
FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) {
    PREFETCH_L1(hashTable + relRow);
    if (rowLog >= 5) {
        PREFETCH_L1(hashTable + relRow + 16);
        /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
    }
    PREFETCH_L1(tagTable + relRow);
    if (rowLog == 6) {
        PREFETCH_L1(tagTable + relRow + 32);
    }
    assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
    assert(ZSTD_isAligned(hashTable + relRow, 64));                 /* prefetched hash row always 64-byte aligned */
    assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
}

/* ZSTD_row_fillHashCache():
 * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
 * but not beyond iLimit.
 */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
                                   U32 const rowLog, U32 const mls,
                                   U32 idx, const BYTE* const iLimit)
{
    U32 const* const hashTable = ms->hashTable;
    BYTE const* const tagTable = ms->tagTable;
    U32 const hashLog = ms->rowHashLog;
    U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
    U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);

    for (; idx < lim; ++idx) {
        U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
        U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
        ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
        ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
    }

    DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
                                                     ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
                                                     ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
}

/* ZSTD_row_nextCachedHash():
 * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
 * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
 */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
                                                  BYTE const* tagTable, BYTE const* base,
                                                  U32 idx, U32 const hashLog,
                                                  U32 const rowLog, U32 const mls,
                                                  U64 const hashSalt)
{
    U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
    U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
    ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
    {   U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
        cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
        return hash;
    }
}

/* ZSTD_row_update_internalImpl():
 * Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
 */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
                                  U32 updateStartIdx, U32 const updateEndIdx,
                                  U32 const mls, U32 const rowLog,
                                  U32 const rowMask, U32 const useCache)
{
    U32* const hashTable = ms->hashTable;
    BYTE* const tagTable = ms->tagTable;
    U32 const hashLog = ms->rowHashLog;
    const BYTE* const base = ms->window.base;

    DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
    for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
        U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt)
                                  : (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
        U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
        U32* const row = hashTable + relRow;
        BYTE* tagRow = tagTable + relRow;
        U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);

        assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt));
        tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK;
        row[pos] = updateStartIdx;
    }
}

/* ZSTD_row_update_internal():
 * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
 * Skips sections of long matches as is necessary.
 */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
                              U32 const mls, U32 const rowLog,
                              U32 const rowMask, U32 const useCache)
{
    U32 idx = ms->nextToUpdate;
    const BYTE* const base = ms->window.base;
    const U32 target = (U32)(ip - base);
    const U32 kSkipThreshold = 384;
    const U32 kMaxMatchStartPositionsToUpdate = 96;
    const U32 kMaxMatchEndPositionsToUpdate = 32;

    if (useCache) {
        /* Only skip positions when using hash cache, i.e.
         * if we are loading a dict, don't skip anything.
         * If we decide to skip, then we only update a set number
         * of positions at the beginning and end of the match.
         */
        if (UNLIKELY(target - idx > kSkipThreshold)) {
            U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
            ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
            idx = target - kMaxMatchEndPositionsToUpdate;
            ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
        }
    }
    assert(target >= idx);
    ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
    ms->nextToUpdate = target;
}

/* ZSTD_row_update():
 * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
 * processing.
 */
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) {
    const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
    const U32 rowMask = (1u << rowLog) - 1;
    const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);

    DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
    ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */);
}

/* Returns the mask width of bits group of which will be set to 1. Given not all
 * architectures have easy movemask instruction, this helps to iterate over
 * groups of bits easier and faster.
 */
FORCE_INLINE_TEMPLATE U32
ZSTD_row_matchMaskGroupWidth(const U32 rowEntries)
{
    assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
    assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
    (void)rowEntries;
#if defined(ZSTD_ARCH_ARM_NEON)
    /* NEON path only works for little endian */
    if (!MEM_isLittleEndian()) {
        return 1;
    }
    if (rowEntries == 16) {
        return 4;
    }
    if (rowEntries == 32) {
        return 2;
    }
    if (rowEntries == 64) {
        return 1;
    }
#endif
    return 1;
}

#if defined(ZSTD_ARCH_X86_SSE2)
FORCE_INLINE_TEMPLATE ZSTD_VecMask
ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
{
    const __m128i comparisonMask = _mm_set1_epi8((char)tag);
    int matches[4] = {0};
    int i;
    assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
    for (i=0; i<nbChunks; i++) {
        const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
        const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
        matches[i] = _mm_movemask_epi8(equalMask);
    }
    if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
    if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
    assert(nbChunks == 4);
    return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
}
#endif

