aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/zstd/lib/compress/huf_compress.c
blob: 137671d31a2593d3571d7987c03ab5d7e188fb42 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/* ****************************************************************** 
 * Huffman encoder, part of New Generation Entropy library
 * Copyright (c) Yann Collet, Facebook, Inc.
 *
 *  You can contact the author at :
 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
****************************************************************** */ 
 
/* ************************************************************** 
*  Compiler specifics 
****************************************************************/ 
#ifdef _MSC_VER    /* Visual Studio */ 
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */ 
#endif 
 
 
/* ************************************************************** 
*  Includes 
****************************************************************/ 
#include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h"
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */ 
#include "../common/fse.h"        /* header compression */
#define HUF_STATIC_LINKING_ONLY 
#include "../common/huf.h"
#include "../common/error_private.h"
 
 
/* ************************************************************** 
*  Error Management 
****************************************************************/ 
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
 
 
/* ************************************************************** 
*  Utils 
****************************************************************/ 
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) 
{ 
    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); 
} 
 
 
/* ******************************************************* 
*  HUF : Huffman block compression 
*********************************************************/ 
#define HUF_WORKSPACE_MAX_ALIGNMENT 8

static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
{
    size_t const mask = align - 1;
    size_t const rem = (size_t)workspace & mask;
    size_t const add = (align - rem) & mask;
    BYTE* const aligned = (BYTE*)workspace + add;
    assert((align & (align - 1)) == 0); /* pow 2 */
    assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
    if (*workspaceSizePtr >= add) {
        assert(add < align);
        assert(((size_t)aligned & mask) == 0);
        *workspaceSizePtr -= add;
        return aligned;
    } else {
        *workspaceSizePtr = 0;
        return NULL;
    }
}


/* HUF_compressWeights() :
 * Same as FSE_compress(), but dedicated to huff0's weights compression.
 * The use case needs much less stack memory.
 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
 */
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6

typedef struct {
    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
    U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
    unsigned count[HUF_TABLELOG_MAX+1];
    S16 norm[HUF_TABLELOG_MAX+1];
} HUF_CompressWeightsWksp;

static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + dstSize;

    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
    HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));

    if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);

    /* init conditions */
    if (wtSize <= 1) return 0;  /* Not compressible */

    /* Scan input and build symbol stats */
    {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
    }

    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
    CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );

    /* Write table description header */
    {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
        op += hSize;
    }

    /* Compress */
    CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
        if (cSize == 0) return 0;   /* not enough space for compressed data */
        op += cSize;
    }

    return (size_t)(op-ostart);
}

static size_t HUF_getNbBits(HUF_CElt elt)
{
    return elt & 0xFF;
}

static size_t HUF_getNbBitsFast(HUF_CElt elt)
{
    return elt;
}

static size_t HUF_getValue(HUF_CElt elt)
{
    return elt & ~0xFF;
}

static size_t HUF_getValueFast(HUF_CElt elt)
{
    return elt;
}

static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
{
    assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
    *elt = nbBits;
}

static void HUF_setValue(HUF_CElt* elt, size_t value)
{
    size_t const nbBits = HUF_getNbBits(*elt);
    if (nbBits > 0) {
        assert((value >> nbBits) == 0);
        *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
    }
}

typedef struct {
    HUF_CompressWeightsWksp wksp;
    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; 
} HUF_WriteCTableWksp;

size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
                            const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
                            void* workspace, size_t workspaceSize)
{
    HUF_CElt const* const ct = CTable + 1;
    BYTE* op = (BYTE*)dst; 
    U32 n; 
    HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
 
    /* check conditions */
    if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
 
    /* convert to weight */ 
    wksp->bitsToWeight[0] = 0;
    for (n=1; n<huffLog+1; n++) 
        wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
    for (n=0; n<maxSymbolValue; n++) 
        wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
 
    /* attempt weights compression by FSE */
    if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
            op[0] = (BYTE)hSize;
            return hSize+1;
    }   } 
 
    /* write raw values as 4-bits (max : 15) */
    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */ 
    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); 
    wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
    for (n=0; n<maxSymbolValue; n+=2) 
        op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
    return ((maxSymbolValue+1)/2) + 1; 
} 
 
