aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/xxhash/xxhash.h
blob: 0dfa0f74ba91493e752a3393882967595c76ef38 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
/* 
 * xxHash - Extremely Fast Hash algorithm 
 * Header File 
 * Copyright (C) 2012-2020 Yann Collet 
 * 
 * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are 
 * met: 
 * 
 *    * Redistributions of source code must retain the above copyright 
 *      notice, this list of conditions and the following disclaimer. 
 *    * Redistributions in binary form must reproduce the above 
 *      copyright notice, this list of conditions and the following disclaimer 
 *      in the documentation and/or other materials provided with the 
 *      distribution. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 * 
 * You can contact the author at: 
 *   - xxHash homepage: https://www.xxhash.com 
 *   - xxHash source repository: https://github.com/Cyan4973/xxHash 
 */ 
 
/* TODO: update */ 
/* Notice extracted from xxHash homepage: 
 
xxHash is an extremely fast hash algorithm, running at RAM speed limits. 
It also successfully passes all tests from the SMHasher suite. 
 
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) 
 
Name            Speed       Q.Score   Author 
xxHash          5.4 GB/s     10 
CrapWow         3.2 GB/s      2       Andrew 
MumurHash 3a    2.7 GB/s     10       Austin Appleby 
SpookyHash      2.0 GB/s     10       Bob Jenkins 
SBox            1.4 GB/s      9       Bret Mulvey 
Lookup3         1.2 GB/s      9       Bob Jenkins 
SuperFastHash   1.2 GB/s      1       Paul Hsieh 
CityHash64      1.05 GB/s    10       Pike & Alakuijala 
FNV             0.55 GB/s     5       Fowler, Noll, Vo 
CRC32           0.43 GB/s     9 
MD5-32          0.33 GB/s    10       Ronald L. Rivest 
SHA1-32         0.28 GB/s    10 
 
Q.Score is a measure of quality of the hash function. 
It depends on successfully passing SMHasher test set. 
10 is a perfect score. 
 
Note: SMHasher's CRC32 implementation is not the fastest one. 
Other speed-oriented implementations can be faster, 
especially in combination with PCLMUL instruction: 
https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 
 
A 64-bit version, named XXH64, is available since r35. 
It offers much better speed, but for 64-bit applications only. 
Name     Speed on 64 bits    Speed on 32 bits 
XXH64       13.8 GB/s            1.9 GB/s 
XXH32        6.8 GB/s            6.0 GB/s 
*/ 
 
#if defined (__cplusplus) 
extern "C" { 
#endif 
 
/* **************************** 
 *  INLINE mode 
 ******************************/ 
/*! 
 * XXH_INLINE_ALL (and XXH_PRIVATE_API) 
 * Use these build macros to inline xxhash into the target unit. 
 * Inlining improves performance on small inputs, especially when the length is 
 * expressed as a compile-time constant: 
 * 
 *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html 
 * 
 * It also keeps xxHash symbols private to the unit, so they are not exported. 
 * 
 * Usage: 
 *     #define XXH_INLINE_ALL 
 *     #include "xxhash.h" 
 * 
 * Do not compile and link xxhash.o as a separate object, as it is not useful. 
 */ 
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ 
    && !defined(XXH_INLINE_ALL_31684351384) 
   /* this section should be traversed only once */ 
#  define XXH_INLINE_ALL_31684351384 
   /* give access to the advanced API, required to compile implementations */ 
#  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */ 
#  define XXH_STATIC_LINKING_ONLY 
   /* make all functions private */ 
#  undef XXH_PUBLIC_API 
#  if defined(__GNUC__) 
#    define XXH_PUBLIC_API static __inline __attribute__((unused)) 
#  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) 
#    define XXH_PUBLIC_API static inline 
#  elif defined(_MSC_VER) 
#    define XXH_PUBLIC_API static __inline 
#  else 
     /* note: this version may generate warnings for unused static functions */ 
#    define XXH_PUBLIC_API static 
#  endif 
 
   /* 
    * This part deals with the special case where a unit wants to inline xxHash, 
    * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such 
    * as part of some previously included *.h header file. 
    * Without further action, the new include would just be ignored, 
    * and functions would effectively _not_ be inlined (silent failure). 
    * The following macros solve this situation by prefixing all inlined names, 
    * avoiding naming collision with previous inclusions. 
    */ 
#  ifdef XXH_NAMESPACE 
#    error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported" 
     /* 
      * Note: Alternative: #undef all symbols (it's a pretty large list). 
      * Without #error: it compiles, but functions are actually not inlined. 
      */ 
#  endif 
#  define XXH_NAMESPACE XXH_INLINE_ 
   /* 
    * Some identifiers (enums, type names) are not symbols, but they must 
    * still be renamed to avoid redeclaration. 
    * Alternative solution: do not redeclare them. 
    * However, this requires some #ifdefs, and is a more dispersed action. 
    * Meanwhile, renaming can be achieved in a single block 
    */ 
#  define XXH_IPREF(Id)   XXH_INLINE_ ## Id 
#  define XXH_OK XXH_IPREF(XXH_OK) 
#  define XXH_ERROR XXH_IPREF(XXH_ERROR) 
#  define XXH_errorcode XXH_IPREF(XXH_errorcode) 
#  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t) 
#  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t) 
#  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) 
#  define XXH32_state_s XXH_IPREF(XXH32_state_s) 
#  define XXH32_state_t XXH_IPREF(XXH32_state_t) 
#  define XXH64_state_s XXH_IPREF(XXH64_state_s) 
#  define XXH64_state_t XXH_IPREF(XXH64_state_t) 
#  define XXH3_state_s  XXH_IPREF(XXH3_state_s) 
#  define XXH3_state_t  XXH_IPREF(XXH3_state_t) 
#  define XXH128_hash_t XXH_IPREF(XXH128_hash_t) 
   /* Ensure the header is parsed again, even if it was previously included */ 
#  undef XXHASH_H_5627135585666179 
#  undef XXHASH_H_STATIC_13879238742 
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ 
 
 
 
/* **************************************************************** 
 *  Stable API 
 *****************************************************************/ 
#ifndef XXHASH_H_5627135585666179 
#define XXHASH_H_5627135585666179 1 
 
/* specific declaration modes for Windows */ 
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) 
#  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) 
#    ifdef XXH_EXPORT 
#      define XXH_PUBLIC_API __declspec(dllexport) 
#    elif XXH_IMPORT 
#      define XXH_PUBLIC_API __declspec(dllimport) 
#    endif 
#  else 
#    define XXH_PUBLIC_API   /* do nothing */ 
#  endif 
#endif 
 
/*! 
 * XXH_NAMESPACE, aka Namespace Emulation: 
 * 
 * If you want to include _and expose_ xxHash functions from within your own 
 * library, but also want to avoid symbol collisions with other libraries which 
 * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix 
 * any public symbol from xxhash library with the value of XXH_NAMESPACE 
 * (therefore, avoid empty or numeric values). 
 * 
 * Note that no change is required within the calling program as long as it 
 * includes `xxhash.h`: Regular symbol names will be automatically translated 
 * by this header. 
 */ 
#ifdef XXH_NAMESPACE 
#  define XXH_CAT(A,B) A##B 
#  define XXH_NAME2(A,B) XXH_CAT(A,B) 
#  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) 
/* XXH32 */ 
#  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) 
#  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) 
#  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) 
#  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) 
#  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) 
#  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) 
#  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) 
#  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) 
#  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) 
/* XXH64 */ 
#  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) 
#  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) 
#  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) 
#  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) 
#  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) 
#  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) 
#  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) 
#  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) 
#  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) 
/* XXH3_64bits */ 
#  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) 
#  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) 
#  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) 
#  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) 
#  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) 
#  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) 
#  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) 
#  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) 
#  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) 
#  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) 
#  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) 
#  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) 
/* XXH3_128bits */ 
#  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) 
#  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) 
#  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) 
#  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) 
#  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) 
#  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) 
#  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) 
#  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) 
#  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) 
#  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) 
#  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) 
#  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) 
#  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) 
#endif 
 
 
/* ************************************* 
*  Version 
***************************************/ 
#define XXH_VERSION_MAJOR    0 
#define XXH_VERSION_MINOR    8 
#define XXH_VERSION_RELEASE  0 
#define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) 
XXH_PUBLIC_API unsigned XXH_versionNumber (void); 
 
 
/* **************************** 
*  Definitions 
******************************/ 
#include <stddef.h>   /* size_t */ 
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; 
 
 
/*-********************************************************************** 
*  32-bit hash 
************************************************************************/ 
#if !defined (__VMS) \ 
  && (defined (__cplusplus) \ 
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 
#   include <stdint.h> 
    typedef uint32_t XXH32_hash_t; 
#else 
#   include <limits.h> 
#   if UINT_MAX == 0xFFFFFFFFUL 
      typedef unsigned int XXH32_hash_t; 
#   else 
#     if ULONG_MAX == 0xFFFFFFFFUL 
        typedef unsigned long XXH32_hash_t; 
#     else 
#       error "unsupported platform: need a 32-bit type" 
#     endif 
#   endif 
#endif 
 
/*! 
 * XXH32(): 
 *  Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input". 
 *  The memory between input & input+length must be valid (allocated and read-accessible). 
 *  "seed" can be used to alter the result predictably. 
 *  Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s 
 * 
 * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, 
 * and offers true 64/128 bit hash results. It provides a superior level of 
 * dispersion, and greatly reduces the risks of collisions. 
 */ 
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); 
 
/*******   Streaming   *******/ 
 
/* 
 * Streaming functions generate the xxHash value from an incrememtal input. 
 * This method is slower than single-call functions, due to state management. 
 * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. 
 * 
 * An XXH state must first be allocated using `XXH*_createState()`. 
 * 
 * Start a new hash by initializing the state with a seed using `XXH*_reset()`. 
 * 
 * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. 
 * 
 * The function returns an error code, with 0 meaning OK, and any other value 
 * meaning there is an error. 
 * 
 * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. 
 * This function returns the nn-bits hash as an int or long long. 
 * 
 * It's still possible to continue inserting input into the hash state after a 
 * digest, and generate new hash values later on by invoking `XXH*_digest()`. 
 * 
 * When done, release the state using `XXH*_freeState()`. 
 */ 
 
typedef struct XXH32_state_s XXH32_state_t;   /* incomplete type */ 
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); 
XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr); 
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); 
 
XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed); 
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); 
XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr); 
 
/*******   Canonical representation   *******/ 
 
/* 
 * The default return values from XXH functions are unsigned 32 and 64 bit 
 * integers. 
 * This the simplest and fastest format for further post-processing. 
 * 
 * However, this leaves open the question of what is the order on the byte level, 
 * since little and big endian conventions will store the same number differently. 
 * 
 * The canonical representation settles this issue by mandating big-endian 
 * convention, the same convention as human-readable numbers (large digits first). 
 * 
 * When writing hash values to storage, sending them over a network, or printing 
 * them, it's highly recommended to use the canonical representation to ensure 
 * portability across a wider range of systems, present and future. 
 * 
 * The following functions allow transformation of hash values to and from 
 * canonical format. 
 */ 
 
typedef struct { unsigned char digest[4]; } XXH32_canonical_t; 
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); 
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); 
 
 
#ifndef XXH_NO_LONG_LONG 
/*-********************************************************************** 
*  64-bit hash 
************************************************************************/ 
#if !defined (__VMS) \ 
  && (defined (__cplusplus) \ 
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 
#   include <stdint.h> 
    typedef uint64_t XXH64_hash_t; 
#else 
    /* the following type must have a width of 64-bit */ 
    typedef unsigned long long XXH64_hash_t; 
#endif 
 
/*! 
 * XXH64(): 
 * Returns the 64-bit hash of sequence of length @length stored at memory 
 * address @input. 
 * @seed can be used to alter the result predictably. 
 * 
 * This function usually runs faster on 64-bit systems, but slower on 32-bit 
 * systems (see benchmark). 
 * 
 * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, 
 * and offers true 64/128 bit hash results. It provides a superior level of 
 * dispersion, and greatly reduces the risks of collisions. 
 */ 
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed); 
 
/*******   Streaming   *******/ 
typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */ 
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); 
XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr); 
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); 
 
XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, XXH64_hash_t seed); 
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); 
XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr); 
 
/*******   Canonical representation   *******/ 
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; 
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); 
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); 
 
 
/*-********************************************************************** 
*  XXH3 64-bit variant 
************************************************************************/ 
 
/* ************************************************************************ 
 * XXH3 is a new hash algorithm featuring: 
 *  - Improved speed for both small and large inputs 
 *  - True 64-bit and 128-bit outputs 
 *  - SIMD acceleration 
 *  - Improved 32-bit viability 
 * 
 * Speed analysis methodology is explained here: 
 * 
 *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html 
 * 
 * In general, expect XXH3 to run about ~2x faster on large inputs and >3x 
 * faster on small ones compared to XXH64, though exact differences depend on 
 * the platform. 
 * 
 * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash 
 * on all platforms. 
 * 
 * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it. 
 * 
 * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run 
 * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are 
 * explained in the implementation. 
 * 
 * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, 
 * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro. 
 * 
 * XXH3 offers 2 variants, _64bits and _128bits. 
 * When only 64 bits are needed, prefer calling the _64bits variant, as it 
 * reduces the amount of mixing, resulting in faster speed on small inputs. 
 * 
 * It's also generally simpler to manipulate a scalar return type than a struct. 
 * 
 * The 128-bit version adds additional strength, but it is slightly slower. 
 * 
 * The XXH3 algorithm is still in development. 
 * The results it produces may still change in future versions. 
 * 
 * Results produced by v0.7.x are not comparable with results from v0.7.y. 
 * However, the API is completely stable, and it can safely be used for 
 * ephemeral data (local sessions). 
 * 
 * Avoid storing values in long-term storage until the algorithm is finalized. 
 * XXH3's return values will be officially finalized upon reaching v0.8.0. 
 * 
 * After which, return values of XXH3 and XXH128 will no longer change in 
 * future versions. 
 * 
 * The API supports one-shot hashing, streaming mode, and custom secrets. 
 */ 
 
/* XXH3_64bits(): 
 * default 64-bit variant, using default secret and default seed of 0. 
 * It's the fastest variant. */ 
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); 
 
/* 
 * XXH3_64bits_withSeed(): 
 * This variant generates a custom secret on the fly 
 * based on default secret altered using the `seed` value. 
 * While this operation is decently fast, note that it's not completely free. 
 * Note: seed==0 produces the same results as XXH3_64bits(). 
 */ 
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); 
 
/* 
 * XXH3_64bits_withSecret(): 
 * It's possible to provide any blob of bytes as a "secret" to generate the hash. 
 * This makes it more difficult for an external actor to prepare an intentional collision. 
 * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). 
 * However, the quality of produced hash values depends on secret's entropy. 
 * Technically, the secret must look like a bunch of random bytes. 
 * Avoid "trivial" or structured data such as repeated sequences or a text document. 
 * Whenever unsure about the "randomness" of the blob of bytes, 
 * consider relabelling it as a "custom seed" instead, 
 * and employ "XXH3_generateSecret()" (see below) 
 * to generate a high entropy secret derived from the custom seed. 
 */ 
#define XXH3_SECRET_SIZE_MIN 136 
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); 
 