#if defined(ZSTD_ARCH_ARM_NEON)
FORCE_INLINE_TEMPLATE ZSTD_VecMask
ZSTD_row_getNEONMask(const U32 rowEntries, const BYTE* const src, const BYTE tag, const U32 headGrouped)
{
    assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
    if (rowEntries == 16) {
        /* vshrn_n_u16 shifts by 4 every u16 and narrows to 8 lower bits.
         * After that groups of 4 bits represent the equalMask. We lower
         * all bits except the highest in these groups by doing AND with
         * 0x88 = 0b10001000.
         */
        const uint8x16_t chunk = vld1q_u8(src);
        const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
        const uint8x8_t res = vshrn_n_u16(equalMask, 4);
        const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0);
        return ZSTD_rotateRight_U64(matches, headGrouped) & 0x8888888888888888ull;
    } else if (rowEntries == 32) {
        /* Same idea as with rowEntries == 16 but doing AND with
         * 0x55 = 0b01010101.
         */
        const uint16x8x2_t chunk = vld2q_u16((const uint16_t*)(const void*)src);
        const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
        const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
        const uint8x16_t dup = vdupq_n_u8(tag);
        const uint8x8_t t0 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk0, dup)), 6);
        const uint8x8_t t1 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk1, dup)), 6);
        const uint8x8_t res = vsli_n_u8(t0, t1, 4);
        const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0) ;
        return ZSTD_rotateRight_U64(matches, headGrouped) & 0x5555555555555555ull;
    } else { /* rowEntries == 64 */
        const uint8x16x4_t chunk = vld4q_u8(src);
        const uint8x16_t dup = vdupq_n_u8(tag);
        const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
        const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
        const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
        const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);

        const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
        const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
        const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
        const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
        const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
        const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
        return ZSTD_rotateRight_U64(matches, headGrouped);
    }
}
#endif

/* Returns a ZSTD_VecMask (U64) that has the nth group (determined by
 * ZSTD_row_matchMaskGroupWidth) of bits set to 1 if the newly-computed "tag"
 * matches the hash at the nth position in a row of the tagTable.
 * Each row is a circular buffer beginning at the value of "headGrouped". So we
 * must rotate the "matches" bitfield to match up with the actual layout of the
 * entries within the hashTable */
FORCE_INLINE_TEMPLATE ZSTD_VecMask
ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 headGrouped, const U32 rowEntries)
{
    const BYTE* const src = tagRow;
    assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
    assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
    assert(ZSTD_row_matchMaskGroupWidth(rowEntries) * rowEntries <= sizeof(ZSTD_VecMask) * 8);

#if defined(ZSTD_ARCH_X86_SSE2)

    return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, headGrouped);

#else /* SW or NEON-LE */

# if defined(ZSTD_ARCH_ARM_NEON)
  /* This NEON path only works for little endian - otherwise use SWAR below */
    if (MEM_isLittleEndian()) {
        return ZSTD_row_getNEONMask(rowEntries, src, tag, headGrouped);
    }
# endif /* ZSTD_ARCH_ARM_NEON */
    /* SWAR */
    {   const int chunkSize = sizeof(size_t);
        const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
        const size_t xFF = ~((size_t)0);
        const size_t x01 = xFF / 0xFF;
        const size_t x80 = x01 << 7;
        const size_t splatChar = tag * x01;
        ZSTD_VecMask matches = 0;
        int i = rowEntries - chunkSize;
        assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
        if (MEM_isLittleEndian()) { /* runtime check so have two loops */
            const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
            do {
                size_t chunk = MEM_readST(&src[i]);
                chunk ^= splatChar;
                chunk = (((chunk | x80) - x01) | chunk) & x80;
                matches <<= chunkSize;
                matches |= (chunk * extractMagic) >> shiftAmount;
                i -= chunkSize;
            } while (i >= 0);
        } else { /* big endian: reverse bits during extraction */
            const size_t msb = xFF ^ (xFF >> 1);
            const size_t extractMagic = (msb / 0x1FF) | msb;
            do {
                size_t chunk = MEM_readST(&src[i]);
                chunk ^= splatChar;
                chunk = (((chunk | x80) - x01) | chunk) & x80;
                matches <<= chunkSize;
                matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
                i -= chunkSize;
            } while (i >= 0);
        }
        matches = ~matches;
        if (rowEntries == 16) {
            return ZSTD_rotateRight_U16((U16)matches, headGrouped);
        } else if (rowEntries == 32) {
            return ZSTD_rotateRight_U32((U32)matches, headGrouped);
        } else {
            return ZSTD_rotateRight_U64((U64)matches, headGrouped);
        }
    }
#endif
}