/*! HUF_writeCTable() :
    `CTable` : Huffman tree to save, using huf representation.
    @return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
{
    HUF_WriteCTableWksp wksp;
    return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
}
 

size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
{ 
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */ 
    U32 tableLog = 0; 
    U32 nbSymbols = 0; 
    HUF_CElt* const ct = CTable + 1;
 
    /* get symbol weights */ 
    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
    *hasZeroWeights = (rankVal[0] > 0);
 
    /* check result */ 
    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); 
    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
 
    CTable[0] = tableLog;

    /* Prepare base value per rank */ 
    {   U32 n, nextRankStart = 0; 
        for (n=1; n<=tableLog; n++) { 
            U32 curr = nextRankStart;
            nextRankStart += (rankVal[n] << (n-1)); 
            rankVal[n] = curr;
    }   } 
 
    /* fill nbBits */ 
    {   U32 n; for (n=0; n<nbSymbols; n++) { 
            const U32 w = huffWeight[n]; 
            HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
    }   } 
 
    /* fill val */ 
    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
        /* determine stating value per rank */ 
        valPerRank[tableLog+1] = 0;   /* for w==0 */
        {   U16 min = 0; 
            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
                valPerRank[n] = min;     /* get starting value within each rank */
                min += nbPerRank[n]; 
                min >>= 1; 
        }   } 
        /* assign value within rank, symbol order */ 
        { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
    } 
 
    *maxSymbolValuePtr = nbSymbols - 1;
    return readSize; 
} 
 
U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
{
    const HUF_CElt* ct = CTable + 1;
    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
    return (U32)HUF_getNbBits(ct[symbolValue]);
}
 

typedef struct nodeElt_s {
    U32 count;
    U16 parent;
    BYTE byte;
    BYTE nbBits;
} nodeElt;

/**
 * HUF_setMaxHeight():
 * Enforces maxNbBits on the Huffman tree described in huffNode.
 *
 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
 * the tree to so that it is a valid canonical Huffman tree.
 *
 * @pre               The sum of the ranks of each symbol == 2^largestBits,
 *                    where largestBits == huffNode[lastNonNull].nbBits.
 * @post              The sum of the ranks of each symbol == 2^largestBits,
 *                    where largestBits is the return value <= maxNbBits.
 *
 * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
 * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
 *                    may not respect. After this function the Huffman tree will
 *                    respect maxNbBits.
 * @return            The maximum number of bits of the Huffman tree after adjustment,
 *                    necessarily no more than maxNbBits.
 */
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits) 
{ 
    const U32 largestBits = huffNode[lastNonNull].nbBits; 
    /* early exit : no elt > maxNbBits, so the tree is already valid. */
    if (largestBits <= maxNbBits) return largestBits;
 
    /* there are several too large elements (at least >= 2) */ 
    {   int totalCost = 0; 
        const U32 baseCost = 1 << (largestBits - maxNbBits); 
        int n = (int)lastNonNull;
 
        /* Adjust any ranks > maxNbBits to maxNbBits.
         * Compute totalCost, which is how far the sum of the ranks is
         * we are over 2^largestBits after adjust the offending ranks.
         */
        while (huffNode[n].nbBits > maxNbBits) { 
            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); 
            huffNode[n].nbBits = (BYTE)maxNbBits; 
            n--;
        }
        /* n stops at huffNode[n].nbBits <= maxNbBits */
        assert(huffNode[n].nbBits <= maxNbBits);
        /* n end at index of smallest symbol using < maxNbBits */
        while (huffNode[n].nbBits == maxNbBits) --n;
 
        /* renorm totalCost from 2^largestBits to 2^maxNbBits
         * note : totalCost is necessarily a multiple of baseCost */
        assert((totalCost & (baseCost - 1)) == 0);
        totalCost >>= (largestBits - maxNbBits);
        assert(totalCost > 0);
 
        /* repay normalized cost */ 
        {   U32 const noSymbol = 0xF0F0F0F0; 
            U32 rankLast[HUF_TABLELOG_MAX+2]; 
 