 
/*******   Streaming   *******/ 
/* 
 * Streaming requires state maintenance. 
 * This operation costs memory and CPU. 
 * As a consequence, streaming is slower than one-shot hashing. 
 * For better performance, prefer one-shot functions whenever applicable. 
 */ 
typedef struct XXH3_state_s XXH3_state_t; 
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); 
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); 
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); 
 
/* 
 * XXH3_64bits_reset(): 
 * Initialize with default parameters. 
 * digest will be equivalent to `XXH3_64bits()`. 
 */ 
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); 
/* 
 * XXH3_64bits_reset_withSeed(): 
 * Generate a custom secret from `seed`, and store it into `statePtr`. 
 * digest will be equivalent to `XXH3_64bits_withSeed()`. 
 */ 
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); 
/* 
 * XXH3_64bits_reset_withSecret(): 
 * `secret` is referenced, it _must outlive_ the hash streaming session. 
 * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, 
 * and the quality of produced hash values depends on secret's entropy 
 * (secret's content should look like a bunch of random bytes). 
 * When in doubt about the randomness of a candidate `secret`, 
 * consider employing `XXH3_generateSecret()` instead (see below). 
 */ 
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); 
 
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); 
XXH_PUBLIC_API XXH64_hash_t  XXH3_64bits_digest (const XXH3_state_t* statePtr); 
 
/* note : canonical representation of XXH3 is the same as XXH64 
 * since they both produce XXH64_hash_t values */ 
 
 
/*-********************************************************************** 
*  XXH3 128-bit variant 
************************************************************************/ 
 
typedef struct { 
 XXH64_hash_t low64; 
 XXH64_hash_t high64; 
} XXH128_hash_t; 
 
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); 
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); 
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); 
 
/*******   Streaming   *******/ 
/* 
 * Streaming requires state maintenance. 
 * This operation costs memory and CPU. 
 * As a consequence, streaming is slower than one-shot hashing. 
 * For better performance, prefer one-shot functions whenever applicable. 
 * 
 * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). 
 * Use already declared XXH3_createState() and XXH3_freeState(). 
 * 
 * All reset and streaming functions have same meaning as their 64-bit counterpart. 
 */ 
 
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); 
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); 
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); 
 
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); 
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); 
 
/* Following helper functions make it possible to compare XXH128_hast_t values. 
 * Since XXH128_hash_t is a structure, this capability is not offered by the language. 
 * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ 
 
/*! 
 * XXH128_isEqual(): 
 * Return: 1 if `h1` and `h2` are equal, 0 if they are not. 
 */ 
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); 
 
/*! 
 * XXH128_cmp(): 
 * 
 * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. 
 * 
 * return: >0 if *h128_1  > *h128_2 
 *         =0 if *h128_1 == *h128_2 
 *         <0 if *h128_1  < *h128_2 
 */ 
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); 
 
 
/*******   Canonical representation   *******/ 
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; 
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); 
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); 
 
 
#endif  /* XXH_NO_LONG_LONG */ 
 
#endif /* XXHASH_H_5627135585666179 */ 
 
 
 
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) 
#define XXHASH_H_STATIC_13879238742 
/* **************************************************************************** 
 * This section contains declarations which are not guaranteed to remain stable. 
 * They may change in future versions, becoming incompatible with a different 
 * version of the library. 
 * These declarations should only be used with static linking. 
 * Never use them in association with dynamic linking! 
 ***************************************************************************** */ 
 
/* 
 * These definitions are only present to allow static allocation 
 * of XXH states, on stack or in a struct, for example. 
 * Never **ever** access their members directly. 
 */ 
 
struct XXH32_state_s { 
   XXH32_hash_t total_len_32; 
   XXH32_hash_t large_len; 
   XXH32_hash_t v1; 
   XXH32_hash_t v2; 
   XXH32_hash_t v3; 
   XXH32_hash_t v4; 
   XXH32_hash_t mem32[4]; 
   XXH32_hash_t memsize; 
   XXH32_hash_t reserved;   /* never read nor write, might be removed in a future version */ 
};   /* typedef'd to XXH32_state_t */ 
 
 
#ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */ 
 
struct XXH64_state_s { 
   XXH64_hash_t total_len; 
   XXH64_hash_t v1; 
   XXH64_hash_t v2; 
   XXH64_hash_t v3; 
   XXH64_hash_t v4; 
   XXH64_hash_t mem64[4]; 
   XXH32_hash_t memsize; 
   XXH32_hash_t reserved32;  /* required for padding anyway */ 
   XXH64_hash_t reserved64;  /* never read nor write, might be removed in a future version */ 
};   /* typedef'd to XXH64_state_t */ 
 
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)   /* C11+ */ 
#  include <stdalign.h> 
#  define XXH_ALIGN(n)      alignas(n) 
#elif defined(__GNUC__) 
#  define XXH_ALIGN(n)      __attribute__ ((aligned(n))) 
#elif defined(_MSC_VER) 
#  define XXH_ALIGN(n)      __declspec(align(n)) 
#else 
#  define XXH_ALIGN(n)   /* disabled */ 
#endif 
 
/* Old GCC versions only accept the attribute after the type in structures. */ 
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \ 
    && defined(__GNUC__) 
#   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) 
#else 
#   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type 
#endif 
 
#define XXH3_INTERNALBUFFER_SIZE 256 
#define XXH3_SECRET_DEFAULT_SIZE 192 
struct XXH3_state_s { 
   XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); 
   /* used to store a custom secret generated from a seed */ 
   XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); 
   XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); 
   XXH32_hash_t bufferedSize; 
   XXH32_hash_t reserved32; 
   size_t nbStripesSoFar; 
   XXH64_hash_t totalLen; 
   size_t nbStripesPerBlock; 
   size_t secretLimit; 
   XXH64_hash_t seed; 
   XXH64_hash_t reserved64; 
   const unsigned char* extSecret;  /* reference to external secret; 
                                     * if == NULL, use .customSecret instead */ 
   /* note: there may be some padding at the end due to alignment on 64 bytes */ 
}; /* typedef'd to XXH3_state_t */ 
 
#undef XXH_ALIGN_MEMBER 
 
/* When the XXH3_state_t structure is merely emplaced on stack, 
 * it should be initialized with XXH3_INITSTATE() or a memset() 
 * in case its first reset uses XXH3_NNbits_reset_withSeed(). 
 * This init can be omitted if the first reset uses default or _withSecret mode. 
 * This operation isn't necessary when the state is created with XXH3_createState(). 
 * Note that this doesn't prepare the state for a streaming operation, 
 * it's still necessary to use XXH3_NNbits_reset*() afterwards. 
 */ 
#define XXH3_INITSTATE(XXH3_state_ptr)   { (XXH3_state_ptr)->seed = 0; } 
 
 
/* ===   Experimental API   === */ 
/* Symbols defined below must be considered tied to a specific library version. */ 
 
/* 
 * XXH3_generateSecret(): 
 * 
 * Derive a high-entropy secret from any user-defined content, named customSeed. 
 * The generated secret can be used in combination with `*_withSecret()` functions. 
 * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, 
 * as it becomes much more difficult for an external actor to guess how to impact the calculation logic. 
 * 
 * The function accepts as input a custom seed of any length and any content, 
 * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE 
 * into an already allocated buffer secretBuffer. 
 * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long. 
 * 
 * The generated secret can then be used with any `*_withSecret()` variant. 
 * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, 
 * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` 
 * are part of this list. They all accept a `secret` parameter 
 * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN) 
 * _and_ feature very high entropy (consist of random-looking bytes). 
 * These conditions can be a high bar to meet, so 
 * this function can be used to generate a secret of proper quality. 
 * 
 * customSeed can be anything. It can have any size, even small ones, 
 * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes. 
 * The resulting `secret` will nonetheless provide all expected qualities. 
 * 
 * Supplying NULL as the customSeed copies the default secret into `secretBuffer`. 
 * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. 
 */ 
XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize); 
 
 
/* simple short-cut to pre-selected XXH3_128bits variant */ 
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); 
 
 
#endif  /* XXH_NO_LONG_LONG */ 
 
 
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) 
#  define XXH_IMPLEMENTATION 
#endif 
 
#endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ 
 
 
/* ======================================================================== */ 
/* ======================================================================== */ 
/* ======================================================================== */ 
 
 
/*-********************************************************************** 
 * xxHash implementation 
 *-********************************************************************** 
 * xxHash's implementation used to be hosted inside xxhash.c. 
 * 
 * However, inlining requires implementation to be visible to the compiler, 
 * hence be included alongside the header. 
 * Previously, implementation was hosted inside xxhash.c, 
 * which was then #included when inlining was activated. 
 * This construction created issues with a few build and install systems, 
 * as it required xxhash.c to be stored in /include directory. 
 * 
 * xxHash implementation is now directly integrated within xxhash.h. 
 * As a consequence, xxhash.c is no longer needed in /include. 
 * 
 * xxhash.c is still available and is still useful. 
 * In a "normal" setup, when xxhash is not inlined, 
 * xxhash.h only exposes the prototypes and public symbols, 
 * while xxhash.c can be built into an object file xxhash.o 
 * which can then be linked into the final binary. 
 ************************************************************************/ 
 
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ 
   || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) 
#  define XXH_IMPLEM_13a8737387 
 
/* ************************************* 
*  Tuning parameters 
***************************************/ 
/*! 
 * XXH_FORCE_MEMORY_ACCESS: 
 * By default, access to unaligned memory is controlled by `memcpy()`, which is 
 * safe and portable. 
 * 
 * Unfortunately, on some target/compiler combinations, the generated assembly 
 * is sub-optimal. 
 * 
 * The below switch allow selection of a different access method 
 * in the search for improved performance. 
 * Method 0 (default): 
 *     Use `memcpy()`. Safe and portable. Default. 
 * Method 1: 
 *     `__attribute__((packed))` statement. It depends on compiler extensions 
 *     and is therefore not portable. 
 *     This method is safe if your compiler supports it, and *generally* as 
 *     fast or faster than `memcpy`. 
 * Method 2: 
 *     Direct access via cast. This method doesn't depend on the compiler but 
 *     violates the C standard. 
 *     It can generate buggy code on targets which do not support unaligned 
 *     memory accesses. 
 *     But in some circumstances, it's the only known way to get the most 
 *     performance (example: GCC + ARMv6) 
 * Method 3: 
 *     Byteshift. This can generate the best code on old compilers which don't 
 *     inline small `memcpy()` calls, and it might also be faster on big-endian 
 *     systems which lack a native byteswap instruction. 
 * See https://stackoverflow.com/a/32095106/646947 for details. 
 * Prefer these methods in priority order (0 > 1 > 2 > 3) 
 */ 
#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */ 
#  if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6) 
#    define XXH_FORCE_MEMORY_ACCESS 2 
#  elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ 
  (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7))) 
#    define XXH_FORCE_MEMORY_ACCESS 1 
#  endif 
#endif 
 
/*! 
 * XXH_ACCEPT_NULL_INPUT_POINTER: 
 * If the input pointer is NULL, xxHash's default behavior is to dereference it, 
 * triggering a segfault. 
 * When this macro is enabled, xxHash actively checks the input for a null pointer. 
 * If it is, the result for null input pointers is the same as a zero-length input. 
 */ 
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */ 
#  define XXH_ACCEPT_NULL_INPUT_POINTER 0 
#endif 
 
/*! 
 * XXH_FORCE_ALIGN_CHECK: 
 * This is an important performance trick 
 * for architectures without decent unaligned memory access performance. 
 * It checks for input alignment, and when conditions are met, 
 * uses a "fast path" employing direct 32-bit/64-bit read, 
 * resulting in _dramatically faster_ read speed. 
 * 
 * The check costs one initial branch per hash, which is generally negligible, but not zero. 
 * Moreover, it's not useful to generate binary for an additional code path 
 * if memory access uses same instruction for both aligned and unaligned adresses. 
 * 
 * In these cases, the alignment check can be removed by setting this macro to 0. 
 * Then the code will always use unaligned memory access. 
 * Align check is automatically disabled on x86, x64 & arm64, 
 * which are platforms known to offer good unaligned memory accesses performance. 
 * 
 * This option does not affect XXH3 (only XXH32 and XXH64). 
 */ 
#ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */ 
#  if defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) \ 
   || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64) /* visual */ 
#    define XXH_FORCE_ALIGN_CHECK 0 
#  else 
#    define XXH_FORCE_ALIGN_CHECK 1 
#  endif 
#endif 
 
/*! 
 * XXH_NO_INLINE_HINTS: 
 * 
 * By default, xxHash tries to force the compiler to inline almost all internal 
 * functions. 
 * 
 * This can usually improve performance due to reduced jumping and improved 
 * constant folding, but significantly increases the size of the binary which 
 * might not be favorable. 
 * 
 * Additionally, sometimes the forced inlining can be detrimental to performance, 
 * depending on the architecture. 
 * 
 * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the 
 * compiler full control on whether to inline or not. 
 * 
 * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using 
 * -fno-inline with GCC or Clang, this will automatically be defined. 
 */ 
#ifndef XXH_NO_INLINE_HINTS 
#  if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ 
   || defined(__NO_INLINE__)     /* -O0, -fno-inline */ 
#    define XXH_NO_INLINE_HINTS 1 
#  else 
#    define XXH_NO_INLINE_HINTS 0 
#  endif 
#endif 
 
/*! 
 * XXH_REROLL: 
 * Whether to reroll XXH32_finalize, and XXH64_finalize, 
 * instead of using an unrolled jump table/if statement loop. 
 * 
 * This is automatically defined on -Os/-Oz on GCC and Clang. 
 */ 
#ifndef XXH_REROLL 
#  if defined(__OPTIMIZE_SIZE__) 
#    define XXH_REROLL 1 
#  else 
#    define XXH_REROLL 0 
#  endif 
#endif 
 
 
/* ************************************* 
*  Includes & Memory related functions 
***************************************/ 
/*! 
 * Modify the local functions below should you wish to use 
 * different memory routines for malloc() and free() 
 */ 
#include <stdlib.h> 
 
static void* XXH_malloc(size_t s) { return malloc(s); } 
static void XXH_free(void* p) { free(p); } 
 
/*! and for memcpy() */ 
#include <string.h> 
static void* XXH_memcpy(void* dest, const void* src, size_t size) 
{ 
    return memcpy(dest,src,size); 
} 
 
#include <limits.h>   /* ULLONG_MAX */ 
 
 
/* ************************************* 
*  Compiler Specific Options 
***************************************/ 
#ifdef _MSC_VER /* Visual Studio warning fix */ 
#  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ 
#endif 
 
#if XXH_NO_INLINE_HINTS  /* disable inlining hints */ 
#  if defined(__GNUC__) 
#    define XXH_FORCE_INLINE static __attribute__((unused)) 
#  else 
#    define XXH_FORCE_INLINE static 
#  endif 
#  define XXH_NO_INLINE static 
/* enable inlining hints */ 
#elif defined(_MSC_VER)  /* Visual Studio */ 
#  define XXH_FORCE_INLINE static __forceinline 
#  define XXH_NO_INLINE static __declspec(noinline) 
#elif defined(__GNUC__) 
#  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) 
#  define XXH_NO_INLINE static __attribute__((noinline)) 
#elif defined (__cplusplus) \ 
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */ 
#  define XXH_FORCE_INLINE static inline 
#  define XXH_NO_INLINE static 
#else 
#  define XXH_FORCE_INLINE static 
#  define XXH_NO_INLINE static 
#endif 
 
 
 