/* The high-level approach of the SIMD row based match finder is as follows:
 * - Figure out where to insert the new entry:
 *      - Generate a hash for current input posistion and split it into a one byte of tag and `rowHashLog` bits of index.
 *           - The hash is salted by a value that changes on every contex reset, so when the same table is used
 *             we will avoid collisions that would otherwise slow us down by intorducing phantom matches.
 *      - The hashTable is effectively split into groups or "rows" of 15 or 31 entries of U32, and the index determines
 *        which row to insert into.
 *      - Determine the correct position within the row to insert the entry into. Each row of 15 or 31 can
 *        be considered as a circular buffer with a "head" index that resides in the tagTable (overall 16 or 32 bytes
 *        per row).
 * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte tag calculated for the position and
 *   generate a bitfield that we can cycle through to check the collisions in the hash table.
 * - Pick the longest match.
 * - Insert the tag into the equivalent row and position in the tagTable.
 */
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_RowFindBestMatch(
                        ZSTD_matchState_t* ms,
                        const BYTE* const ip, const BYTE* const iLimit,
                        size_t* offsetPtr,
                        const U32 mls, const ZSTD_dictMode_e dictMode,
                        const U32 rowLog)
{
    U32* const hashTable = ms->hashTable;
    BYTE* const tagTable = ms->tagTable;
    U32* const hashCache = ms->hashCache;
    const U32 hashLog = ms->rowHashLog;
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    const BYTE* const base = ms->window.base;
    const BYTE* const dictBase = ms->window.dictBase;
    const U32 dictLimit = ms->window.dictLimit;
    const BYTE* const prefixStart = base + dictLimit;
    const BYTE* const dictEnd = dictBase + dictLimit;
    const U32 curr = (U32)(ip-base);
    const U32 maxDistance = 1U << cParams->windowLog;
    const U32 lowestValid = ms->window.lowLimit;
    const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
    const U32 isDictionary = (ms->loadedDictEnd != 0);
    const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
    const U32 rowEntries = (1U << rowLog);
    const U32 rowMask = rowEntries - 1;
    const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
    const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries);
    const U64 hashSalt = ms->hashSalt;
    U32 nbAttempts = 1U << cappedSearchLog;
    size_t ml=4-1;
    U32 hash;

    /* DMS/DDS variables that may be referenced laster */
    const ZSTD_matchState_t* const dms = ms->dictMatchState;

    /* Initialize the following variables to satisfy static analyzer */
    size_t ddsIdx = 0;
    U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
    U32 dmsTag = 0;
    U32* dmsRow = NULL;
    BYTE* dmsTagRow = NULL;

    if (dictMode == ZSTD_dedicatedDictSearch) {
        const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
        {   /* Prefetch DDS hashtable entry */
            ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
            PREFETCH_L1(&dms->hashTable[ddsIdx]);
        }
        ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
    }

    if (dictMode == ZSTD_dictMatchState) {
        /* Prefetch DMS rows */
        U32* const dmsHashTable = dms->hashTable;
        BYTE* const dmsTagTable = dms->tagTable;
        U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
        U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
        dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
        dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
        dmsRow = dmsHashTable + dmsRelRow;
        ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
    }

    /* Update the hashTable and tagTable up to (but not including) ip */
    if (!ms->lazySkipping) {
        ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
        hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt);
    } else {
        /* Stop inserting every position when in the lazy skipping mode.
         * The hash cache is also not kept up to date in this mode.
         */
        hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
        ms->nextToUpdate = curr;
    }
    ms->hashSaltEntropy += hash; /* collect salt entropy */

    {   /* Get the hash for ip, compute the appropriate row */
        U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
        U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
        U32* const row = hashTable + relRow;
        BYTE* tagRow = (BYTE*)(tagTable + relRow);
        U32 const headGrouped = (*tagRow & rowMask) * groupWidth;
        U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
        size_t numMatches = 0;
        size_t currMatch = 0;
        ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries);

        /* Cycle through the matches and prefetch */
        for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
            U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
            U32 const matchIndex = row[matchPos];
            if(matchPos == 0) continue;
            assert(numMatches < rowEntries);
            if (matchIndex < lowLimit)
                break;
            if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
                PREFETCH_L1(base + matchIndex);
            } else {
                PREFETCH_L1(dictBase + matchIndex);
            }
            matchBuffer[numMatches++] = matchIndex;
            --nbAttempts;
        }

        /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
           in ZSTD_row_update_internal() at the next search. */
        {
            U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
            tagRow[pos] = (BYTE)tag;
            row[pos] = ms->nextToUpdate++;
        }