            /* Get pos of last (smallest = lowest cum. count) symbol per rank */
            ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
            {   U32 currentNbBits = maxNbBits; 
                int pos;
                for (pos=n ; pos >= 0; pos--) { 
                    if (huffNode[pos].nbBits >= currentNbBits) continue; 
                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */ 
                    rankLast[maxNbBits-currentNbBits] = (U32)pos;
            }   } 
 
            while (totalCost > 0) { 
                /* Try to reduce the next power of 2 above totalCost because we
                 * gain back half the rank.
                 */
                U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { 
                    U32 const highPos = rankLast[nBitsToDecrease];
                    U32 const lowPos = rankLast[nBitsToDecrease-1];
                    if (highPos == noSymbol) continue; 
                    /* Decrease highPos if no symbols of lowPos or if it is
                     * not cheaper to remove 2 lowPos than highPos.
                     */
                    if (lowPos == noSymbol) break; 
                    {   U32 const highTotal = huffNode[highPos].count; 
                        U32 const lowTotal = 2 * huffNode[lowPos].count; 
                        if (highTotal <= lowTotal) break; 
                }   } 
                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ 
                assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
                    nBitsToDecrease++;
                assert(rankLast[nBitsToDecrease] != noSymbol);
                /* Increase the number of bits to gain back half the rank cost. */
                totalCost -= 1 << (nBitsToDecrease-1); 
                huffNode[rankLast[nBitsToDecrease]].nbBits++;

                /* Fix up the new rank.
                 * If the new rank was empty, this symbol is now its smallest.
                 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
                 */
                if (rankLast[nBitsToDecrease-1] == noSymbol) 
                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
                /* Fix up the old rank.
                 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
                 * it must be the only symbol in its rank, so the old rank now has no symbols.
                 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
                 * the smallest node in the rank. If the previous position belongs to a different rank,
                 * then the rank is now empty.
                 */
                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */ 
                    rankLast[nBitsToDecrease] = noSymbol; 
                else { 
                    rankLast[nBitsToDecrease]--; 
                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease) 
                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */ 
                }
            }   /* while (totalCost > 0) */
 
            /* If we've removed too much weight, then we have to add it back.
             * To avoid overshooting again, we only adjust the smallest rank.
             * We take the largest nodes from the lowest rank 0 and move them
             * to rank 1. There's guaranteed to be enough rank 0 symbols because
             * TODO.
             */
            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */ 
                /* special case : no rank 1 symbol (using maxNbBits-1);
                 * let's create one from largest rank 0 (using maxNbBits).
                 */
                if (rankLast[1] == noSymbol) {
                    while (huffNode[n].nbBits == maxNbBits) n--; 
                    huffNode[n+1].nbBits--; 
                    assert(n >= 0);
                    rankLast[1] = (U32)(n+1);
                    totalCost++; 
                    continue; 
                } 
                huffNode[ rankLast[1] + 1 ].nbBits--; 
                rankLast[1]++; 
                totalCost ++; 
            }
        }   /* repay normalized cost */
    }   /* there are several too large elements (at least >= 2) */
 
    return maxNbBits; 
} 
 
typedef struct { 
    U16 base;
    U16 curr;
} rankPos; 
 
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];

/* Number of buckets available for HUF_sort() */
#define RANK_POSITION_TABLE_SIZE 192

typedef struct {
  huffNodeTable huffNodeTbl;
  rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
} HUF_buildCTable_wksp_tables;

/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
 * Strategy is to use as many buckets as possible for representing distinct
 * counts while using the remainder to represent all "large" counts.
 *
 * To satisfy this requirement for 192 buckets, we can do the following:
 * Let buckets 0-166 represent distinct counts of [0, 166]
 * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
 */
#define RANK_POSITION_MAX_COUNT_LOG 32
#define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */

/* Return the appropriate bucket index for a given count. See definition of
 * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
 */
static U32 HUF_getIndex(U32 const count) {
    return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
        ? count
        : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
}

/* Helper swap function for HUF_quickSortPartition() */
static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
	nodeElt tmp = *a;
	*a = *b;
	*b = tmp;
}

/* Returns 0 if the huffNode array is not sorted by descending count */
MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
    U32 i;
    for (i = 1; i < maxSymbolValue1; ++i) {
        if (huffNode[i].count > huffNode[i-1].count) {
            return 0;
        }
    }
    return 1;
}

/* Insertion sort by descending order */
HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
    int i;
    int const size = high-low+1;
    huffNode += low;
    for (i = 1; i < size; ++i) {
        nodeElt const key = huffNode[i];
        int j = i - 1;
        while (j >= 0 && huffNode[j].count < key.count) {
            huffNode[j + 1] = huffNode[j];
            j--;
        }
        huffNode[j + 1] = key;
    }
}