/* ************************************* 
*  Debug 
***************************************/ 
/* 
 * XXH_DEBUGLEVEL is expected to be defined externally, typically via the 
 * compiler's command line options. The value must be a number. 
 */ 
#ifndef XXH_DEBUGLEVEL 
#  ifdef DEBUGLEVEL /* backwards compat */ 
#    define XXH_DEBUGLEVEL DEBUGLEVEL 
#  else 
#    define XXH_DEBUGLEVEL 0 
#  endif 
#endif 
 
#if (XXH_DEBUGLEVEL>=1) 
#  include <assert.h>   /* note: can still be disabled with NDEBUG */ 
#  define XXH_ASSERT(c)   assert(c) 
#else 
#  define XXH_ASSERT(c)   ((void)0) 
#endif 
 
/* note: use after variable declarations */ 
#define XXH_STATIC_ASSERT(c)  do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0) 
 
 
/* ************************************* 
*  Basic Types 
***************************************/ 
#if !defined (__VMS) \ 
 && (defined (__cplusplus) \ 
 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 
# include <stdint.h> 
  typedef uint8_t xxh_u8; 
#else 
  typedef unsigned char xxh_u8; 
#endif 
typedef XXH32_hash_t xxh_u32; 
 
#ifdef XXH_OLD_NAMES 
#  define BYTE xxh_u8 
#  define U8   xxh_u8 
#  define U32  xxh_u32 
#endif 
 
/* ***   Memory access   *** */ 
 
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) 
/* 
 * Manual byteshift. Best for old compilers which don't inline memcpy. 
 * We actually directly use XXH_readLE32 and XXH_readBE32. 
 */ 
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) 
 
/* 
 * Force direct memory access. Only works on CPU which support unaligned memory 
 * access in hardware. 
 */ 
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } 
 
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) 
 
/* 
 * __pack instructions are safer but compiler specific, hence potentially 
 * problematic for some compilers. 
 * 
 * Currently only defined for GCC and ICC. 
 */ 
#ifdef XXH_OLD_NAMES 
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; 
#endif 
static xxh_u32 XXH_read32(const void* ptr) 
{ 
    typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; 
    return ((const xxh_unalign*)ptr)->u32; 
} 
 
#else 
 
/* 
 * Portable and safe solution. Generally efficient. 
 * see: https://stackoverflow.com/a/32095106/646947 
 */ 
static xxh_u32 XXH_read32(const void* memPtr) 
{ 
    xxh_u32 val; 
    memcpy(&val, memPtr, sizeof(val)); 
    return val; 
} 
 
#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ 
 
 
/* ***   Endianess   *** */ 
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; 
 
/*! 
 * XXH_CPU_LITTLE_ENDIAN: 
 * Defined to 1 if the target is little endian, or 0 if it is big endian. 
 * It can be defined externally, for example on the compiler command line. 
 * 
 * If it is not defined, a runtime check (which is usually constant folded) 
 * is used instead. 
 */ 
#ifndef XXH_CPU_LITTLE_ENDIAN 
/* 
 * Try to detect endianness automatically, to avoid the nonstandard behavior 
 * in `XXH_isLittleEndian()` 
 */ 
#  if defined(_WIN32) /* Windows is always little endian */ \ 
     || defined(__LITTLE_ENDIAN__) \ 
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) 
#    define XXH_CPU_LITTLE_ENDIAN 1 
#  elif defined(__BIG_ENDIAN__) \ 
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) 
#    define XXH_CPU_LITTLE_ENDIAN 0 
#  else 
/* 
 * runtime test, presumed to simplify to a constant by compiler 
 */ 
static int XXH_isLittleEndian(void) 
{ 
    /* 
     * Portable and well-defined behavior. 
     * Don't use static: it is detrimental to performance. 
     */ 
    const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; 
    return one.c[0]; 
} 
#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian() 
#  endif 
#endif 
 
 
 
 
/* **************************************** 
*  Compiler-specific Functions and Macros 
******************************************/ 
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) 
 
#ifdef __has_builtin 
#  define XXH_HAS_BUILTIN(x) __has_builtin(x) 
#else 
#  define XXH_HAS_BUILTIN(x) 0 
#endif 
 
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ 
                               && XXH_HAS_BUILTIN(__builtin_rotateleft64) 
#  define XXH_rotl32 __builtin_rotateleft32 
#  define XXH_rotl64 __builtin_rotateleft64 
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ 
#elif defined(_MSC_VER) 
#  define XXH_rotl32(x,r) _rotl(x,r) 
#  define XXH_rotl64(x,r) _rotl64(x,r) 
#else 
#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) 
#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) 
#endif 
 
#if defined(_MSC_VER)     /* Visual Studio */ 
#  define XXH_swap32 _byteswap_ulong 
#elif XXH_GCC_VERSION >= 403 
#  define XXH_swap32 __builtin_bswap32 
#else 
static xxh_u32 XXH_swap32 (xxh_u32 x) 
{ 
    return  ((x << 24) & 0xff000000 ) | 
            ((x <<  8) & 0x00ff0000 ) | 
            ((x >>  8) & 0x0000ff00 ) | 
            ((x >> 24) & 0x000000ff ); 
} 
#endif 
 
 
/* *************************** 
*  Memory reads 
*****************************/ 
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; 
 
/* 
 * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. 
 * 
 * This is ideal for older compilers which don't inline memcpy. 
 */ 
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) 
 
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) 
{ 
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; 
    return bytePtr[0] 
         | ((xxh_u32)bytePtr[1] << 8) 
         | ((xxh_u32)bytePtr[2] << 16) 
         | ((xxh_u32)bytePtr[3] << 24); 
} 
 
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) 
{ 
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; 
    return bytePtr[3] 
         | ((xxh_u32)bytePtr[2] << 8) 
         | ((xxh_u32)bytePtr[1] << 16) 
         | ((xxh_u32)bytePtr[0] << 24); 
} 
 
#else 
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) 
{ 
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); 
} 
 
static xxh_u32 XXH_readBE32(const void* ptr) 
{ 
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); 
} 
#endif 
 
XXH_FORCE_INLINE xxh_u32 
XXH_readLE32_align(const void* ptr, XXH_alignment align) 
{ 
    if (align==XXH_unaligned) { 
        return XXH_readLE32(ptr); 
    } else { 
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); 
    } 
} 
 
 
/* ************************************* 
*  Misc 
***************************************/ 
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } 
 
 
/* ******************************************************************* 
*  32-bit hash functions 
*********************************************************************/ 
static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U;   /* 0b10011110001101110111100110110001 */ 
static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U;   /* 0b10000101111010111100101001110111 */ 
static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU;   /* 0b11000010101100101010111000111101 */ 
static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU;   /* 0b00100111110101001110101100101111 */ 
static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U;   /* 0b00010110010101100110011110110001 */ 
 
#ifdef XXH_OLD_NAMES 
#  define PRIME32_1 XXH_PRIME32_1 
#  define PRIME32_2 XXH_PRIME32_2 
#  define PRIME32_3 XXH_PRIME32_3 
#  define PRIME32_4 XXH_PRIME32_4 
#  define PRIME32_5 XXH_PRIME32_5 
#endif 
 
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) 
{ 
    acc += input * XXH_PRIME32_2; 
    acc  = XXH_rotl32(acc, 13); 
    acc *= XXH_PRIME32_1; 
#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE) 
    /* 
     * UGLY HACK: 
     * This inline assembly hack forces acc into a normal register. This is the 
     * only thing that prevents GCC and Clang from autovectorizing the XXH32 
     * loop (pragmas and attributes don't work for some resason) without globally 
     * disabling SSE4.1. 
     * 
     * The reason we want to avoid vectorization is because despite working on 
     * 4 integers at a time, there are multiple factors slowing XXH32 down on 
     * SSE4: 
     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on 
     *   newer chips!) making it slightly slower to multiply four integers at 
     *   once compared to four integers independently. Even when pmulld was 
     *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE 
     *   just to multiply unless doing a long operation. 
     * 
     * - Four instructions are required to rotate, 
     *      movqda tmp,  v // not required with VEX encoding 
     *      pslld  tmp, 13 // tmp <<= 13 
     *      psrld  v,   19 // x >>= 19 
     *      por    v,  tmp // x |= tmp 
     *   compared to one for scalar: 
     *      roll   v, 13    // reliably fast across the board 
     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason 
     * 
     * - Instruction level parallelism is actually more beneficial here because 
     *   the SIMD actually serializes this operation: While v1 is rotating, v2 
     *   can load data, while v3 can multiply. SSE forces them to operate 
     *   together. 
     * 
     * How this hack works: 
     * __asm__(""       // Declare an assembly block but don't declare any instructions 
     *          :       // However, as an Input/Output Operand, 
     *          "+r"    // constrain a read/write operand (+) as a general purpose register (r). 
     *          (acc)   // and set acc as the operand 
     * ); 
     * 
     * Because of the 'r', the compiler has promised that seed will be in a 
     * general purpose register and the '+' says that it will be 'read/write', 
     * so it has to assume it has changed. It is like volatile without all the 
     * loads and stores. 
     * 
     * Since the argument has to be in a normal register (not an SSE register), 
     * each time XXH32_round is called, it is impossible to vectorize. 
     */ 
    __asm__("" : "+r" (acc)); 
#endif 
    return acc; 
} 
 
/* mix all bits */ 
static xxh_u32 XXH32_avalanche(xxh_u32 h32) 
{ 
    h32 ^= h32 >> 15; 
    h32 *= XXH_PRIME32_2; 
    h32 ^= h32 >> 13; 
    h32 *= XXH_PRIME32_3; 
    h32 ^= h32 >> 16; 
    return(h32); 
} 
 
#define XXH_get32bits(p) XXH_readLE32_align(p, align) 
 
static xxh_u32 
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) 
{ 
#define XXH_PROCESS1 do {                           \ 
    h32 += (*ptr++) * XXH_PRIME32_5;                \ 
    h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1;      \ 
} while (0) 
 
#define XXH_PROCESS4 do {                           \ 
    h32 += XXH_get32bits(ptr) * XXH_PRIME32_3;      \ 
    ptr += 4;                                   \ 
    h32  = XXH_rotl32(h32, 17) * XXH_PRIME32_4;     \ 
} while (0) 
 
    /* Compact rerolled version */ 
    if (XXH_REROLL) { 
        len &= 15; 
        while (len >= 4) { 
            XXH_PROCESS4; 
            len -= 4; 
        } 
        while (len > 0) { 
            XXH_PROCESS1; 
            --len; 
        } 
        return XXH32_avalanche(h32); 
    } else { 
         switch(len&15) /* or switch(bEnd - p) */ { 
           case 12:      XXH_PROCESS4; 
                         /* fallthrough */ 
           case 8:       XXH_PROCESS4; 
                         /* fallthrough */ 
           case 4:       XXH_PROCESS4; 
                         return XXH32_avalanche(h32); 
 
           case 13:      XXH_PROCESS4; 
                         /* fallthrough */ 
           case 9:       XXH_PROCESS4; 
                         /* fallthrough */ 
           case 5:       XXH_PROCESS4; 
                         XXH_PROCESS1; 
                         return XXH32_avalanche(h32); 
 
           case 14:      XXH_PROCESS4; 
                         /* fallthrough */ 
           case 10:      XXH_PROCESS4; 
                         /* fallthrough */ 
           case 6:       XXH_PROCESS4; 
                         XXH_PROCESS1; 
                         XXH_PROCESS1; 
                         return XXH32_avalanche(h32); 
 
           case 15:      XXH_PROCESS4; 
                         /* fallthrough */ 
           case 11:      XXH_PROCESS4; 
                         /* fallthrough */ 
           case 7:       XXH_PROCESS4; 
                         /* fallthrough */ 
           case 3:       XXH_PROCESS1; 
                         /* fallthrough */ 
           case 2:       XXH_PROCESS1; 
                         /* fallthrough */ 
           case 1:       XXH_PROCESS1; 
                         /* fallthrough */ 
           case 0:       return XXH32_avalanche(h32); 
        } 
        XXH_ASSERT(0); 
        return h32;   /* reaching this point is deemed impossible */ 
    } 
} 
 
#ifdef XXH_OLD_NAMES 
#  define PROCESS1 XXH_PROCESS1 
#  define PROCESS4 XXH_PROCESS4 
#else 
#  undef XXH_PROCESS1 
#  undef XXH_PROCESS4 
#endif 
 
XXH_FORCE_INLINE xxh_u32 
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) 
{ 
    const xxh_u8* bEnd = input + len; 
    xxh_u32 h32; 
 
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) 
    if (input==NULL) { 
        len=0; 
        bEnd=input=(const xxh_u8*)(size_t)16; 
    } 
#endif 
 
    if (len>=16) { 
        const xxh_u8* const limit = bEnd - 15; 
        xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; 
        xxh_u32 v2 = seed + XXH_PRIME32_2; 
        xxh_u32 v3 = seed + 0; 
        xxh_u32 v4 = seed - XXH_PRIME32_1; 
 
        do { 
            v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; 
            v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; 
            v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; 
            v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; 
        } while (input < limit); 
 
        h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7) 
            + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); 
    } else { 
        h32  = seed + XXH_PRIME32_5; 
    } 
 
    h32 += (xxh_u32)len; 
 
    return XXH32_finalize(h32, input, len&15, align); 
} 
 
 
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) 
{ 
#if 0 
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ 
    XXH32_state_t state; 
    XXH32_reset(&state, seed); 
    XXH32_update(&state, (const xxh_u8*)input, len); 
    return XXH32_digest(&state); 
 
#else 
 
    if (XXH_FORCE_ALIGN_CHECK) { 
        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */ 
            return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); 
    }   } 
 
    return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); 
#endif 
} 
 
 
 
/*******   Hash streaming   *******/ 
 
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) 
{ 
    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); 
} 
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) 
{ 
    XXH_free(statePtr); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) 
{ 
    memcpy(dstState, srcState, sizeof(*dstState)); 
} 
 
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) 
{ 
    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ 
    memset(&state, 0, sizeof(state)); 
    state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; 
    state.v2 = seed + XXH_PRIME32_2; 
    state.v3 = seed + 0; 
    state.v4 = seed - XXH_PRIME32_1; 
    /* do not write into reserved, planned to be removed in a future version */ 
    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); 
    return XXH_OK; 
} 
 
 
XXH_PUBLIC_API XXH_errorcode 
XXH32_update(XXH32_state_t* state, const void* input, size_t len) 
{ 
    if (input==NULL) 
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) 
        return XXH_OK; 
#else 
        return XXH_ERROR; 
#endif 
 