        /* Return the longest match */
        for (; currMatch < numMatches; ++currMatch) {
            U32 const matchIndex = matchBuffer[currMatch];
            size_t currentMl=0;
            assert(matchIndex < curr);
            assert(matchIndex >= lowLimit);

            if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
                const BYTE* const match = base + matchIndex;
                assert(matchIndex >= dictLimit);   /* ensures this is true if dictMode != ZSTD_extDict */
                /* read 4B starting from (match + ml + 1 - sizeof(U32)) */
                if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3))   /* potentially better */
                    currentMl = ZSTD_count(ip, match, iLimit);
            } else {
                const BYTE* const match = dictBase + matchIndex;
                assert(match+4 <= dictEnd);
                if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
                    currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
            }

            /* Save best solution */
            if (currentMl > ml) {
                ml = currentMl;
                *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
                if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
            }
        }
    }

    assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
    if (dictMode == ZSTD_dedicatedDictSearch) {
        ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
                                                  ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
    } else if (dictMode == ZSTD_dictMatchState) {
        /* TODO: Measure and potentially add prefetching to DMS */
        const U32 dmsLowestIndex       = dms->window.dictLimit;
        const BYTE* const dmsBase      = dms->window.base;
        const BYTE* const dmsEnd       = dms->window.nextSrc;
        const U32 dmsSize              = (U32)(dmsEnd - dmsBase);
        const U32 dmsIndexDelta        = dictLimit - dmsSize;

        {   U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth;
            U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
            size_t numMatches = 0;
            size_t currMatch = 0;
            ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries);

            for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
                U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
                U32 const matchIndex = dmsRow[matchPos];
                if(matchPos == 0) continue;
                if (matchIndex < dmsLowestIndex)
                    break;
                PREFETCH_L1(dmsBase + matchIndex);
                matchBuffer[numMatches++] = matchIndex;
                --nbAttempts;
            }

            /* Return the longest match */
            for (; currMatch < numMatches; ++currMatch) {
                U32 const matchIndex = matchBuffer[currMatch];
                size_t currentMl=0;
                assert(matchIndex >= dmsLowestIndex);
                assert(matchIndex < curr);

                {   const BYTE* const match = dmsBase + matchIndex;
                    assert(match+4 <= dmsEnd);
                    if (MEM_read32(match) == MEM_read32(ip))
                        currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
                }

                if (currentMl > ml) {
                    ml = currentMl;
                    assert(curr > matchIndex + dmsIndexDelta);
                    *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
                    if (ip+currentMl == iLimit) break;
                }
            }
        }
    }
    return ml;
}


/**
 * Generate search functions templated on (dictMode, mls, rowLog).
 * These functions are outlined for code size & compilation time.
 * ZSTD_searchMax() dispatches to the correct implementation function.
 *
 * TODO: The start of the search function involves loading and calculating a
 * bunch of constants from the ZSTD_matchState_t. These computations could be
 * done in an initialization function, and saved somewhere in the match state.
 * Then we could pass a pointer to the saved state instead of the match state,
 * and avoid duplicate computations.
 *
 * TODO: Move the match re-winding into searchMax. This improves compression
 * ratio, and unlocks further simplifications with the next TODO.
 *
 * TODO: Try moving the repcode search into searchMax. After the re-winding
 * and repcode search are in searchMax, there is no more logic in the match
 * finder loop that requires knowledge about the dictMode. So we should be
 * able to avoid force inlining it, and we can join the extDict loop with
 * the single segment loop. It should go in searchMax instead of its own
 * function to avoid having multiple virtual function calls per search.
 */

#define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls
#define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls
#define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog

#define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE

#define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls)                                           \
    ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)(                      \
            ZSTD_matchState_t* ms,                                                     \
            const BYTE* ip, const BYTE* const iLimit,                                  \
            size_t* offBasePtr)                                                        \
    {                                                                                  \
        assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls);                           \
        return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \
    }                                                                                  \

#define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls)                                          \
    ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)(                     \
            ZSTD_matchState_t* ms,                                                    \
            const BYTE* ip, const BYTE* const iLimit,                                 \
            size_t* offsetPtr)                                                        \
    {                                                                                 \
        assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls);                          \
        return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
    }                                                                                 \

#define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)                                          \
    ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(                     \
            ZSTD_matchState_t* ms,                                                             \
            const BYTE* ip, const BYTE* const iLimit,                                          \
            size_t* offsetPtr)                                                                 \
    {                                                                                          \
        assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls);                                   \
        assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog);                               \
        return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
    }                                                                                          \

#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
    X(dictMode, mls, 4)                        \
    X(dictMode, mls, 5)                        \
    X(dictMode, mls, 6)

#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
    ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4)      \
    ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5)      \
    ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)

#define ZSTD_FOR_EACH_MLS(X, dictMode) \
    X(dictMode, 4)                     \
    X(dictMode, 5)                     \
    X(dictMode, 6)