/* Pivot helper function for quicksort. */
static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
    /* Simply select rightmost element as pivot. "Better" selectors like
     * median-of-three don't experimentally appear to have any benefit.
     */
    U32 const pivot = arr[high].count;
    int i = low - 1;
    int j = low;
    for ( ; j < high; j++) {
        if (arr[j].count > pivot) {
            i++;
            HUF_swapNodes(&arr[i], &arr[j]);
        }
    }
    HUF_swapNodes(&arr[i + 1], &arr[high]);
    return i + 1;
}

/* Classic quicksort by descending with partially iterative calls
 * to reduce worst case callstack size.
 */
static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
    int const kInsertionSortThreshold = 8;
    if (high - low < kInsertionSortThreshold) {
        HUF_insertionSort(arr, low, high);
        return;
    }
    while (low < high) {
        int const idx = HUF_quickSortPartition(arr, low, high);
        if (idx - low < high - idx) {
            HUF_simpleQuickSort(arr, low, idx - 1);
            low = idx + 1;
        } else {
            HUF_simpleQuickSort(arr, idx + 1, high);
            high = idx - 1;
        }
    }
}

/**
 * HUF_sort():
 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
 * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
 *
 * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
 *                            Must have (maxSymbolValue + 1) entries.
 * @param[in]  count          Histogram of the symbols.
 * @param[in]  maxSymbolValue Maximum symbol value.
 * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
 */
static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
    U32 n;
    U32 const maxSymbolValue1 = maxSymbolValue+1;
 
    /* Compute base and set curr to base.
     * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
     * See HUF_getIndex to see bucketing strategy.
     * We attribute each symbol to lowerRank's base value, because we want to know where
     * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
     */
    ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
    for (n = 0; n < maxSymbolValue1; ++n) {
        U32 lowerRank = HUF_getIndex(count[n]);
        assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
        rankPosition[lowerRank].base++;
    } 

    assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
    /* Set up the rankPosition table */
    for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
        rankPosition[n-1].base += rankPosition[n].base;
        rankPosition[n-1].curr = rankPosition[n-1].base;
    }

    /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
    for (n = 0; n < maxSymbolValue1; ++n) {
        U32 const c = count[n]; 
        U32 const r = HUF_getIndex(c) + 1;
        U32 const pos = rankPosition[r].curr++;
        assert(pos < maxSymbolValue1);
        huffNode[pos].count = c; 
        huffNode[pos].byte  = (BYTE)n; 
    } 

    /* Sort each bucket. */
    for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
        U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
        U32 const bucketStartIdx = rankPosition[n].base;
        if (bucketSize > 1) {
            assert(bucketStartIdx < maxSymbolValue1);
            HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
        }
    }

    assert(HUF_isSorted(huffNode, maxSymbolValue1));
} 
 
/** HUF_buildCTable_wksp() :
 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
 */
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1) 

/* HUF_buildTree():
 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
 *
 * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
 * @param maxSymbolValue  The maximum symbol value.
 * @return                The smallest node in the Huffman tree (by count).
 */
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
{ 
    nodeElt* const huffNode0 = huffNode - 1;
    int nonNullRank;
    int lowS, lowN; 
    int nodeNb = STARTNODE;
    int n, nodeRoot;
    /* init for parents */ 
    nonNullRank = (int)maxSymbolValue;
    while(huffNode[nonNullRank].count == 0) nonNullRank--; 
    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; 
    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; 
    huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
    nodeNb++; lowS-=2; 
    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); 
    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
 
    /* create parents */ 
    while (nodeNb <= nodeRoot) { 
        int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; 
        huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
        nodeNb++; 
    } 
 