    {   const xxh_u8* p = (const xxh_u8*)input; 
        const xxh_u8* const bEnd = p + len; 
 
        state->total_len_32 += (XXH32_hash_t)len; 
        state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); 
 
        if (state->memsize + len < 16)  {   /* fill in tmp buffer */ 
            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); 
            state->memsize += (XXH32_hash_t)len; 
            return XXH_OK; 
        } 
 
        if (state->memsize) {   /* some data left from previous update */ 
            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); 
            {   const xxh_u32* p32 = state->mem32; 
                state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++; 
                state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++; 
                state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++; 
                state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); 
            } 
            p += 16-state->memsize; 
            state->memsize = 0; 
        } 
 
        if (p <= bEnd-16) { 
            const xxh_u8* const limit = bEnd - 16; 
            xxh_u32 v1 = state->v1; 
            xxh_u32 v2 = state->v2; 
            xxh_u32 v3 = state->v3; 
            xxh_u32 v4 = state->v4; 
 
            do { 
                v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4; 
                v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4; 
                v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4; 
                v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4; 
            } while (p<=limit); 
 
            state->v1 = v1; 
            state->v2 = v2; 
            state->v3 = v3; 
            state->v4 = v4; 
        } 
 
        if (p < bEnd) { 
            XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); 
            state->memsize = (unsigned)(bEnd-p); 
        } 
    } 
 
    return XXH_OK; 
} 
 
 
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state) 
{ 
    xxh_u32 h32; 
 
    if (state->large_len) { 
        h32 = XXH_rotl32(state->v1, 1) 
            + XXH_rotl32(state->v2, 7) 
            + XXH_rotl32(state->v3, 12) 
            + XXH_rotl32(state->v4, 18); 
    } else { 
        h32 = state->v3 /* == seed */ + XXH_PRIME32_5; 
    } 
 
    h32 += state->total_len_32; 
 
    return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); 
} 
 
 
/*******   Canonical representation   *******/ 
 
/* 
 * The default return values from XXH functions are unsigned 32 and 64 bit 
 * integers. 
 * 
 * The canonical representation uses big endian convention, the same convention 
 * as human-readable numbers (large digits first). 
 * 
 * This way, hash values can be written into a file or buffer, remaining 
 * comparable across different systems. 
 * 
 * The following functions allow transformation of hash values to and from their 
 * canonical format. 
 */ 
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) 
{ 
    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); 
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); 
    memcpy(dst, &hash, sizeof(*dst)); 
} 
 
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) 
{ 
    return XXH_readBE32(src); 
} 
 
 
#ifndef XXH_NO_LONG_LONG 
 
/* ******************************************************************* 
*  64-bit hash functions 
*********************************************************************/ 
 
/*******   Memory access   *******/ 
 
typedef XXH64_hash_t xxh_u64; 
 
#ifdef XXH_OLD_NAMES 
#  define U64 xxh_u64 
#endif 
 
/*! 
 * XXH_REROLL_XXH64: 
 * Whether to reroll the XXH64_finalize() loop. 
 * 
 * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a 
 * performance gain on 64-bit hosts, as only one jump is required. 
 * 
 * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit 
 * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial 
 * to unroll. The code becomes ridiculously large (the largest function in the 
 * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is 
 * also slightly faster because it fits into cache better and is more likely 
 * to be inlined by the compiler. 
 * 
 * If XXH_REROLL is defined, this is ignored and the loop is always rerolled. 
 */ 
#ifndef XXH_REROLL_XXH64 
#  if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \ 
   || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \ 
     || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \ 
     || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \ 
     || defined(__mips64__) || defined(__mips64)) /* mips64 */ \ 
   || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */ 
#    define XXH_REROLL_XXH64 1 
#  else 
#    define XXH_REROLL_XXH64 0 
#  endif 
#endif /* !defined(XXH_REROLL_XXH64) */ 
 
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) 
/* 
 * Manual byteshift. Best for old compilers which don't inline memcpy. 
 * We actually directly use XXH_readLE64 and XXH_readBE64. 
 */ 
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) 
 
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ 
static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; } 
 
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) 
 
/* 
 * __pack instructions are safer, but compiler specific, hence potentially 
 * problematic for some compilers. 
 * 
 * Currently only defined for GCC and ICC. 
 */ 
#ifdef XXH_OLD_NAMES 
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; 
#endif 
static xxh_u64 XXH_read64(const void* ptr) 
{ 
    typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; 
    return ((const xxh_unalign64*)ptr)->u64; 
} 
 
#else 
 
/* 
 * Portable and safe solution. Generally efficient. 
 * see: https://stackoverflow.com/a/32095106/646947 
 */ 
static xxh_u64 XXH_read64(const void* memPtr) 
{ 
    xxh_u64 val; 
    memcpy(&val, memPtr, sizeof(val)); 
    return val; 
} 
 
#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ 
 
#if defined(_MSC_VER)     /* Visual Studio */ 
#  define XXH_swap64 _byteswap_uint64 
#elif XXH_GCC_VERSION >= 403 
#  define XXH_swap64 __builtin_bswap64 
#else 
static xxh_u64 XXH_swap64 (xxh_u64 x) 
{ 
    return  ((x << 56) & 0xff00000000000000ULL) | 
            ((x << 40) & 0x00ff000000000000ULL) | 
            ((x << 24) & 0x0000ff0000000000ULL) | 
            ((x << 8)  & 0x000000ff00000000ULL) | 
            ((x >> 8)  & 0x00000000ff000000ULL) | 
            ((x >> 24) & 0x0000000000ff0000ULL) | 
            ((x >> 40) & 0x000000000000ff00ULL) | 
            ((x >> 56) & 0x00000000000000ffULL); 
} 
#endif 
 
 
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ 
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) 
 
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) 
{ 
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; 
    return bytePtr[0] 
         | ((xxh_u64)bytePtr[1] << 8) 
         | ((xxh_u64)bytePtr[2] << 16) 
         | ((xxh_u64)bytePtr[3] << 24) 
         | ((xxh_u64)bytePtr[4] << 32) 
         | ((xxh_u64)bytePtr[5] << 40) 
         | ((xxh_u64)bytePtr[6] << 48) 
         | ((xxh_u64)bytePtr[7] << 56); 
} 
 
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) 
{ 
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; 
    return bytePtr[7] 
         | ((xxh_u64)bytePtr[6] << 8) 
         | ((xxh_u64)bytePtr[5] << 16) 
         | ((xxh_u64)bytePtr[4] << 24) 
         | ((xxh_u64)bytePtr[3] << 32) 
         | ((xxh_u64)bytePtr[2] << 40) 
         | ((xxh_u64)bytePtr[1] << 48) 
         | ((xxh_u64)bytePtr[0] << 56); 
} 
 
#else 
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) 
{ 
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); 
} 
 
static xxh_u64 XXH_readBE64(const void* ptr) 
{ 
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); 
} 
#endif 
 
XXH_FORCE_INLINE xxh_u64 
XXH_readLE64_align(const void* ptr, XXH_alignment align) 
{ 
    if (align==XXH_unaligned) 
        return XXH_readLE64(ptr); 
    else 
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); 
} 
 
 
/*******   xxh64   *******/ 
 
static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL;   /* 0b1001111000110111011110011011000110000101111010111100101010000111 */ 
static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;   /* 0b1100001010110010101011100011110100100111110101001110101101001111 */ 
static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL;   /* 0b0001011001010110011001111011000110011110001101110111100111111001 */ 
static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL;   /* 0b1000010111101011110010100111011111000010101100101010111001100011 */ 
static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL;   /* 0b0010011111010100111010110010111100010110010101100110011111000101 */ 
 
#ifdef XXH_OLD_NAMES 
#  define PRIME64_1 XXH_PRIME64_1 
#  define PRIME64_2 XXH_PRIME64_2 
#  define PRIME64_3 XXH_PRIME64_3 
#  define PRIME64_4 XXH_PRIME64_4 
#  define PRIME64_5 XXH_PRIME64_5 
#endif 
 
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) 
{ 
    acc += input * XXH_PRIME64_2; 
    acc  = XXH_rotl64(acc, 31); 
    acc *= XXH_PRIME64_1; 
    return acc; 
} 
 
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) 
{ 
    val  = XXH64_round(0, val); 
    acc ^= val; 
    acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4; 
    return acc; 
} 
 
static xxh_u64 XXH64_avalanche(xxh_u64 h64) 
{ 
    h64 ^= h64 >> 33; 
    h64 *= XXH_PRIME64_2; 
    h64 ^= h64 >> 29; 
    h64 *= XXH_PRIME64_3; 
    h64 ^= h64 >> 32; 
    return h64; 
} 
 
 
#define XXH_get64bits(p) XXH_readLE64_align(p, align) 
 
static xxh_u64 
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) 
{ 
#define XXH_PROCESS1_64 do {                                   \ 
    h64 ^= (*ptr++) * XXH_PRIME64_5;                           \ 
    h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;                 \ 
} while (0) 
 
#define XXH_PROCESS4_64 do {                                   \ 
    h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;      \ 
    ptr += 4;                                              \ 
    h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;     \ 
} while (0) 
 
#define XXH_PROCESS8_64 do {                                   \ 
    xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \ 
    ptr += 8;                                              \ 
    h64 ^= k1;                                             \ 
    h64  = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;     \ 
} while (0) 
 
    /* Rerolled version for 32-bit targets is faster and much smaller. */ 
    if (XXH_REROLL || XXH_REROLL_XXH64) { 
        len &= 31; 
        while (len >= 8) { 
            XXH_PROCESS8_64; 
            len -= 8; 
        } 
        if (len >= 4) { 
            XXH_PROCESS4_64; 
            len -= 4; 
        } 
        while (len > 0) { 
            XXH_PROCESS1_64; 
            --len; 
        } 
         return  XXH64_avalanche(h64); 
    } else { 
        switch(len & 31) { 
           case 24: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 16: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case  8: XXH_PROCESS8_64; 
                    return XXH64_avalanche(h64); 
 
           case 28: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 20: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 12: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case  4: XXH_PROCESS4_64; 
                    return XXH64_avalanche(h64); 
 
           case 25: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 17: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case  9: XXH_PROCESS8_64; 
                    XXH_PROCESS1_64; 
                    return XXH64_avalanche(h64); 
 
           case 29: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 21: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 13: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case  5: XXH_PROCESS4_64; 
                    XXH_PROCESS1_64; 
                    return XXH64_avalanche(h64); 
 
           case 26: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 18: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 10: XXH_PROCESS8_64; 
                    XXH_PROCESS1_64; 
                    XXH_PROCESS1_64; 
                    return XXH64_avalanche(h64); 
 
           case 30: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 22: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 14: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case  6: XXH_PROCESS4_64; 
                    XXH_PROCESS1_64; 
                    XXH_PROCESS1_64; 
                    return XXH64_avalanche(h64); 
 
           case 27: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 19: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 11: XXH_PROCESS8_64; 
                    XXH_PROCESS1_64; 
                    XXH_PROCESS1_64; 
                    XXH_PROCESS1_64; 
                    return XXH64_avalanche(h64); 
 
           case 31: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 23: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case 15: XXH_PROCESS8_64; 
                         /* fallthrough */ 
           case  7: XXH_PROCESS4_64; 
                         /* fallthrough */ 
           case  3: XXH_PROCESS1_64; 
                         /* fallthrough */ 
           case  2: XXH_PROCESS1_64; 
                         /* fallthrough */ 
           case  1: XXH_PROCESS1_64; 
                         /* fallthrough */ 
           case  0: return XXH64_avalanche(h64); 
        } 
    } 
    /* impossible to reach */ 
    XXH_ASSERT(0); 
    return 0;  /* unreachable, but some compilers complain without it */ 
} 
 
#ifdef XXH_OLD_NAMES 
#  define PROCESS1_64 XXH_PROCESS1_64 
#  define PROCESS4_64 XXH_PROCESS4_64 
#  define PROCESS8_64 XXH_PROCESS8_64 
#else 
#  undef XXH_PROCESS1_64 
#  undef XXH_PROCESS4_64 
#  undef XXH_PROCESS8_64 
#endif 
 
XXH_FORCE_INLINE xxh_u64 
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) 
{ 
    const xxh_u8* bEnd = input + len; 
    xxh_u64 h64; 
 
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) 
    if (input==NULL) { 
        len=0; 
        bEnd=input=(const xxh_u8*)(size_t)32; 
    } 
#endif 
 
    if (len>=32) { 
        const xxh_u8* const limit = bEnd - 32; 
        xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; 
        xxh_u64 v2 = seed + XXH_PRIME64_2; 
        xxh_u64 v3 = seed + 0; 
        xxh_u64 v4 = seed - XXH_PRIME64_1; 
 
        do { 
            v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; 
            v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; 
            v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; 
            v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; 
        } while (input<=limit); 
 
        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); 
        h64 = XXH64_mergeRound(h64, v1); 
        h64 = XXH64_mergeRound(h64, v2); 
        h64 = XXH64_mergeRound(h64, v3); 
        h64 = XXH64_mergeRound(h64, v4); 
 
    } else { 
        h64  = seed + XXH_PRIME64_5; 
    } 
 
    h64 += (xxh_u64) len; 
 
    return XXH64_finalize(h64, input, len, align); 
} 
 
 
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) 
{ 
#if 0 
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ 
    XXH64_state_t state; 
    XXH64_reset(&state, seed); 
    XXH64_update(&state, (const xxh_u8*)input, len); 
    return XXH64_digest(&state); 
 
#else 
 
    if (XXH_FORCE_ALIGN_CHECK) { 
        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */ 
            return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); 
    }   } 
 
    return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); 
 
#endif 
} 
 
/*******   Hash Streaming   *******/ 
 
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) 
{ 
    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); 
} 
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) 
{ 
    XXH_free(statePtr); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) 
{ 
    memcpy(dstState, srcState, sizeof(*dstState)); 
} 
 
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) 
{ 
    XXH64_state_t state;   /* use a local state to memcpy() in order to avoid strict-aliasing warnings */ 
    memset(&state, 0, sizeof(state)); 
    state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; 
    state.v2 = seed + XXH_PRIME64_2; 
    state.v3 = seed + 0; 
    state.v4 = seed - XXH_PRIME64_1; 
     /* do not write into reserved64, might be removed in a future version */ 
    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH64_update (XXH64_state_t* state, const void* input, size_t len) 
{ 
    if (input==NULL) 
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) 
        return XXH_OK; 
#else 
        return XXH_ERROR; 
#endif 
 
    {   const xxh_u8* p = (const xxh_u8*)input; 
        const xxh_u8* const bEnd = p + len; 
 
        state->total_len += len; 
 
        if (state->memsize + len < 32) {  /* fill in tmp buffer */ 
            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); 
            state->memsize += (xxh_u32)len; 
            return XXH_OK; 
        } 
 
        if (state->memsize) {   /* tmp buffer is full */ 
            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); 
            state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0)); 
            state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1)); 
            state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2)); 
            state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3)); 
            p += 32-state->memsize; 
            state->memsize = 0; 
        } 
 
        if (p+32 <= bEnd) { 
            const xxh_u8* const limit = bEnd - 32; 
            xxh_u64 v1 = state->v1; 
            xxh_u64 v2 = state->v2; 
            xxh_u64 v3 = state->v3; 
            xxh_u64 v4 = state->v4; 
 
            do { 
                v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8; 
                v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8; 
                v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8; 
                v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8; 
            } while (p<=limit); 
 
            state->v1 = v1; 
            state->v2 = v2; 
            state->v3 = v3; 
            state->v4 = v4; 
        } 
 
        if (p < bEnd) { 
            XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); 
            state->memsize = (unsigned)(bEnd-p); 
        } 
    } 
 
    return XXH_OK; 
} 
 
 
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state) 
{ 
    xxh_u64 h64; 
 
    if (state->total_len >= 32) { 
        xxh_u64 const v1 = state->v1; 
        xxh_u64 const v2 = state->v2; 
        xxh_u64 const v3 = state->v3; 
        xxh_u64 const v4 = state->v4; 
 