#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
    X(__VA_ARGS__, noDict)              \
    X(__VA_ARGS__, extDict)             \
    X(__VA_ARGS__, dictMatchState)      \
    X(__VA_ARGS__, dedicatedDictSearch)

/* Generate row search fns for each combination of (dictMode, mls, rowLog) */
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN)
/* Generate binary Tree search fns for each combination of (dictMode, mls) */
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN)
/* Generate hash chain search fns for each combination of (dictMode, mls) */
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN)

typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;

#define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls)                         \
    case mls:                                                             \
        return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
#define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls)                         \
    case mls:                                                             \
        return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
#define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog)                         \
    case rowLog:                                                                   \
        return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr);

#define ZSTD_SWITCH_MLS(X, dictMode)   \
    switch (mls) {                     \
        ZSTD_FOR_EACH_MLS(X, dictMode) \
    }

#define ZSTD_SWITCH_ROWLOG(dictMode, mls)                                    \
    case mls:                                                                \
        switch (rowLog) {                                                    \
            ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \
        }                                                                    \
        ZSTD_UNREACHABLE;                                                    \
        break;

#define ZSTD_SWITCH_SEARCH_METHOD(dictMode)                       \
    switch (searchMethod) {                                       \
        case search_hashChain:                                    \
            ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \
            break;                                                \
        case search_binaryTree:                                   \
            ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \
            break;                                                \
        case search_rowHash:                                      \
            ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode)         \
            break;                                                \
    }                                                             \
    ZSTD_UNREACHABLE;

/**
 * Searches for the longest match at @p ip.
 * Dispatches to the correct implementation function based on the
 * (searchMethod, dictMode, mls, rowLog). We use switch statements
 * here instead of using an indirect function call through a function
 * pointer because after Spectre and Meltdown mitigations, indirect
 * function calls can be very costly, especially in the kernel.
 *
 * NOTE: dictMode and searchMethod should be templated, so those switch
 * statements should be optimized out. Only the mls & rowLog switches
 * should be left.
 *
 * @param ms The match state.
 * @param ip The position to search at.
 * @param iend The end of the input data.
 * @param[out] offsetPtr Stores the match offset into this pointer.
 * @param mls The minimum search length, in the range [4, 6].
 * @param rowLog The row log (if applicable), in the range [4, 6].
 * @param searchMethod The search method to use (templated).
 * @param dictMode The dictMode (templated).
 *
 * @returns The length of the longest match found, or < mls if no match is found.
 * If a match is found its offset is stored in @p offsetPtr.
 */
FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax(
    ZSTD_matchState_t* ms,
    const BYTE* ip,
    const BYTE* iend,
    size_t* offsetPtr,
    U32 const mls,
    U32 const rowLog,
    searchMethod_e const searchMethod,
    ZSTD_dictMode_e const dictMode)
{
    if (dictMode == ZSTD_noDict) {
        ZSTD_SWITCH_SEARCH_METHOD(noDict)
    } else if (dictMode == ZSTD_extDict) {
        ZSTD_SWITCH_SEARCH_METHOD(extDict)
    } else if (dictMode == ZSTD_dictMatchState) {
        ZSTD_SWITCH_SEARCH_METHOD(dictMatchState)
    } else if (dictMode == ZSTD_dedicatedDictSearch) {
        ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch)
    }
    ZSTD_UNREACHABLE;
    return 0;
}

/* *******************************
*  Common parser - lazy strategy
*********************************/

FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_lazy_generic(
                        ZSTD_matchState_t* ms, seqStore_t* seqStore,
                        U32 rep[ZSTD_REP_NUM],
                        const void* src, size_t srcSize,
                        const searchMethod_e searchMethod, const U32 depth,
                        ZSTD_dictMode_e const dictMode)
{
    const BYTE* const istart = (const BYTE*)src;
    const BYTE* ip = istart;
    const BYTE* anchor = istart;
    const BYTE* const iend = istart + srcSize;
    const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
    const BYTE* const base = ms->window.base;
    const U32 prefixLowestIndex = ms->window.dictLimit;
    const BYTE* const prefixLowest = base + prefixLowestIndex;
    const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
    const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);

    U32 offset_1 = rep[0], offset_2 = rep[1];
    U32 offsetSaved1 = 0, offsetSaved2 = 0;

    const int isDMS = dictMode == ZSTD_dictMatchState;
    const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
    const int isDxS = isDMS || isDDS;
    const ZSTD_matchState_t* const dms = ms->dictMatchState;
    const U32 dictLowestIndex      = isDxS ? dms->window.dictLimit : 0;
    const BYTE* const dictBase     = isDxS ? dms->window.base : NULL;
    const BYTE* const dictLowest   = isDxS ? dictBase + dictLowestIndex : NULL;
    const BYTE* const dictEnd      = isDxS ? dms->window.nextSrc : NULL;
    const U32 dictIndexDelta       = isDxS ?
                                     prefixLowestIndex - (U32)(dictEnd - dictBase) :
                                     0;
    const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));

    DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
    ip += (dictAndPrefixLength == 0);
    if (dictMode == ZSTD_noDict) {
        U32 const curr = (U32)(ip - base);
        U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
        U32 const maxRep = curr - windowLow;
        if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
        if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
    }
    if (isDxS) {
        /* dictMatchState repCode checks don't currently handle repCode == 0
         * disabling. */
        assert(offset_1 <= dictAndPrefixLength);
        assert(offset_2 <= dictAndPrefixLength);
    }

    /* Reset the lazy skipping state */
    ms->lazySkipping = 0;

    if (searchMethod == search_rowHash) {
        ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
    }

    /* Match Loop */
#if defined(__GNUC__) && defined(__x86_64__)
    /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
     * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
     */
    __asm__(".p2align 5");
#endif
    while (ip < ilimit) {
        size_t matchLength=0;
        size_t offBase = REPCODE1_TO_OFFBASE;
        const BYTE* start=ip+1;
        DEBUGLOG(7, "search baseline (depth 0)");

        /* check repCode */
        if (isDxS) {
            const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
            const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
                                && repIndex < prefixLowestIndex) ?
                                   dictBase + (repIndex - dictIndexDelta) :
                                   base + repIndex;
            if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
                && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
                const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
                matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
                if (depth==0) goto _storeSequence;
            }
        }
        if ( dictMode == ZSTD_noDict
          && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
            matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
            if (depth==0) goto _storeSequence;
        }

        /* first search (depth 0) */
        {   size_t offbaseFound = 999999999;
            size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode);
            if (ml2 > matchLength)
                matchLength = ml2, start = ip, offBase = offbaseFound;
        }

        if (matchLength < 4) {
            size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1;   /* jump faster over incompressible sections */;
            ip += step;
            /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
             * In this mode we stop inserting every position into our tables, and only insert
             * positions that we search, which is one in step positions.
             * The exact cutoff is flexible, I've just chosen a number that is reasonably high,
             * so we minimize the compression ratio loss in "normal" scenarios. This mode gets
             * triggered once we've gone 2KB without finding any matches.
             */
            ms->lazySkipping = step > kLazySkippingStep;
            continue;
        }

        /* let's try to find a better solution */
        if (depth>=1)
        while (ip<ilimit) {
            DEBUGLOG(7, "search depth 1");
            ip ++;
            if ( (dictMode == ZSTD_noDict)
              && (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
                size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
                int const gain2 = (int)(mlRep * 3);
                int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
                if ((mlRep >= 4) && (gain2 > gain1))
                    matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
            }
            if (isDxS) {
                const U32 repIndex = (U32)(ip - base) - offset_1;
                const BYTE* repMatch = repIndex < prefixLowestIndex ?
                               dictBase + (repIndex - dictIndexDelta) :
                               base + repIndex;
                if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
                    && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
                    const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
                    size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
                    int const gain2 = (int)(mlRep * 3);
                    int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
                    if ((mlRep >= 4) && (gain2 > gain1))
                        matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
                }
            }
            {   size_t ofbCandidate=999999999;
                size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
                int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate));   /* raw approx */
                int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
                if ((ml2 >= 4) && (gain2 > gain1)) {
                    matchLength = ml2, offBase = ofbCandidate, start = ip;
                    continue;   /* search a better one */
            }   }

            /* let's find an even better one */
            if ((depth==2) && (ip<ilimit)) {
                DEBUGLOG(7, "search depth 2");
                ip ++;
                if ( (dictMode == ZSTD_noDict)
                  && (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
                    size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
                    int const gain2 = (int)(mlRep * 4);
                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
                    if ((mlRep >= 4) && (gain2 > gain1))
                        matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
                }
                if (isDxS) {
                    const U32 repIndex = (U32)(ip - base) - offset_1;
                    const BYTE* repMatch = repIndex < prefixLowestIndex ?
                                   dictBase + (repIndex - dictIndexDelta) :
                                   base + repIndex;
                    if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
                        && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
                        const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
                        size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
                        int const gain2 = (int)(mlRep * 4);
                        int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
                        if ((mlRep >= 4) && (gain2 > gain1))
                            matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
                    }
                }
                {   size_t ofbCandidate=999999999;
                    size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
                    int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate));   /* raw approx */
                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
                    if ((ml2 >= 4) && (gain2 > gain1)) {
                        matchLength = ml2, offBase = ofbCandidate, start = ip;
                        continue;
            }   }   }
            break;  /* nothing found : store previous solution */
        }