    /* distribute weights (unlimited tree height) */ 
    huffNode[nodeRoot].nbBits = 0; 
    for (n=nodeRoot-1; n>=STARTNODE; n--) 
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; 
    for (n=0; n<=nonNullRank; n++) 
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; 
 
    return nonNullRank;
}

/**
 * HUF_buildCTableFromTree():
 * Build the CTable given the Huffman tree in huffNode.
 *
 * @param[out] CTable         The output Huffman CTable.
 * @param      huffNode       The Huffman tree.
 * @param      nonNullRank    The last and smallest node in the Huffman tree.
 * @param      maxSymbolValue The maximum symbol value.
 * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
 */
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
{
    HUF_CElt* const ct = CTable + 1;
    /* fill result into ctable (val, nbBits) */
    int n;
    U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
    U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
    int const alphabetSize = (int)(maxSymbolValue + 1);
    for (n=0; n<=nonNullRank; n++)
        nbPerRank[huffNode[n].nbBits]++;
    /* determine starting value per rank */
    {   U16 min = 0;
        for (n=(int)maxNbBits; n>0; n--) {
            valPerRank[n] = min;      /* get starting value within each rank */
            min += nbPerRank[n];
            min >>= 1;
    }   }
    for (n=0; n<alphabetSize; n++)
        HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits);   /* push nbBits per symbol, symbol order */
    for (n=0; n<alphabetSize; n++)
        HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++);   /* assign value within rank, symbol order */
    CTable[0] = maxNbBits;
}

size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
    HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
    nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
    nodeElt* const huffNode = huffNode0+1;
    int nonNullRank;

    /* safety checks */
    if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
      return ERROR(workSpace_tooSmall);
    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
      return ERROR(maxSymbolValue_tooLarge);
    ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));

    /* sort, decreasing order */
    HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);

    /* build tree */
    nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);

    /* enforce maxTableLog */ 
    maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
    if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
 
    HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
 
    return maxNbBits; 
} 
 
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{ 
    HUF_CElt const* ct = CTable + 1;
    size_t nbBits = 0;
    int s;
    for (s = 0; s <= (int)maxSymbolValue; ++s) {
        nbBits += HUF_getNbBits(ct[s]) * count[s];
    }
    return nbBits >> 3;
} 
 
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
  HUF_CElt const* ct = CTable + 1;
  int bad = 0;
  int s;
  for (s = 0; s <= (int)maxSymbolValue; ++s) {
    bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
  }
  return !bad;
}

size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } 
 
/** HUF_CStream_t:
 * Huffman uses its own BIT_CStream_t implementation.
 * There are three major differences from BIT_CStream_t:
 *   1. HUF_addBits() takes a HUF_CElt (size_t) which is
 *      the pair (nbBits, value) in the format:
 *      format:
 *        - Bits [0, 4)            = nbBits
 *        - Bits [4, 64 - nbBits)  = 0
 *        - Bits [64 - nbBits, 64) = value
 *   2. The bitContainer is built from the upper bits and
 *      right shifted. E.g. to add a new value of N bits
 *      you right shift the bitContainer by N, then or in
 *      the new value into the N upper bits.
 *   3. The bitstream has two bit containers. You can add
 *      bits to the second container and merge them into
 *      the first container.
 */

#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)

typedef struct {
    size_t bitContainer[2];
    size_t bitPos[2];

    BYTE* startPtr;
    BYTE* ptr;
    BYTE* endPtr;
} HUF_CStream_t;

/**! HUF_initCStream():
 * Initializes the bitstream.
 * @returns 0 or an error code.
 */
static size_t HUF_initCStream(HUF_CStream_t* bitC,
                                  void* startPtr, size_t dstCapacity)
{
    ZSTD_memset(bitC, 0, sizeof(*bitC));
    bitC->startPtr = (BYTE*)startPtr;
    bitC->ptr = bitC->startPtr;
    bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
    if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
    return 0;
}

/*! HUF_addBits():
 * Adds the symbol stored in HUF_CElt elt to the bitstream.
 *
 * @param elt   The element we're adding. This is a (nbBits, value) pair.
 *              See the HUF_CStream_t docs for the format.
 * @param idx   Insert into the bitstream at this idx.
 * @param kFast This is a template parameter. If the bitstream is guaranteed
 *              to have at least 4 unused bits after this call it may be 1,
 *              otherwise it must be 0. HUF_addBits() is faster when fast is set.
 */
FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
{
    assert(idx <= 1);
    assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
    /* This is efficient on x86-64 with BMI2 because shrx
     * only reads the low 6 bits of the register. The compiler
     * knows this and elides the mask. When fast is set,
     * every operation can use the same value loaded from elt.
     */
    bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
    bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
    /* We only read the low 8 bits of bitC->bitPos[idx] so it
     * doesn't matter that the high bits have noise from the value.
     */
    bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
    assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
    /* The last 4-bits of elt are dirty if fast is set,
     * so we must not be overwriting bits that have already been
     * inserted into the bit container.
     */
#if DEBUGLEVEL >= 1
    {
        size_t const nbBits = HUF_getNbBits(elt);
        size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
        (void)dirtyBits;
        /* Middle bits are 0. */
        assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
        /* We didn't overwrite any bits in the bit container. */
        assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
        (void)dirtyBits;
    }
#endif
}

FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
{
    bitC->bitContainer[1] = 0;
    bitC->bitPos[1] = 0;
}

/*! HUF_mergeIndex1() :
 * Merges the bit container @ index 1 into the bit container @ index 0
 * and zeros the bit container @ index 1.
 */
FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
{
    assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
    bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
    bitC->bitContainer[0] |= bitC->bitContainer[1];
    bitC->bitPos[0] += bitC->bitPos[1];
    assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
}

/*! HUF_flushBits() :
* Flushes the bits in the bit container @ index 0.
*
* @post bitPos will be < 8.
* @param kFast If kFast is set then we must know a-priori that
*              the bit container will not overflow.
*/
FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
{
    /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
    size_t const nbBits = bitC->bitPos[0] & 0xFF;
    size_t const nbBytes = nbBits >> 3;
    /* The top nbBits bits of bitContainer are the ones we need. */
    size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
    /* Mask bitPos to account for the bytes we consumed. */
    bitC->bitPos[0] &= 7;
    assert(nbBits > 0);
    assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
    assert(bitC->ptr <= bitC->endPtr);
    MEM_writeLEST(bitC->ptr, bitContainer);
    bitC->ptr += nbBytes;
    assert(!kFast || bitC->ptr <= bitC->endPtr);
    if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
    /* bitContainer doesn't need to be modified because the leftover
     * bits are already the top bitPos bits. And we don't care about
     * noise in the lower values.
     */
}

/*! HUF_endMark()
 * @returns The Huffman stream end mark: A 1-bit value = 1.
 */
static HUF_CElt HUF_endMark(void)
{
    HUF_CElt endMark;
    HUF_setNbBits(&endMark, 1);
    HUF_setValue(&endMark, 1);
    return endMark;
}

/*! HUF_closeCStream() :
 *  @return Size of CStream, in bytes,
 *          or 0 if it could not fit into dstBuffer */
static size_t HUF_closeCStream(HUF_CStream_t* bitC)
{
    HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
    HUF_flushBits(bitC, /* kFast */ 0);
    {
        size_t const nbBits = bitC->bitPos[0] & 0xFF;
        if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
        return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
    }
}

FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
{
    HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
}
 
FORCE_INLINE_TEMPLATE void
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
                                   const BYTE* ip, size_t srcSize,
                                   const HUF_CElt* ct,
                                   int kUnroll, int kFastFlush, int kLastFast)
{
    /* Join to kUnroll */
    int n = (int)srcSize;
    int rem = n % kUnroll;
    if (rem > 0) {
        for (; rem > 0; --rem) {
            HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
        }
        HUF_flushBits(bitC, kFastFlush);
    }
    assert(n % kUnroll == 0);

    /* Join to 2 * kUnroll */
    if (n % (2 * kUnroll)) {
        int u;
        for (u = 1; u < kUnroll; ++u) {
            HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
        }
        HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
        HUF_flushBits(bitC, kFastFlush);
        n -= kUnroll;
    }
    assert(n % (2 * kUnroll) == 0);
 
    for (; n>0; n-= 2 * kUnroll) {
        /* Encode kUnroll symbols into the bitstream @ index 0. */
        int u;
        for (u = 1; u < kUnroll; ++u) {
            HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
        }
        HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
        HUF_flushBits(bitC, kFastFlush);
        /* Encode kUnroll symbols into the bitstream @ index 1.
         * This allows us to start filling the bit container
         * without any data dependencies.
         */
        HUF_zeroIndex1(bitC);
        for (u = 1; u < kUnroll; ++u) {
            HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
        }
        HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
        /* Merge bitstream @ index 1 into the bitstream @ index 0 */
        HUF_mergeIndex1(bitC);
        HUF_flushBits(bitC, kFastFlush);
    }
    assert(n == 0);
 