        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); 
        h64 = XXH64_mergeRound(h64, v1); 
        h64 = XXH64_mergeRound(h64, v2); 
        h64 = XXH64_mergeRound(h64, v3); 
        h64 = XXH64_mergeRound(h64, v4); 
    } else { 
        h64  = state->v3 /*seed*/ + XXH_PRIME64_5; 
    } 
 
    h64 += (xxh_u64) state->total_len; 
 
    return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); 
} 
 
 
/******* Canonical representation   *******/ 
 
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) 
{ 
    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); 
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); 
    memcpy(dst, &hash, sizeof(*dst)); 
} 
 
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) 
{ 
    return XXH_readBE64(src); 
} 
 
 
 
/* ********************************************************************* 
*  XXH3 
*  New generation hash designed for speed on small keys and vectorization 
************************************************************************ */ 
 
/* ===   Compiler specifics   === */ 
 
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */ 
#  define XXH_RESTRICT   restrict 
#else 
/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ 
#  define XXH_RESTRICT   /* disable */ 
#endif 
 
#if (defined(__GNUC__) && (__GNUC__ >= 3))  \ 
  || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ 
  || defined(__clang__) 
#    define XXH_likely(x) __builtin_expect(x, 1) 
#    define XXH_unlikely(x) __builtin_expect(x, 0) 
#else 
#    define XXH_likely(x) (x) 
#    define XXH_unlikely(x) (x) 
#endif 
 
#if defined(__GNUC__) 
#  if defined(__AVX2__) 
#    include <immintrin.h> 
#  elif defined(__SSE2__) 
#    include <emmintrin.h> 
#  elif defined(__ARM_NEON__) || defined(__ARM_NEON) 
#    define inline __inline__  /* circumvent a clang bug */ 
#    include <arm_neon.h> 
#    undef inline 
#  endif 
#elif defined(_MSC_VER) 
#  include <intrin.h> 
#endif 
 
/* 
 * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while 
 * remaining a true 64-bit/128-bit hash function. 
 * 
 * This is done by prioritizing a subset of 64-bit operations that can be 
 * emulated without too many steps on the average 32-bit machine. 
 * 
 * For example, these two lines seem similar, and run equally fast on 64-bit: 
 * 
 *   xxh_u64 x; 
 *   x ^= (x >> 47); // good 
 *   x ^= (x >> 13); // bad 
 * 
 * However, to a 32-bit machine, there is a major difference. 
 * 
 * x ^= (x >> 47) looks like this: 
 * 
 *   x.lo ^= (x.hi >> (47 - 32)); 
 * 
 * while x ^= (x >> 13) looks like this: 
 * 
 *   // note: funnel shifts are not usually cheap. 
 *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); 
 *   x.hi ^= (x.hi >> 13); 
 * 
 * The first one is significantly faster than the second, simply because the 
 * shift is larger than 32. This means: 
 *  - All the bits we need are in the upper 32 bits, so we can ignore the lower 
 *    32 bits in the shift. 
 *  - The shift result will always fit in the lower 32 bits, and therefore, 
 *    we can ignore the upper 32 bits in the xor. 
 * 
 * Thanks to this optimization, XXH3 only requires these features to be efficient: 
 * 
 *  - Usable unaligned access 
 *  - A 32-bit or 64-bit ALU 
 *      - If 32-bit, a decent ADC instruction 
 *  - A 32 or 64-bit multiply with a 64-bit result 
 *  - For the 128-bit variant, a decent byteswap helps short inputs. 
 * 
 * The first two are already required by XXH32, and almost all 32-bit and 64-bit 
 * platforms which can run XXH32 can run XXH3 efficiently. 
 * 
 * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one 
 * notable exception. 
 * 
 * First of all, Thumb-1 lacks support for the UMULL instruction which 
 * performs the important long multiply. This means numerous __aeabi_lmul 
 * calls. 
 * 
 * Second of all, the 8 functional registers are just not enough. 
 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need 
 * Lo registers, and this shuffling results in thousands more MOVs than A32. 
 * 
 * A32 and T32 don't have this limitation. They can access all 14 registers, 
 * do a 32->64 multiply with UMULL, and the flexible operand allowing free 
 * shifts is helpful, too. 
 * 
 * Therefore, we do a quick sanity check. 
 * 
 * If compiling Thumb-1 for a target which supports ARM instructions, we will 
 * emit a warning, as it is not a "sane" platform to compile for. 
 * 
 * Usually, if this happens, it is because of an accident and you probably need 
 * to specify -march, as you likely meant to compile for a newer architecture. 
 * 
 * Credit: large sections of the vectorial and asm source code paths 
 *         have been contributed by @easyaspi314 
 */ 
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) 
#   warning "XXH3 is highly inefficient without ARM or Thumb-2." 
#endif 
 
/* ========================================== 
 * Vectorization detection 
 * ========================================== */ 
#define XXH_SCALAR 0  /* Portable scalar version */ 
#define XXH_SSE2   1  /* SSE2 for Pentium 4 and all x86_64 */ 
#define XXH_AVX2   2  /* AVX2 for Haswell and Bulldozer */ 
#define XXH_AVX512 3  /* AVX512 for Skylake and Icelake */ 
#define XXH_NEON   4  /* NEON for most ARMv7-A and all AArch64 */ 
#define XXH_VSX    5  /* VSX and ZVector for POWER8/z13 */ 
 
#ifndef XXH_VECTOR    /* can be defined on command line */ 
#  if defined(__AVX512F__) 
#    define XXH_VECTOR XXH_AVX512 
#  elif defined(__AVX2__) 
#    define XXH_VECTOR XXH_AVX2 
#  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) 
#    define XXH_VECTOR XXH_SSE2 
#  elif defined(__GNUC__) /* msvc support maybe later */ \ 
  && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ 
  && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ 
    || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) 
#    define XXH_VECTOR XXH_NEON 
#  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ 
     || (defined(__s390x__) && defined(__VEC__)) \ 
     && defined(__GNUC__) /* TODO: IBM XL */ 
#    define XXH_VECTOR XXH_VSX 
#  else 
#    define XXH_VECTOR XXH_SCALAR 
#  endif 
#endif 
 
/* 
 * Controls the alignment of the accumulator, 
 * for compatibility with aligned vector loads, which are usually faster. 
 */ 
#ifndef XXH_ACC_ALIGN 
#  if defined(XXH_X86DISPATCH) 
#     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */ 
#  elif XXH_VECTOR == XXH_SCALAR  /* scalar */ 
#     define XXH_ACC_ALIGN 8 
#  elif XXH_VECTOR == XXH_SSE2  /* sse2 */ 
#     define XXH_ACC_ALIGN 16 
#  elif XXH_VECTOR == XXH_AVX2  /* avx2 */ 
#     define XXH_ACC_ALIGN 32 
#  elif XXH_VECTOR == XXH_NEON  /* neon */ 
#     define XXH_ACC_ALIGN 16 
#  elif XXH_VECTOR == XXH_VSX   /* vsx */ 
#     define XXH_ACC_ALIGN 16 
#  elif XXH_VECTOR == XXH_AVX512  /* avx512 */ 
#     define XXH_ACC_ALIGN 64 
#  endif 
#endif 
 
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ 
    || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 
#  define XXH_SEC_ALIGN XXH_ACC_ALIGN 
#else 
#  define XXH_SEC_ALIGN 8 
#endif 
 
/* 
 * UGLY HACK: 
 * GCC usually generates the best code with -O3 for xxHash. 
 * 
 * However, when targeting AVX2, it is overzealous in its unrolling resulting 
 * in code roughly 3/4 the speed of Clang. 
 * 
 * There are other issues, such as GCC splitting _mm256_loadu_si256 into 
 * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which 
 * only applies to Sandy and Ivy Bridge... which don't even support AVX2. 
 * 
 * That is why when compiling the AVX2 version, it is recommended to use either 
 *   -O2 -mavx2 -march=haswell 
 * or 
 *   -O2 -mavx2 -mno-avx256-split-unaligned-load 
 * for decent performance, or to use Clang instead. 
 * 
 * Fortunately, we can control the first one with a pragma that forces GCC into 
 * -O2, but the other one we can't control without "failed to inline always 
 * inline function due to target mismatch" warnings. 
 */ 
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ 
  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ 
  && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ 
#  pragma GCC push_options 
#  pragma GCC optimize("-O2") 
#endif 
 
 
#if XXH_VECTOR == XXH_NEON 
/* 
 * NEON's setup for vmlal_u32 is a little more complicated than it is on 
 * SSE2, AVX2, and VSX. 
 * 
 * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. 
 * 
 * To do the same operation, the 128-bit 'Q' register needs to be split into 
 * two 64-bit 'D' registers, performing this operation:: 
 * 
 *   [                a                 |                 b                ] 
 *            |              '---------. .--------'                | 
 *            |                         x                          | 
 *            |              .---------' '--------.                | 
 *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ] 
 * 
 * Due to significant changes in aarch64, the fastest method for aarch64 is 
 * completely different than the fastest method for ARMv7-A. 
 * 
 * ARMv7-A treats D registers as unions overlaying Q registers, so modifying 
 * D11 will modify the high half of Q5. This is similar to how modifying AH 
 * will only affect bits 8-15 of AX on x86. 
 * 
 * VZIP takes two registers, and puts even lanes in one register and odd lanes 
 * in the other. 
 * 
 * On ARMv7-A, this strangely modifies both parameters in place instead of 
 * taking the usual 3-operand form. 
 * 
 * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the 
 * lower and upper halves of the Q register to end up with the high and low 
 * halves where we want - all in one instruction. 
 * 
 *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } 
 * 
 * Unfortunately we need inline assembly for this: Instructions modifying two 
 * registers at once is not possible in GCC or Clang's IR, and they have to 
 * create a copy. 
 * 
 * aarch64 requires a different approach. 
 * 
 * In order to make it easier to write a decent compiler for aarch64, many 
 * quirks were removed, such as conditional execution. 
 * 
 * NEON was also affected by this. 
 * 
 * aarch64 cannot access the high bits of a Q-form register, and writes to a 
 * D-form register zero the high bits, similar to how writes to W-form scalar 
 * registers (or DWORD registers on x86_64) work. 
 * 
 * The formerly free vget_high intrinsics now require a vext (with a few 
 * exceptions) 
 * 
 * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent 
 * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one 
 * operand. 
 * 
 * The equivalent of the VZIP.32 on the lower and upper halves would be this 
 * mess: 
 * 
 *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } 
 *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] } 
 *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] } 
 * 
 * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): 
 * 
 *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32); 
 *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); 
 * 
 * This is available on ARMv7-A, but is less efficient than a single VZIP.32. 
 */ 
 
/* 
 * Function-like macro: 
 * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) 
 * { 
 *     outLo = (uint32x2_t)(in & 0xFFFFFFFF); 
 *     outHi = (uint32x2_t)(in >> 32); 
 *     in = UNDEFINED; 
 * } 
 */ 
# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ 
   && defined(__GNUC__) \ 
   && !defined(__aarch64__) && !defined(__arm64__) 
#  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \ 
    do {                                                                                    \ 
      /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ 
      /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \ 
      /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ 
      __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \ 
      (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \ 
      (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \ 
   } while (0) 
# else 
#  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \ 
    do {                                                                                  \ 
      (outLo) = vmovn_u64    (in);                                                        \ 
      (outHi) = vshrn_n_u64  ((in), 32);                                                  \ 
    } while (0) 
# endif 
#endif  /* XXH_VECTOR == XXH_NEON */ 
 
/* 
 * VSX and Z Vector helpers. 
 * 
 * This is very messy, and any pull requests to clean this up are welcome. 
 * 
 * There are a lot of problems with supporting VSX and s390x, due to 
 * inconsistent intrinsics, spotty coverage, and multiple endiannesses. 
 */ 
#if XXH_VECTOR == XXH_VSX 
#  if defined(__s390x__) 
#    include <s390intrin.h> 
#  else 
/* gcc's altivec.h can have the unwanted consequence to unconditionally 
 * #define bool, vector, and pixel keywords, 
 * with bad consequences for programs already using these keywords for other purposes. 
 * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. 
 * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, 
 * but it seems that, in some cases, it isn't. 
 * Force the build macro to be defined, so that keywords are not altered. 
 */ 
#    if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) 
#      define __APPLE_ALTIVEC__ 
#    endif 
#    include <altivec.h> 
#  endif 
 
typedef __vector unsigned long long xxh_u64x2; 
typedef __vector unsigned char xxh_u8x16; 
typedef __vector unsigned xxh_u32x4; 
 
# ifndef XXH_VSX_BE 
#  if defined(__BIG_ENDIAN__) \ 
  || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) 
#    define XXH_VSX_BE 1 
#  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ 
#    warning "-maltivec=be is not recommended. Please use native endianness." 
#    define XXH_VSX_BE 1 
#  else 
#    define XXH_VSX_BE 0 
#  endif 
# endif /* !defined(XXH_VSX_BE) */ 
 
# if XXH_VSX_BE 
/* A wrapper for POWER9's vec_revb. */ 
#  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) 
#    define XXH_vec_revb vec_revb 
#  else 
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) 
{ 
    xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 
                                  0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; 
    return vec_perm(val, val, vByteSwap); 
} 
#  endif 
# endif /* XXH_VSX_BE */ 
 
/* 
 * Performs an unaligned load and byte swaps it on big endian. 
 */ 
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) 
{ 
    xxh_u64x2 ret; 
    memcpy(&ret, ptr, sizeof(xxh_u64x2)); 
# if XXH_VSX_BE 
    ret = XXH_vec_revb(ret); 
# endif 
    return ret; 
} 
 
/* 
 * vec_mulo and vec_mule are very problematic intrinsics on PowerPC 
 * 
 * These intrinsics weren't added until GCC 8, despite existing for a while, 
 * and they are endian dependent. Also, their meaning swap depending on version. 
 * */ 
# if defined(__s390x__) 
 /* s390x is always big endian, no issue on this platform */ 
#  define XXH_vec_mulo vec_mulo 
#  define XXH_vec_mule vec_mule 
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) 
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ 
#  define XXH_vec_mulo __builtin_altivec_vmulouw 
#  define XXH_vec_mule __builtin_altivec_vmuleuw 
# else 
/* gcc needs inline assembly */ 
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ 
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) 
{ 
    xxh_u64x2 result; 
    __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); 
    return result; 
} 
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) 
{ 
    xxh_u64x2 result; 
    __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); 
    return result; 
} 
# endif /* XXH_vec_mulo, XXH_vec_mule */ 
#endif /* XXH_VECTOR == XXH_VSX */ 
 
 
/* prefetch 
 * can be disabled, by declaring XXH_NO_PREFETCH build macro */ 
#if defined(XXH_NO_PREFETCH) 
#  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */ 
#else 
#  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))  /* _mm_prefetch() is not defined outside of x86/x64 */ 
#    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ 
#    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0) 
#  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) 
#    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) 
#  else 
#    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */ 
#  endif 
#endif  /* XXH_NO_PREFETCH */ 
 
 
/* ========================================== 
 * XXH3 default settings 
 * ========================================== */ 
 
#define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */ 
 
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) 
#  error "default keyset is not large enough" 
#endif 
 
/* Pseudorandom secret taken directly from FARSH */ 
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { 
    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 
    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 
    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, 
    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 
    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 
    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 
    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, 
    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 
    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 
    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 
    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 
    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, 
}; 
 