        /* NOTE:
         * Pay attention that `start[-value]` can lead to strange undefined behavior
         * notably if `value` is unsigned, resulting in a large positive `-value`.
         */
        /* catch up */
        if (OFFBASE_IS_OFFSET(offBase)) {
            if (dictMode == ZSTD_noDict) {
                while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest))
                     && (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) )  /* only search for offset within prefix */
                    { start--; matchLength++; }
            }
            if (isDxS) {
                U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
                const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
                const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
                while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; }  /* catch up */
            }
            offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
        }
        /* store sequence */
_storeSequence:
        {   size_t const litLength = (size_t)(start - anchor);
            ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
            anchor = ip = start + matchLength;
        }
        if (ms->lazySkipping) {
            /* We've found a match, disable lazy skipping mode, and refill the hash cache. */
            if (searchMethod == search_rowHash) {
                ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
            }
            ms->lazySkipping = 0;
        }

        /* check immediate repcode */
        if (isDxS) {
            while (ip <= ilimit) {
                U32 const current2 = (U32)(ip-base);
                U32 const repIndex = current2 - offset_2;
                const BYTE* repMatch = repIndex < prefixLowestIndex ?
                        dictBase - dictIndexDelta + repIndex :
                        base + repIndex;
                if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
                   && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
                    const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
                    matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
                    offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase;   /* swap offset_2 <=> offset_1 */
                    ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
                    ip += matchLength;
                    anchor = ip;
                    continue;
                }
                break;
            }
        }

        if (dictMode == ZSTD_noDict) {
            while ( ((ip <= ilimit) & (offset_2>0))
                 && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
                /* store sequence */
                matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
                offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */
                ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
                ip += matchLength;
                anchor = ip;
                continue;   /* faster when present ... (?) */
    }   }   }

    /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
     * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
    offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;

    /* save reps for next block */
    rep[0] = offset_1 ? offset_1 : offsetSaved1;
    rep[1] = offset_2 ? offset_2 : offsetSaved2;

    /* Return the last literals size */
    return (size_t)(iend - anchor);
}
#endif /* build exclusions */


#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_greedy(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
}

size_t ZSTD_compressBlock_greedy_dictMatchState(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
}

size_t ZSTD_compressBlock_greedy_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
}

size_t ZSTD_compressBlock_greedy_dictMatchState_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
}
#endif

#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_lazy(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
}

size_t ZSTD_compressBlock_lazy_dictMatchState(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
}

size_t ZSTD_compressBlock_lazy_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
}

size_t ZSTD_compressBlock_lazy_dictMatchState_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
}
#endif

#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_lazy2(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
}

size_t ZSTD_compressBlock_lazy2_dictMatchState(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
}

size_t ZSTD_compressBlock_lazy2_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
}

size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
}
#endif

#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btlazy2(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
}

size_t ZSTD_compressBlock_btlazy2_dictMatchState(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
}
#endif

#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
 || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
 || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
 || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_lazy_extDict_generic(
                        ZSTD_matchState_t* ms, seqStore_t* seqStore,
                        U32 rep[ZSTD_REP_NUM],
                        const void* src, size_t srcSize,
                        const searchMethod_e searchMethod, const U32 depth)
{
    const BYTE* const istart = (const BYTE*)src;
    const BYTE* ip = istart;
    const BYTE* anchor = istart;
    const BYTE* const iend = istart + srcSize;
    const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
    const BYTE* const base = ms->window.base;
    const U32 dictLimit = ms->window.dictLimit;
    const BYTE* const prefixStart = base + dictLimit;
    const BYTE* const dictBase = ms->window.dictBase;
    const BYTE* const dictEnd  = dictBase + dictLimit;
    const BYTE* const dictStart  = dictBase + ms->window.lowLimit;
    const U32 windowLog = ms->cParams.windowLog;
    const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
    const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);

    U32 offset_1 = rep[0], offset_2 = rep[1];

    DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);

    /* Reset the lazy skipping state */
    ms->lazySkipping = 0;

    /* init */
    ip += (ip == prefixStart);
    if (searchMethod == search_rowHash) {
        ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
    }

    /* Match Loop */
#if defined(__GNUC__) && defined(__x86_64__)
    /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
     * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
     */
    __asm__(".p2align 5");
#endif
    while (ip < ilimit) {
        size_t matchLength=0;
        size_t offBase = REPCODE1_TO_OFFBASE;
        const BYTE* start=ip+1;
        U32 curr = (U32)(ip-base);

        /* check repCode */
        {   const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
            const U32 repIndex = (U32)(curr+1 - offset_1);
            const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
            const BYTE* const repMatch = repBase + repIndex;
            if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */
               & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
            if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
                /* repcode detected we should take it */
                const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
                matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
                if (depth==0) goto _storeSequence;
        }   }