}

/**
 * Returns a tight upper bound on the output space needed by Huffman
 * with 8 bytes buffer to handle over-writes. If the output is at least
 * this large we don't need to do bounds checks during Huffman encoding.
 */
static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
{
    return ((srcSize * tableLog) >> 3) + 8;
}


FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
                                   const void* src, size_t srcSize,
                                   const HUF_CElt* CTable)
{ 
    U32 const tableLog = (U32)CTable[0];
    HUF_CElt const* ct = CTable + 1;
    const BYTE* ip = (const BYTE*) src; 
    BYTE* const ostart = (BYTE*)dst; 
    BYTE* const oend = ostart + dstSize; 
    BYTE* op = ostart; 
    HUF_CStream_t bitC;
 
    /* init */ 
    if (dstSize < 8) return 0;   /* not enough space to compress */ 
    { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
      if (HUF_isError(initErr)) return 0; }
 
    if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
        HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
    else {
        if (MEM_32bits()) {
            switch (tableLog) {
            case 11:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
                break;
            case 10: ZSTD_FALLTHROUGH;
            case 9: ZSTD_FALLTHROUGH;
            case 8:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
                break;
            case 7: ZSTD_FALLTHROUGH;
            default:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
                break;
            }
        } else {
            switch (tableLog) {
            case 11:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
                break;
            case 10:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
                break;
            case 9:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
                break;
            case 8:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
                break;
            case 7:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
                break;
            case 6: ZSTD_FALLTHROUGH;
            default:
                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
                break;
            }
        }
    } 
    assert(bitC.ptr <= bitC.endPtr);
 
    return HUF_closeCStream(&bitC);
} 
 
#if DYNAMIC_BMI2
 
static BMI2_TARGET_ATTRIBUTE size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
                                   const void* src, size_t srcSize,
                                   const HUF_CElt* CTable)
{ 
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
                                      const void* src, size_t srcSize,
                                      const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, const int bmi2)
{
    if (bmi2) {
        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
    }
    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}

#else

static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, const int bmi2)
{
    (void)bmi2;
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

#endif

size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}

size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
{
    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
}

static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, int bmi2)
{
    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */ 
    const BYTE* ip = (const BYTE*) src; 
    const BYTE* const iend = ip + srcSize; 
    BYTE* const ostart = (BYTE*) dst; 
    BYTE* const oend = ostart + dstSize; 
    BYTE* op = ostart; 
 
    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */ 
    if (srcSize < 12) return 0;   /* no saving possible : too small input */ 
    op += 6;   /* jumpTable */ 
 
    assert(op <= oend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
        if (cSize == 0 || cSize > 65535) return 0;
        MEM_writeLE16(ostart, (U16)cSize); 
        op += cSize; 
    } 
 
    ip += segmentSize; 
    assert(op <= oend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
        if (cSize == 0 || cSize > 65535) return 0;
        MEM_writeLE16(ostart+2, (U16)cSize); 
        op += cSize; 
    } 
 
    ip += segmentSize; 
    assert(op <= oend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
        if (cSize == 0 || cSize > 65535) return 0;
        MEM_writeLE16(ostart+4, (U16)cSize); 
        op += cSize; 
    } 
 
    ip += segmentSize; 
    assert(op <= oend);
    assert(ip <= iend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
        if (cSize == 0 || cSize > 65535) return 0;
        op += cSize; 
    } 
 
    return (size_t)(op-ostart);
} 
 
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
 
size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
{
    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
}

typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;

static size_t HUF_compressCTable_internal(
                BYTE* const ostart, BYTE* op, BYTE* const oend,
                const void* src, size_t srcSize,
                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
{
    size_t const cSize = (nbStreams==HUF_singleStream) ?
                         HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
                         HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
    if (HUF_isError(cSize)) { return cSize; }
    if (cSize==0) { return 0; }   /* uncompressible */
    op += cSize;
    /* check compressibility */
    assert(op >= ostart);
    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
    return (size_t)(op-ostart);
}

typedef struct {
    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
    HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
    union {
        HUF_buildCTable_wksp_tables buildCTable_wksp;
        HUF_WriteCTableWksp writeCTable_wksp;
        U32 hist_wksp[HIST_WKSP_SIZE_U32];
    } wksps;
} HUF_compress_tables_t;