 
#ifdef XXH_OLD_NAMES 
#  define kSecret XXH3_kSecret 
#endif 
 
/* 
 * Calculates a 32-bit to 64-bit long multiply. 
 * 
 * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't 
 * need to (but it shouldn't need to anyways, it is about 7 instructions to do 
 * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we 
 * use that instead of the normal method. 
 * 
 * If you are compiling for platforms like Thumb-1 and don't have a better option, 
 * you may also want to write your own long multiply routine here. 
 * 
 * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) 
 * { 
 *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); 
 * } 
 */ 
#if defined(_MSC_VER) && defined(_M_IX86) 
#    include <intrin.h> 
#    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) 
#else 
/* 
 * Downcast + upcast is usually better than masking on older compilers like 
 * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. 
 * 
 * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands 
 * and perform a full 64x64 multiply -- entirely redundant on 32-bit. 
 */ 
#    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) 
#endif 
 
/* 
 * Calculates a 64->128-bit long multiply. 
 * 
 * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. 
 */ 
static XXH128_hash_t 
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) 
{ 
    /* 
     * GCC/Clang __uint128_t method. 
     * 
     * On most 64-bit targets, GCC and Clang define a __uint128_t type. 
     * This is usually the best way as it usually uses a native long 64-bit 
     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. 
     * 
     * Usually. 
     * 
     * Despite being a 32-bit platform, Clang (and emscripten) define this type 
     * despite not having the arithmetic for it. This results in a laggy 
     * compiler builtin call which calculates a full 128-bit multiply. 
     * In that case it is best to use the portable one. 
     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 
     */ 
#if defined(__GNUC__) && !defined(__wasm__) \ 
    && defined(__SIZEOF_INT128__) \ 
    || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) 
 
    __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; 
    XXH128_hash_t r128; 
    r128.low64  = (xxh_u64)(product); 
    r128.high64 = (xxh_u64)(product >> 64); 
    return r128; 
 
    /* 
     * MSVC for x64's _umul128 method. 
     * 
     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); 
     * 
     * This compiles to single operand MUL on x64. 
     */ 
#elif defined(_M_X64) || defined(_M_IA64) 
 
#ifndef _MSC_VER 
#   pragma intrinsic(_umul128) 
#endif 
    xxh_u64 product_high; 
    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); 
    XXH128_hash_t r128; 
    r128.low64  = product_low; 
    r128.high64 = product_high; 
    return r128; 
 
#else 
    /* 
     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. 
     * 
     * This is a fast and simple grade school multiply, which is shown below 
     * with base 10 arithmetic instead of base 0x100000000. 
     * 
     *           9 3 // D2 lhs = 93 
     *         x 7 5 // D2 rhs = 75 
     *     ---------- 
     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 
     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 
     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 
     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 
     *     --------- 
     *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 
     *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 
     *     --------- 
     *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 
     * 
     * The reasons for adding the products like this are: 
     *  1. It avoids manual carry tracking. Just like how 
     *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. 
     *     This avoids a lot of complexity. 
     * 
     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL 
     *     instruction available in ARM's Digital Signal Processing extension 
     *     in 32-bit ARMv6 and later, which is shown below: 
     * 
     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) 
     *         { 
     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; 
     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF); 
     *             *RdHi = (xxh_u32)(product >> 32); 
     *         } 
     * 
     *     This instruction was designed for efficient long multiplication, and 
     *     allows this to be calculated in only 4 instructions at speeds 
     *     comparable to some 64-bit ALUs. 
     * 
     *  3. It isn't terrible on other platforms. Usually this will be a couple 
     *     of 32-bit ADD/ADCs. 
     */ 
 
    /* First calculate all of the cross products. */ 
    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); 
    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF); 
    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); 
    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32); 
 
    /* Now add the products together. These will never overflow. */ 
    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; 
    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi; 
    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); 
 
    XXH128_hash_t r128; 
    r128.low64  = lower; 
    r128.high64 = upper; 
    return r128; 
#endif 
} 
 
/* 
 * Does a 64-bit to 128-bit multiply, then XOR folds it. 
 * 
 * The reason for the separate function is to prevent passing too many structs 
 * around by value. This will hopefully inline the multiply, but we don't force it. 
 */ 
static xxh_u64 
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) 
{ 
    XXH128_hash_t product = XXH_mult64to128(lhs, rhs); 
    return product.low64 ^ product.high64; 
} 
 
/* Seems to produce slightly better code on GCC for some reason. */ 
XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) 
{ 
    XXH_ASSERT(0 <= shift && shift < 64); 
    return v64 ^ (v64 >> shift); 
} 
 
/* 
 * This is a fast avalanche stage, 
 * suitable when input bits are already partially mixed 
 */ 
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) 
{ 
    h64 = XXH_xorshift64(h64, 37); 
    h64 *= 0x165667919E3779F9ULL; 
    h64 = XXH_xorshift64(h64, 32); 
    return h64; 
} 
 
/* 
 * This is a stronger avalanche, 
 * inspired by Pelle Evensen's rrmxmx 
 * preferable when input has not been previously mixed 
 */ 
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) 
{ 
    /* this mix is inspired by Pelle Evensen's rrmxmx */ 
    h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); 
    h64 *= 0x9FB21C651E98DF25ULL; 
    h64 ^= (h64 >> 35) + len ; 
    h64 *= 0x9FB21C651E98DF25ULL; 
    return XXH_xorshift64(h64, 28); 
} 
 
 
/* ========================================== 
 * Short keys 
 * ========================================== 
 * One of the shortcomings of XXH32 and XXH64 was that their performance was 
 * sub-optimal on short lengths. It used an iterative algorithm which strongly 
 * favored lengths that were a multiple of 4 or 8. 
 * 
 * Instead of iterating over individual inputs, we use a set of single shot 
 * functions which piece together a range of lengths and operate in constant time. 
 * 
 * Additionally, the number of multiplies has been significantly reduced. This 
 * reduces latency, especially when emulating 64-bit multiplies on 32-bit. 
 * 
 * Depending on the platform, this may or may not be faster than XXH32, but it 
 * is almost guaranteed to be faster than XXH64. 
 */ 
 
/* 
 * At very short lengths, there isn't enough input to fully hide secrets, or use 
 * the entire secret. 
 * 
 * There is also only a limited amount of mixing we can do before significantly 
 * impacting performance. 
 * 
 * Therefore, we use different sections of the secret and always mix two secret 
 * samples with an XOR. This should have no effect on performance on the 
 * seedless or withSeed variants because everything _should_ be constant folded 
 * by modern compilers. 
 * 
 * The XOR mixing hides individual parts of the secret and increases entropy. 
 * 
 * This adds an extra layer of strength for custom secrets. 
 */ 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(input != NULL); 
    XXH_ASSERT(1 <= len && len <= 3); 
    XXH_ASSERT(secret != NULL); 
    /* 
     * len = 1: combined = { input[0], 0x01, input[0], input[0] } 
     * len = 2: combined = { input[1], 0x02, input[0], input[1] } 
     * len = 3: combined = { input[2], 0x03, input[0], input[1] } 
     */ 
    {   xxh_u8  const c1 = input[0]; 
        xxh_u8  const c2 = input[len >> 1]; 
        xxh_u8  const c3 = input[len - 1]; 
        xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24) 
                               | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8); 
        xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; 
        xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; 
        return XXH64_avalanche(keyed); 
    } 
} 
 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(input != NULL); 
    XXH_ASSERT(secret != NULL); 
    XXH_ASSERT(4 <= len && len < 8); 
    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; 
    {   xxh_u32 const input1 = XXH_readLE32(input); 
        xxh_u32 const input2 = XXH_readLE32(input + len - 4); 
        xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; 
        xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); 
        xxh_u64 const keyed = input64 ^ bitflip; 
        return XXH3_rrmxmx(keyed, len); 
    } 
} 
 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(input != NULL); 
    XXH_ASSERT(secret != NULL); 
    XXH_ASSERT(8 <= len && len <= 16); 
    {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; 
        xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; 
        xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1; 
        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; 
        xxh_u64 const acc = len 
                          + XXH_swap64(input_lo) + input_hi 
                          + XXH3_mul128_fold64(input_lo, input_hi); 
        return XXH3_avalanche(acc); 
    } 
} 
 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(len <= 16); 
    {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed); 
        if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); 
        if (len) return XXH3_len_1to3_64b(input, len, secret, seed); 
        return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); 
    } 
} 
 
/* 
 * DISCLAIMER: There are known *seed-dependent* multicollisions here due to 
 * multiplication by zero, affecting hashes of lengths 17 to 240. 
 * 
 * However, they are very unlikely. 
 * 
 * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all 
 * unseeded non-cryptographic hashes, it does not attempt to defend itself 
 * against specially crafted inputs, only random inputs. 
 * 
 * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes 
 * cancelling out the secret is taken an arbitrary number of times (addressed 
 * in XXH3_accumulate_512), this collision is very unlikely with random inputs 
 * and/or proper seeding: 
 * 
 * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a 
 * function that is only called up to 16 times per hash with up to 240 bytes of 
 * input. 
 * 
 * This is not too bad for a non-cryptographic hash function, especially with 
 * only 64 bit outputs. 
 * 
 * The 128-bit variant (which trades some speed for strength) is NOT affected 
 * by this, although it is always a good idea to use a proper seed if you care 
 * about strength. 
 */ 
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, 
                                     const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) 
{ 
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ 
  && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \ 
  && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */ 
    /* 
     * UGLY HACK: 
     * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in 
     * slower code. 
     * 
     * By forcing seed64 into a register, we disrupt the cost model and 
     * cause it to scalarize. See `XXH32_round()` 
     * 
     * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, 
     * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on 
     * GCC 9.2, despite both emitting scalar code. 
     * 
     * GCC generates much better scalar code than Clang for the rest of XXH3, 
     * which is why finding a more optimal codepath is an interest. 
     */ 
    __asm__ ("" : "+r" (seed64)); 
#endif 
    {   xxh_u64 const input_lo = XXH_readLE64(input); 
        xxh_u64 const input_hi = XXH_readLE64(input+8); 
        return XXH3_mul128_fold64( 
            input_lo ^ (XXH_readLE64(secret)   + seed64), 
            input_hi ^ (XXH_readLE64(secret+8) - seed64) 
        ); 
    } 
} 
 
/* For mid range keys, XXH3 uses a Mum-hash variant. */ 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, 
                     const xxh_u8* XXH_RESTRICT secret, size_t secretSize, 
                     XXH64_hash_t seed) 
{ 
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; 
    XXH_ASSERT(16 < len && len <= 128); 
 
    {   xxh_u64 acc = len * XXH_PRIME64_1; 
        if (len > 32) { 
            if (len > 64) { 
                if (len > 96) { 
                    acc += XXH3_mix16B(input+48, secret+96, seed); 
                    acc += XXH3_mix16B(input+len-64, secret+112, seed); 
                } 
                acc += XXH3_mix16B(input+32, secret+64, seed); 
                acc += XXH3_mix16B(input+len-48, secret+80, seed); 
            } 
            acc += XXH3_mix16B(input+16, secret+32, seed); 
            acc += XXH3_mix16B(input+len-32, secret+48, seed); 
        } 
        acc += XXH3_mix16B(input+0, secret+0, seed); 
        acc += XXH3_mix16B(input+len-16, secret+16, seed); 
 
        return XXH3_avalanche(acc); 
    } 
} 
 
#define XXH3_MIDSIZE_MAX 240 
 
XXH_NO_INLINE XXH64_hash_t 
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, 
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize, 
                      XXH64_hash_t seed) 
{ 
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; 
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); 
 
    #define XXH3_MIDSIZE_STARTOFFSET 3 
    #define XXH3_MIDSIZE_LASTOFFSET  17 
 
    {   xxh_u64 acc = len * XXH_PRIME64_1; 
        int const nbRounds = (int)len / 16; 
        int i; 
        for (i=0; i<8; i++) { 
            acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); 
        } 
        acc = XXH3_avalanche(acc); 
        XXH_ASSERT(nbRounds >= 8); 
#if defined(__clang__)                                /* Clang */ \ 
    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ 
    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */ 
        /* 
         * UGLY HACK: 
         * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. 
         * In everywhere else, it uses scalar code. 
         * 
         * For 64->128-bit multiplies, even if the NEON was 100% optimal, it 
         * would still be slower than UMAAL (see XXH_mult64to128). 
         * 
         * Unfortunately, Clang doesn't handle the long multiplies properly and 
         * converts them to the nonexistent "vmulq_u64" intrinsic, which is then 
         * scalarized into an ugly mess of VMOV.32 instructions. 
         * 
         * This mess is difficult to avoid without turning autovectorization 
         * off completely, but they are usually relatively minor and/or not 
         * worth it to fix. 
         * 
         * This loop is the easiest to fix, as unlike XXH32, this pragma 
         * _actually works_ because it is a loop vectorization instead of an 
         * SLP vectorization. 
         */ 
        #pragma clang loop vectorize(disable) 
#endif 
        for (i=8 ; i < nbRounds; i++) { 
            acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); 
        } 
        /* last bytes */ 
        acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); 
        return XXH3_avalanche(acc); 
    } 
} 
 
 
/* =======     Long Keys     ======= */ 
 
#define XXH_STRIPE_LEN 64 
#define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */ 
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) 
 
#ifdef XXH_OLD_NAMES 
#  define STRIPE_LEN XXH_STRIPE_LEN 
#  define ACC_NB XXH_ACC_NB 
#endif 
 
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) 
{ 
    if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); 
    memcpy(dst, &v64, sizeof(v64)); 
} 
 
/* Several intrinsic functions below are supposed to accept __int64 as argument, 
 * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . 
 * However, several environments do not define __int64 type, 
 * requiring a workaround. 
 */ 
#if !defined (__VMS) \ 
  && (defined (__cplusplus) \ 
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 
    typedef int64_t xxh_i64; 
#else 
    /* the following type must have a width of 64-bit */ 
    typedef long long xxh_i64; 
#endif 
 
/* 
 * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. 
 * 
 * It is a hardened version of UMAC, based off of FARSH's implementation. 
 * 
 * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD 
 * implementations, and it is ridiculously fast. 
 * 
 * We harden it by mixing the original input to the accumulators as well as the product. 
 * 
 * This means that in the (relatively likely) case of a multiply by zero, the 
 * original input is preserved. 
 * 
 * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve 
 * cross-pollination, as otherwise the upper and lower halves would be 
 * essentially independent. 
 * 
 * This doesn't matter on 64-bit hashes since they all get merged together in 
 * the end, so we skip the extra step. 
 * 
 * Both XXH3_64bits and XXH3_128bits use this subroutine. 
 */ 
 
#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH) 
 
#ifndef XXH_TARGET_AVX512 
# define XXH_TARGET_AVX512  /* disable attribute target */ 
#endif 
 
XXH_FORCE_INLINE XXH_TARGET_AVX512 void 
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, 
                     const void* XXH_RESTRICT input, 
                     const void* XXH_RESTRICT secret) 
{ 
    XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc; 
    XXH_ASSERT((((size_t)acc) & 63) == 0); 
    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); 
 
    { 
        /* data_vec    = input[0]; */ 
        __m512i const data_vec    = _mm512_loadu_si512   (input); 
        /* key_vec     = secret[0]; */ 
        __m512i const key_vec     = _mm512_loadu_si512   (secret); 
        /* data_key    = data_vec ^ key_vec; */ 
        __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec); 
        /* data_key_lo = data_key >> 32; */ 
        __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); 
        /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ 
        __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo); 
        /* xacc[0] += swap(data_vec); */ 
        __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); 
        __m512i const sum       = _mm512_add_epi64(*xacc, data_swap); 
        /* xacc[0] += product; */ 
        *xacc = _mm512_add_epi64(product, sum); 
    } 
} 
 