        /* first search (depth 0) */
        {   size_t ofbCandidate = 999999999;
            size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
            if (ml2 > matchLength)
                matchLength = ml2, start = ip, offBase = ofbCandidate;
        }

        if (matchLength < 4) {
            size_t const step = ((size_t)(ip-anchor) >> kSearchStrength);
            ip += step + 1;   /* jump faster over incompressible sections */
            /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
             * In this mode we stop inserting every position into our tables, and only insert
             * positions that we search, which is one in step positions.
             * The exact cutoff is flexible, I've just chosen a number that is reasonably high,
             * so we minimize the compression ratio loss in "normal" scenarios. This mode gets
             * triggered once we've gone 2KB without finding any matches.
             */
            ms->lazySkipping = step > kLazySkippingStep;
            continue;
        }

        /* let's try to find a better solution */
        if (depth>=1)
        while (ip<ilimit) {
            ip ++;
            curr++;
            /* check repCode */
            if (offBase) {
                const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
                const U32 repIndex = (U32)(curr - offset_1);
                const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
                const BYTE* const repMatch = repBase + repIndex;
                if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments  */
                   & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
                if (MEM_read32(ip) == MEM_read32(repMatch)) {
                    /* repcode detected */
                    const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
                    size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
                    int const gain2 = (int)(repLength * 3);
                    int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
                    if ((repLength >= 4) && (gain2 > gain1))
                        matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
            }   }

            /* search match, depth 1 */
            {   size_t ofbCandidate = 999999999;
                size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
                int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate));   /* raw approx */
                int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
                if ((ml2 >= 4) && (gain2 > gain1)) {
                    matchLength = ml2, offBase = ofbCandidate, start = ip;
                    continue;   /* search a better one */
            }   }

            /* let's find an even better one */
            if ((depth==2) && (ip<ilimit)) {
                ip ++;
                curr++;
                /* check repCode */
                if (offBase) {
                    const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
                    const U32 repIndex = (U32)(curr - offset_1);
                    const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
                    const BYTE* const repMatch = repBase + repIndex;
                    if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments  */
                       & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
                    if (MEM_read32(ip) == MEM_read32(repMatch)) {
                        /* repcode detected */
                        const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
                        size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
                        int const gain2 = (int)(repLength * 4);
                        int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
                        if ((repLength >= 4) && (gain2 > gain1))
                            matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
                }   }

                /* search match, depth 2 */
                {   size_t ofbCandidate = 999999999;
                    size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
                    int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate));   /* raw approx */
                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
                    if ((ml2 >= 4) && (gain2 > gain1)) {
                        matchLength = ml2, offBase = ofbCandidate, start = ip;
                        continue;
            }   }   }
            break;  /* nothing found : store previous solution */
        }

        /* catch up */
        if (OFFBASE_IS_OFFSET(offBase)) {
            U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
            const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
            const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
            while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; }  /* catch up */
            offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
        }

        /* store sequence */
_storeSequence:
        {   size_t const litLength = (size_t)(start - anchor);
            ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
            anchor = ip = start + matchLength;
        }
        if (ms->lazySkipping) {
            /* We've found a match, disable lazy skipping mode, and refill the hash cache. */
            if (searchMethod == search_rowHash) {
                ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
            }
            ms->lazySkipping = 0;
        }

        /* check immediate repcode */
        while (ip <= ilimit) {
            const U32 repCurrent = (U32)(ip-base);
            const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
            const U32 repIndex = repCurrent - offset_2;
            const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
            const BYTE* const repMatch = repBase + repIndex;
            if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments  */
               & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
            if (MEM_read32(ip) == MEM_read32(repMatch)) {
                /* repcode detected we should take it */
                const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
                matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
                offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase;   /* swap offset history */
                ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
                ip += matchLength;
                anchor = ip;
                continue;   /* faster when present ... (?) */
            }
            break;
    }   }

    /* Save reps for next block */
    rep[0] = offset_1;
    rep[1] = offset_2;

    /* Return the last literals size */
    return (size_t)(iend - anchor);
}
#endif /* build exclusions */

#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_greedy_extDict(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
}

size_t ZSTD_compressBlock_greedy_extDict_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
}
#endif

#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_lazy_extDict(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)

{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
}

size_t ZSTD_compressBlock_lazy_extDict_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)

{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
}
#endif

#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_lazy2_extDict(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)

{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
}

size_t ZSTD_compressBlock_lazy2_extDict_row(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)
{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
}
#endif

#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btlazy2_extDict(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize)

{
    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
}
#endif