#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10  /* Must be >= 2 */

/* HUF_compress_internal() :
 * `workSpace_align4` must be aligned on 4-bytes boundaries,
 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
static size_t
HUF_compress_internal (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                       unsigned maxSymbolValue, unsigned huffLog,
                       HUF_nbStreams_e nbStreams,
                       void* workSpace, size_t wkspSize,
                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
                 const int bmi2, unsigned suspectUncompressible)
{ 
    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
    BYTE* const ostart = (BYTE*)dst; 
    BYTE* const oend = ostart + dstSize; 
    BYTE* op = ostart; 
 
    HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);

    /* checks & inits */ 
    if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
    if (!srcSize) return 0;  /* Uncompressed */
    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */ 
    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); 
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; 
    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; 
 
    /* Heuristic : If old table is valid, use it for small inputs */
    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
        return HUF_compressCTable_internal(ostart, op, oend,
                                           src, srcSize,
                                           nbStreams, oldHufTable, bmi2);
    }

    /* If uncompressible data is suspected, do a smaller sampling first */
    DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
    if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
        size_t largestTotal = 0;
        {   unsigned maxSymbolValueBegin = maxSymbolValue;
            CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
            largestTotal += largestBegin;
        }
        {   unsigned maxSymbolValueEnd = maxSymbolValue;
            CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
            largestTotal += largestEnd;
        }
        if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
    }

    /* Scan input and build symbol stats */ 
    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
    } 
 
    /* Check validity of previous table */
    if ( repeat
      && *repeat == HUF_repeat_check
      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
        *repeat = HUF_repeat_none;
    }
    /* Heuristic : use existing table for small inputs */
    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
        return HUF_compressCTable_internal(ostart, op, oend,
                                           src, srcSize,
                                           nbStreams, oldHufTable, bmi2);
    }

    /* Build Huffman Tree */ 
    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); 
    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
                                            maxSymbolValue, huffLog,
                                            &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
        CHECK_F(maxBits);
        huffLog = (U32)maxBits; 
    } 
    /* Zero unused symbols in CTable, so we can check it for validity */
    {
        size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
        size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
        ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
    }
 
    /* Write table description header */ 
    {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
                                              &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
        /* Check if using previous huffman table is beneficial */
        if (repeat && *repeat != HUF_repeat_none) {
            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
                return HUF_compressCTable_internal(ostart, op, oend,
                                                   src, srcSize,
                                                   nbStreams, oldHufTable, bmi2);
        }   }

        /* Use the new huffman table */
        if (hSize + 12ul >= srcSize) { return 0; }
        op += hSize; 
        if (repeat) { *repeat = HUF_repeat_none; }
        if (oldHufTable)
            ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
    } 
    return HUF_compressCTable_internal(ostart, op, oend,
                                       src, srcSize,
                                       nbStreams, table->CTable, bmi2);
} 
 
 
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_singleStream,
                                 workSpace, wkspSize,
                                 NULL, NULL, 0, 0 /*bmi2*/, 0);
}

size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
                      int bmi2, unsigned suspectUncompressible)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_singleStream,
                                 workSpace, wkspSize, hufTable,
                                 repeat, preferRepeat, bmi2, suspectUncompressible);
}

/* HUF_compress4X_repeat():
 * compress input using 4 streams.
 * provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_fourStreams,
                                 workSpace, wkspSize,
                                 NULL, NULL, 0, 0 /*bmi2*/, 0);
}

/* HUF_compress4X_repeat():
 * compress input using 4 streams.
 * consider skipping quickly
 * re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_fourStreams,
                                 workSpace, wkspSize,
                                 hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
}

#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/** HUF_buildCTable() :
 * @return : maxNbBits
 *  Note : count is used before tree is written, so they can safely overlap
 */
size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
{
    HUF_buildCTable_wksp_tables workspace;
    return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
}

size_t HUF_compress1X (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                 unsigned maxSymbolValue, unsigned huffLog)
{
    U64 workSpace[HUF_WORKSPACE_SIZE_U64];
    return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

size_t HUF_compress2 (void* dst, size_t dstSize, 
                const void* src, size_t srcSize, 
                unsigned maxSymbolValue, unsigned huffLog) 
{ 
    U64 workSpace[HUF_WORKSPACE_SIZE_U64];
    return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
} 
 
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize) 
{ 
    return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
} 
#endif