/* 
 * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. 
 * 
 * Multiplication isn't perfect, as explained by Google in HighwayHash: 
 * 
 *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to 
 *  // varying degrees. In descending order of goodness, bytes 
 *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. 
 *  // As expected, the upper and lower bytes are much worse. 
 * 
 * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 
 * 
 * Since our algorithm uses a pseudorandom secret to add some variance into the 
 * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. 
 * 
 * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid 
 * extraction. 
 * 
 * Both XXH3_64bits and XXH3_128bits use this subroutine. 
 */ 
 
XXH_FORCE_INLINE XXH_TARGET_AVX512 void 
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 63) == 0); 
    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); 
    {   XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc; 
        const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); 
 
        /* xacc[0] ^= (xacc[0] >> 47) */ 
        __m512i const acc_vec     = *xacc; 
        __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47); 
        __m512i const data_vec    = _mm512_xor_si512     (acc_vec, shifted); 
        /* xacc[0] ^= secret; */ 
        __m512i const key_vec     = _mm512_loadu_si512   (secret); 
        __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec); 
 
        /* xacc[0] *= XXH_PRIME32_1; */ 
        __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); 
        __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32); 
        __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32); 
        *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); 
    } 
} 
 
XXH_FORCE_INLINE XXH_TARGET_AVX512 void 
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) 
{ 
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); 
    XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); 
    XXH_ASSERT(((size_t)customSecret & 63) == 0); 
    (void)(&XXH_writeLE64); 
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); 
        __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64); 
 
        XXH_ALIGN(64) const __m512i* const src  = (const __m512i*) XXH3_kSecret; 
        XXH_ALIGN(64)       __m512i* const dest = (      __m512i*) customSecret; 
        int i; 
        for (i=0; i < nbRounds; ++i) { 
            /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', 
             * this will warn "discards ‘const’ qualifier". */ 
            union { 
                XXH_ALIGN(64) const __m512i* cp; 
                XXH_ALIGN(64) void* p; 
            } remote_const_void; 
            remote_const_void.cp = src + i; 
            dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); 
    }   } 
} 
 
#endif 
 
#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH) 
 
#ifndef XXH_TARGET_AVX2 
# define XXH_TARGET_AVX2  /* disable attribute target */ 
#endif 
 
XXH_FORCE_INLINE XXH_TARGET_AVX2 void 
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, 
                    const void* XXH_RESTRICT input, 
                    const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 31) == 0); 
    {   XXH_ALIGN(32) __m256i* const xacc    =       (__m256i *) acc; 
        /* Unaligned. This is mainly for pointer arithmetic, and because 
         * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */ 
        const         __m256i* const xinput  = (const __m256i *) input; 
        /* Unaligned. This is mainly for pointer arithmetic, and because 
         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ 
        const         __m256i* const xsecret = (const __m256i *) secret; 
 
        size_t i; 
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { 
            /* data_vec    = xinput[i]; */ 
            __m256i const data_vec    = _mm256_loadu_si256    (xinput+i); 
            /* key_vec     = xsecret[i]; */ 
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i); 
            /* data_key    = data_vec ^ key_vec; */ 
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec); 
            /* data_key_lo = data_key >> 32; */ 
            __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); 
            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ 
            __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo); 
            /* xacc[i] += swap(data_vec); */ 
            __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); 
            __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap); 
            /* xacc[i] += product; */ 
            xacc[i] = _mm256_add_epi64(product, sum); 
    }   } 
} 
 
XXH_FORCE_INLINE XXH_TARGET_AVX2 void 
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 31) == 0); 
    {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc; 
        /* Unaligned. This is mainly for pointer arithmetic, and because 
         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ 
        const         __m256i* const xsecret = (const __m256i *) secret; 
        const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); 
 
        size_t i; 
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { 
            /* xacc[i] ^= (xacc[i] >> 47) */ 
            __m256i const acc_vec     = xacc[i]; 
            __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47); 
            __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted); 
            /* xacc[i] ^= xsecret; */ 
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i); 
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec); 
 
            /* xacc[i] *= XXH_PRIME32_1; */ 
            __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); 
            __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32); 
            __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32); 
            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); 
        } 
    } 
} 
 
XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) 
{ 
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); 
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); 
    XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); 
    (void)(&XXH_writeLE64); 
    XXH_PREFETCH(customSecret); 
    {   __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64); 
 
        XXH_ALIGN(64) const __m256i* const src  = (const __m256i*) XXH3_kSecret; 
        XXH_ALIGN(64)       __m256i*       dest = (      __m256i*) customSecret; 
 
#       if defined(__GNUC__) || defined(__clang__) 
        /* 
         * On GCC & Clang, marking 'dest' as modified will cause the compiler: 
         *   - do not extract the secret from sse registers in the internal loop 
         *   - use less common registers, and avoid pushing these reg into stack 
         * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with 
         * customSecret, and on aarch64, this prevented LDP from merging two 
         * loads together for free. Putting the loads together before the stores 
         * properly generates LDP. 
         */ 
        __asm__("" : "+r" (dest)); 
#       endif 
 
        /* GCC -O2 need unroll loop manually */ 
        dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); 
        dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); 
        dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); 
        dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); 
        dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); 
        dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); 
    } 
} 
 
#endif 
 
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) 
 
#ifndef XXH_TARGET_SSE2 
# define XXH_TARGET_SSE2  /* disable attribute target */ 
#endif 
 
XXH_FORCE_INLINE XXH_TARGET_SSE2 void 
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, 
                    const void* XXH_RESTRICT input, 
                    const void* XXH_RESTRICT secret) 
{ 
    /* SSE2 is just a half-scale version of the AVX2 version. */ 
    XXH_ASSERT((((size_t)acc) & 15) == 0); 
    {   XXH_ALIGN(16) __m128i* const xacc    =       (__m128i *) acc; 
        /* Unaligned. This is mainly for pointer arithmetic, and because 
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ 
        const         __m128i* const xinput  = (const __m128i *) input; 
        /* Unaligned. This is mainly for pointer arithmetic, and because 
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ 
        const         __m128i* const xsecret = (const __m128i *) secret; 
 
        size_t i; 
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { 
            /* data_vec    = xinput[i]; */ 
            __m128i const data_vec    = _mm_loadu_si128   (xinput+i); 
            /* key_vec     = xsecret[i]; */ 
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i); 
            /* data_key    = data_vec ^ key_vec; */ 
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec); 
            /* data_key_lo = data_key >> 32; */ 
            __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); 
            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ 
            __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo); 
            /* xacc[i] += swap(data_vec); */ 
            __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); 
            __m128i const sum       = _mm_add_epi64(xacc[i], data_swap); 
            /* xacc[i] += product; */ 
            xacc[i] = _mm_add_epi64(product, sum); 
    }   } 
} 
 
XXH_FORCE_INLINE XXH_TARGET_SSE2 void 
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 15) == 0); 
    {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc; 
        /* Unaligned. This is mainly for pointer arithmetic, and because 
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ 
        const         __m128i* const xsecret = (const __m128i *) secret; 
        const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); 
 
        size_t i; 
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { 
            /* xacc[i] ^= (xacc[i] >> 47) */ 
            __m128i const acc_vec     = xacc[i]; 
            __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47); 
            __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted); 
            /* xacc[i] ^= xsecret[i]; */ 
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i); 
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec); 
 
            /* xacc[i] *= XXH_PRIME32_1; */ 
            __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); 
            __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32); 
            __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32); 
            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); 
        } 
    } 
} 
 
XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) 
{ 
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); 
    (void)(&XXH_writeLE64); 
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); 
 
#       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 
        // MSVC 32bit mode does not support _mm_set_epi64x before 2015 
        XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 }; 
        __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); 
#       else 
        __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64); 
#       endif 
        int i; 
 
        XXH_ALIGN(64)        const float* const src  = (float const*) XXH3_kSecret; 
        XXH_ALIGN(XXH_SEC_ALIGN) __m128i*       dest = (__m128i*) customSecret; 
#       if defined(__GNUC__) || defined(__clang__) 
        /* 
         * On GCC & Clang, marking 'dest' as modified will cause the compiler: 
         *   - do not extract the secret from sse registers in the internal loop 
         *   - use less common registers, and avoid pushing these reg into stack 
         */ 
        __asm__("" : "+r" (dest)); 
#       endif 
 
        for (i=0; i < nbRounds; ++i) { 
            dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed); 
    }   } 
} 
 
#endif 
 
#if (XXH_VECTOR == XXH_NEON) 
 
XXH_FORCE_INLINE void 
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, 
                    const void* XXH_RESTRICT input, 
                    const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 15) == 0); 
    { 
        XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc; 
        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ 
        uint8_t const* const xinput = (const uint8_t *) input; 
        uint8_t const* const xsecret  = (const uint8_t *) secret; 
 
        size_t i; 
        for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { 
            /* data_vec = xinput[i]; */ 
            uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16)); 
            /* key_vec  = xsecret[i];  */ 
            uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16)); 
            uint64x2_t data_key; 
            uint32x2_t data_key_lo, data_key_hi; 
            /* xacc[i] += swap(data_vec); */ 
            uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec); 
            uint64x2_t const swapped = vextq_u64(data64, data64, 1); 
            xacc[i] = vaddq_u64 (xacc[i], swapped); 
            /* data_key = data_vec ^ key_vec; */ 
            data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); 
            /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); 
             * data_key_hi = (uint32x2_t) (data_key >> 32); 
             * data_key = UNDEFINED; */ 
            XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); 
            /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ 
            xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); 
 
        } 
    } 
} 
 
XXH_FORCE_INLINE void 
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 15) == 0); 
 
    {   uint64x2_t* xacc       = (uint64x2_t*) acc; 
        uint8_t const* xsecret = (uint8_t const*) secret; 
        uint32x2_t prime       = vdup_n_u32 (XXH_PRIME32_1); 
 
        size_t i; 
        for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) { 
            /* xacc[i] ^= (xacc[i] >> 47); */ 
            uint64x2_t acc_vec  = xacc[i]; 
            uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47); 
            uint64x2_t data_vec = veorq_u64   (acc_vec, shifted); 
 
            /* xacc[i] ^= xsecret[i]; */ 
            uint8x16_t key_vec  = vld1q_u8(xsecret + (i * 16)); 
            uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); 
 
            /* xacc[i] *= XXH_PRIME32_1 */ 
            uint32x2_t data_key_lo, data_key_hi; 
            /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); 
             * data_key_hi = (uint32x2_t) (xacc[i] >> 32); 
             * xacc[i] = UNDEFINED; */ 
            XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); 
            {   /* 
                 * prod_hi = (data_key >> 32) * XXH_PRIME32_1; 
                 * 
                 * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will 
                 * incorrectly "optimize" this: 
                 *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b)); 
                 *   shifted = vshll_n_u32(tmp, 32); 
                 * to this: 
                 *   tmp     = "vmulq_u64"(a, b); // no such thing! 
                 *   shifted = vshlq_n_u64(tmp, 32); 
                 * 
                 * However, unlike SSE, Clang lacks a 64-bit multiply routine 
                 * for NEON, and it scalarizes two 64-bit multiplies instead. 
                 * 
                 * vmull_u32 has the same timing as vmul_u32, and it avoids 
                 * this bug completely. 
                 * See https://bugs.llvm.org/show_bug.cgi?id=39967 
                 */ 
                uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); 
                /* xacc[i] = prod_hi << 32; */ 
                xacc[i] = vshlq_n_u64(prod_hi, 32); 
                /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ 
                xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); 
            } 
    }   } 
} 
 
#endif 
 
#if (XXH_VECTOR == XXH_VSX) 
 
XXH_FORCE_INLINE void 
XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc, 
                    const void* XXH_RESTRICT input, 
                    const void* XXH_RESTRICT secret) 
{ 
          xxh_u64x2* const xacc     =       (xxh_u64x2*) acc;    /* presumed aligned */ 
    xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */ 
    xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */ 
    xxh_u64x2 const v32 = { 32, 32 }; 
    size_t i; 
    for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { 
        /* data_vec = xinput[i]; */ 
        xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); 
        /* key_vec = xsecret[i]; */ 
        xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i); 
        xxh_u64x2 const data_key = data_vec ^ key_vec; 
        /* shuffled = (data_key << 32) | (data_key >> 32); */ 
        xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); 
        /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ 
        xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); 
        xacc[i] += product; 
 
        /* swap high and low halves */ 
#ifdef __s390x__ 
        xacc[i] += vec_permi(data_vec, data_vec, 2); 
#else 
        xacc[i] += vec_xxpermdi(data_vec, data_vec, 2); 
#endif 
    } 
} 
 
XXH_FORCE_INLINE void 
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) 
{ 
    XXH_ASSERT((((size_t)acc) & 15) == 0); 
 
    {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc; 
        const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; 
        /* constants */ 
        xxh_u64x2 const v32  = { 32, 32 }; 
        xxh_u64x2 const v47 = { 47, 47 }; 
        xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; 
        size_t i; 
        for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { 
            /* xacc[i] ^= (xacc[i] >> 47); */ 
            xxh_u64x2 const acc_vec  = xacc[i]; 
            xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); 
 
            /* xacc[i] ^= xsecret[i]; */ 
            xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i); 
            xxh_u64x2 const data_key = data_vec ^ key_vec; 
 
            /* xacc[i] *= XXH_PRIME32_1 */ 
            /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */ 
            xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime); 
            /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */ 
            xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime); 
            xacc[i] = prod_odd + (prod_even << v32); 
    }   } 
} 
 
#endif 
 
/* scalar variants - universal */ 
 
XXH_FORCE_INLINE void 
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, 
                     const void* XXH_RESTRICT input, 
                     const void* XXH_RESTRICT secret) 
{ 
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ 
    const xxh_u8* const xinput  = (const xxh_u8*) input;  /* no alignment restriction */ 
    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */ 
    size_t i; 
    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); 
    for (i=0; i < XXH_ACC_NB; i++) { 
        xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); 
        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); 
        xacc[i ^ 1] += data_val; /* swap adjacent lanes */ 
        xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); 
    } 
} 
 
XXH_FORCE_INLINE void 
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) 
{ 
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */ 
    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */ 
    size_t i; 
    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); 
    for (i=0; i < XXH_ACC_NB; i++) { 
        xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); 
        xxh_u64 acc64 = xacc[i]; 
        acc64 = XXH_xorshift64(acc64, 47); 
        acc64 ^= key64; 
        acc64 *= XXH_PRIME32_1; 
        xacc[i] = acc64; 
    } 
} 
 
XXH_FORCE_INLINE void 
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) 
{ 
    /* 
     * We need a separate pointer for the hack below, 
     * which requires a non-const pointer. 
     * Any decent compiler will optimize this out otherwise. 
     */ 
    const xxh_u8* kSecretPtr = XXH3_kSecret; 
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); 
 
#if defined(__clang__) && defined(__aarch64__) 
    /* 
     * UGLY HACK: 
     * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are 
     * placed sequentially, in order, at the top of the unrolled loop. 
     * 
     * While MOVK is great for generating constants (2 cycles for a 64-bit 
     * constant compared to 4 cycles for LDR), long MOVK chains stall the 
     * integer pipelines: 
     *   I   L   S 
     * MOVK 
     * MOVK 
     * MOVK 
     * MOVK 
     * ADD 
     * SUB      STR 
     *          STR 
     * By forcing loads from memory (as the asm line causes Clang to assume 
     * that XXH3_kSecretPtr has been changed), the pipelines are used more 
     * efficiently: 
     *   I   L   S 
     *      LDR 
     *  ADD LDR 
     *  SUB     STR 
     *          STR 
     * XXH3_64bits_withSeed, len == 256, Snapdragon 835 
     *   without hack: 2654.4 MB/s 
     *   with hack:    3202.9 MB/s 
     */ 
    __asm__("" : "+r" (kSecretPtr)); 
#endif 
    /* 
     * Note: in debug mode, this overrides the asm optimization 
     * and Clang will emit MOVK chains again. 
     */ 
    XXH_ASSERT(kSecretPtr == XXH3_kSecret); 
 
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; 
        int i; 
        for (i=0; i < nbRounds; i++) { 
            /* 
             * The asm hack causes Clang to assume that kSecretPtr aliases with 
             * customSecret, and on aarch64, this prevented LDP from merging two 
             * loads together for free. Putting the loads together before the stores 
             * properly generates LDP. 
             */ 
            xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64; 
            xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; 
            XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo); 
            XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); 
    }   } 
} 
 
 
typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); 
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); 
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); 
 
 
#if (XXH_VECTOR == XXH_AVX512) 
 
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512 
#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512 
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 
 
#elif (XXH_VECTOR == XXH_AVX2) 
 
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2 
#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2 
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 
 
#elif (XXH_VECTOR == XXH_SSE2) 
 
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2 
#define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2 
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 
 
#elif (XXH_VECTOR == XXH_NEON) 
 
#define XXH3_accumulate_512 XXH3_accumulate_512_neon 
#define XXH3_scrambleAcc    XXH3_scrambleAcc_neon 
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar 
 
#elif (XXH_VECTOR == XXH_VSX) 
 
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx 
#define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx 
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar 
 
#else /* scalar */ 
 
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar 
#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar 
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar 
 
#endif 
 
 
 
#ifndef XXH_PREFETCH_DIST 
#  ifdef __clang__ 
#    define XXH_PREFETCH_DIST 320 
#  else 
#    if (XXH_VECTOR == XXH_AVX512) 
#      define XXH_PREFETCH_DIST 512 
#    else 
#      define XXH_PREFETCH_DIST 384 
#    endif 
#  endif  /* __clang__ */ 
#endif  /* XXH_PREFETCH_DIST */ 
 
/* 
 * XXH3_accumulate() 
 * Loops over XXH3_accumulate_512(). 
 * Assumption: nbStripes will not overflow the secret size 
 */ 
XXH_FORCE_INLINE void 
XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc, 
                const xxh_u8* XXH_RESTRICT input, 
                const xxh_u8* XXH_RESTRICT secret, 
                      size_t nbStripes, 
                      XXH3_f_accumulate_512 f_acc512) 
{ 
    size_t n; 
    for (n = 0; n < nbStripes; n++ ) { 
        const xxh_u8* const in = input + n*XXH_STRIPE_LEN; 
        XXH_PREFETCH(in + XXH_PREFETCH_DIST); 
        f_acc512(acc, 
                 in, 
                 secret + n*XXH_SECRET_CONSUME_RATE); 
    } 
} 
 
XXH_FORCE_INLINE void 
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, 
                      const xxh_u8* XXH_RESTRICT input, size_t len, 
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize, 
                            XXH3_f_accumulate_512 f_acc512, 
                            XXH3_f_scrambleAcc f_scramble) 
{ 
    size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; 
    size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; 
    size_t const nb_blocks = (len - 1) / block_len; 
 
    size_t n; 
 
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); 
 
    for (n = 0; n < nb_blocks; n++) { 
        XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); 
        f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); 
    } 
 
    /* last partial block */ 
    XXH_ASSERT(len > XXH_STRIPE_LEN); 
    {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; 
        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); 
        XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); 
 
        /* last stripe */ 
        {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN; 
#define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */ 
            f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); 
    }   } 
} 
 
XXH_FORCE_INLINE xxh_u64 
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) 
{ 
    return XXH3_mul128_fold64( 
               acc[0] ^ XXH_readLE64(secret), 
               acc[1] ^ XXH_readLE64(secret+8) ); 
} 
 
static XXH64_hash_t 
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) 
{ 
    xxh_u64 result64 = start; 
    size_t i = 0; 
 
    for (i = 0; i < 4; i++) { 
        result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); 
#if defined(__clang__)                                /* Clang */ \ 
    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \ 
    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \ 
    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */ 
        /* 
         * UGLY HACK: 
         * Prevent autovectorization on Clang ARMv7-a. Exact same problem as 
         * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. 
         * XXH3_64bits, len == 256, Snapdragon 835: 
         *   without hack: 2063.7 MB/s 
         *   with hack:    2560.7 MB/s 
         */ 
        __asm__("" : "+r" (result64)); 
#endif 
    } 
 
    return XXH3_avalanche(result64); 
} 
 
#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ 
                        XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } 
 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, 
                           const void* XXH_RESTRICT secret, size_t secretSize, 
                           XXH3_f_accumulate_512 f_acc512, 
                           XXH3_f_scrambleAcc f_scramble) 
{ 
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; 
 
    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); 
 
    /* converge into final hash */ 
    XXH_STATIC_ASSERT(sizeof(acc) == 64); 
    /* do not align on 8, so that the secret is different from the accumulator */ 
#define XXH_SECRET_MERGEACCS_START 11 
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); 
    return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); 
} 
 
/* 
 * It's important for performance that XXH3_hashLong is not inlined. 
 */ 
XXH_NO_INLINE XXH64_hash_t 
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, 
                             XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) 
{ 
    (void)seed64; 
    return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); 
} 
 
/* 
 * It's important for performance that XXH3_hashLong is not inlined. 
 * Since the function is not inlined, the compiler may not be able to understand that, 
 * in some scenarios, its `secret` argument is actually a compile time constant. 
 * This variant enforces that the compiler can detect that, 
 * and uses this opportunity to streamline the generated code for better performance. 
 */ 
XXH_NO_INLINE XXH64_hash_t 
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, 
                          XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) 
{ 
    (void)seed64; (void)secret; (void)secretLen; 
    return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); 
} 
 
/* 
 * XXH3_hashLong_64b_withSeed(): 
 * Generate a custom key based on alteration of default XXH3_kSecret with the seed, 
 * and then use this key for long mode hashing. 
 * 
 * This operation is decently fast but nonetheless costs a little bit of time. 
 * Try to avoid it whenever possible (typically when seed==0). 
 * 
 * It's important for performance that XXH3_hashLong is not inlined. Not sure 
 * why (uop cache maybe?), but the difference is large and easily measurable. 
 */ 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, 
                                    XXH64_hash_t seed, 
                                    XXH3_f_accumulate_512 f_acc512, 
                                    XXH3_f_scrambleAcc f_scramble, 
                                    XXH3_f_initCustomSecret f_initSec) 
{ 
    if (seed == 0) 
        return XXH3_hashLong_64b_internal(input, len, 
                                          XXH3_kSecret, sizeof(XXH3_kSecret), 
                                          f_acc512, f_scramble); 
    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; 
        f_initSec(secret, seed); 
        return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), 
                                          f_acc512, f_scramble); 
    } 
} 
 
/* 
 * It's important for performance that XXH3_hashLong is not inlined. 
 */ 
XXH_NO_INLINE XXH64_hash_t 
XXH3_hashLong_64b_withSeed(const void* input, size_t len, 
                           XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) 
{ 
    (void)secret; (void)secretLen; 
    return XXH3_hashLong_64b_withSeed_internal(input, len, seed, 
                XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); 
} 
 
 
typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, 
                                          XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); 
 
XXH_FORCE_INLINE XXH64_hash_t 
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, 
                     XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, 
                     XXH3_hashLong64_f f_hashLong) 
{ 
    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); 
    /* 
     * If an action is to be taken if `secretLen` condition is not respected, 
     * it should be done here. 
     * For now, it's a contract pre-condition. 
     * Adding a check and a branch here would cost performance at every hash. 
     * Also, note that function signature doesn't offer room to return an error. 
     */ 
    if (len <= 16) 
        return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); 
    if (len <= 128) 
        return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); 
    if (len <= XXH3_MIDSIZE_MAX) 
        return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); 
    return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); 
} 
 
 
/* ===   Public entry point   === */ 
 
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) 
{ 
    return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); 
} 
 
XXH_PUBLIC_API XXH64_hash_t 
XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) 
{ 
    return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); 
} 
 
XXH_PUBLIC_API XXH64_hash_t 
XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) 
{ 
    return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); 
} 
 
 
/* ===   XXH3 streaming   === */ 
 
/* 
 * Malloc's a pointer that is always aligned to align. 
 * 
 * This must be freed with `XXH_alignedFree()`. 
 * 
 * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte 
 * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 
 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. 
 * 
 * This underalignment previously caused a rather obvious crash which went 
 * completely unnoticed due to XXH3_createState() not actually being tested. 
 * Credit to RedSpah for noticing this bug. 
 * 
 * The alignment is done manually: Functions like posix_memalign or _mm_malloc 
 * are avoided: To maintain portability, we would have to write a fallback 
 * like this anyways, and besides, testing for the existence of library 
 * functions without relying on external build tools is impossible. 
 * 
 * The method is simple: Overallocate, manually align, and store the offset 
 * to the original behind the returned pointer. 
 * 
 * Align must be a power of 2 and 8 <= align <= 128. 
 */ 
static void* XXH_alignedMalloc(size_t s, size_t align) 
{ 
    XXH_ASSERT(align <= 128 && align >= 8); /* range check */ 
    XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */ 
    XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */ 
    {   /* Overallocate to make room for manual realignment and an offset byte */ 
        xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); 
        if (base != NULL) { 
            /* 
             * Get the offset needed to align this pointer. 
             * 
             * Even if the returned pointer is aligned, there will always be 
             * at least one byte to store the offset to the original pointer. 
             */ 
            size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ 
            /* Add the offset for the now-aligned pointer */ 
            xxh_u8* ptr = base + offset; 
 
            XXH_ASSERT((size_t)ptr % align == 0); 
 
            /* Store the offset immediately before the returned pointer. */ 
            ptr[-1] = (xxh_u8)offset; 
            return ptr; 
        } 
        return NULL; 
    } 
} 
/* 
 * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass 
 * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. 
 */ 
static void XXH_alignedFree(void* p) 
{ 
    if (p != NULL) { 
        xxh_u8* ptr = (xxh_u8*)p; 
        /* Get the offset byte we added in XXH_malloc. */ 
        xxh_u8 offset = ptr[-1]; 
        /* Free the original malloc'd pointer */ 
        xxh_u8* base = ptr - offset; 
        XXH_free(base); 
    } 
} 
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) 
{ 
    XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); 
    if (state==NULL) return NULL; 
    XXH3_INITSTATE(state); 
    return state; 
} 
 
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) 
{ 
    XXH_alignedFree(statePtr); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API void 
XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) 
{ 
    memcpy(dst_state, src_state, sizeof(*dst_state)); 
} 
 
static void 
XXH3_64bits_reset_internal(XXH3_state_t* statePtr, 
                           XXH64_hash_t seed, 
                           const void* secret, size_t secretSize) 
{ 
    size_t const initStart = offsetof(XXH3_state_t, bufferedSize); 
    size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; 
    XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); 
    XXH_ASSERT(statePtr != NULL); 
    /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ 
    memset((char*)statePtr + initStart, 0, initLength); 
    statePtr->acc[0] = XXH_PRIME32_3; 
    statePtr->acc[1] = XXH_PRIME64_1; 
    statePtr->acc[2] = XXH_PRIME64_2; 
    statePtr->acc[3] = XXH_PRIME64_3; 
    statePtr->acc[4] = XXH_PRIME64_4; 
    statePtr->acc[5] = XXH_PRIME32_2; 
    statePtr->acc[6] = XXH_PRIME64_5; 
    statePtr->acc[7] = XXH_PRIME32_1; 
    statePtr->seed = seed; 
    statePtr->extSecret = (const unsigned char*)secret; 
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); 
    statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; 
    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_64bits_reset(XXH3_state_t* statePtr) 
{ 
    if (statePtr == NULL) return XXH_ERROR; 
    XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) 
{ 
    if (statePtr == NULL) return XXH_ERROR; 
    XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize); 
    if (secret == NULL) return XXH_ERROR; 
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) 
{ 
    if (statePtr == NULL) return XXH_ERROR; 
    if (seed==0) return XXH3_64bits_reset(statePtr); 
    if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed); 
    XXH3_64bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); 
    return XXH_OK; 
} 
 
/* Note : when XXH3_consumeStripes() is invoked, 
 * there must be a guarantee that at least one more byte must be consumed from input 
 * so that the function can blindly consume all stripes using the "normal" secret segment */ 
XXH_FORCE_INLINE void 
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, 
                    size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, 
                    const xxh_u8* XXH_RESTRICT input, size_t nbStripes, 
                    const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, 
                    XXH3_f_accumulate_512 f_acc512, 
                    XXH3_f_scrambleAcc f_scramble) 
{ 
    XXH_ASSERT(nbStripes <= nbStripesPerBlock);  /* can handle max 1 scramble per invocation */ 
    XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); 
    if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { 
        /* need a scrambling operation */ 
        size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; 
        size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; 
        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); 
        f_scramble(acc, secret + secretLimit); 
        XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); 
        *nbStripesSoFarPtr = nbStripesAfterBlock; 
    } else { 
        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); 
        *nbStripesSoFarPtr += nbStripes; 
    } 
} 
 
/* 
 * Both XXH3_64bits_update and XXH3_128bits_update use this routine. 
 */ 
XXH_FORCE_INLINE XXH_errorcode 
XXH3_update(XXH3_state_t* state, 
            const xxh_u8* input, size_t len, 
            XXH3_f_accumulate_512 f_acc512, 
            XXH3_f_scrambleAcc f_scramble) 
{ 
    if (input==NULL) 
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) 
        return XXH_OK; 
#else 
        return XXH_ERROR; 
#endif 
 
    {   const xxh_u8* const bEnd = input + len; 
        const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; 
 
        state->totalLen += len; 
 
        if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */ 
            XXH_memcpy(state->buffer + state->bufferedSize, input, len); 
            state->bufferedSize += (XXH32_hash_t)len; 
            return XXH_OK; 
        } 
        /* total input is now > XXH3_INTERNALBUFFER_SIZE */ 
 
        #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) 
        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */ 
 
        /* 
         * Internal buffer is partially filled (always, except at beginning) 
         * Complete it, then consume it. 
         */ 
        if (state->bufferedSize) { 
            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; 
            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); 
            input += loadSize; 
            XXH3_consumeStripes(state->acc, 
                               &state->nbStripesSoFar, state->nbStripesPerBlock, 
                                state->buffer, XXH3_INTERNALBUFFER_STRIPES, 
                                secret, state->secretLimit, 
                                f_acc512, f_scramble); 
            state->bufferedSize = 0; 
        } 
        XXH_ASSERT(input < bEnd); 
 
        /* Consume input by a multiple of internal buffer size */ 
        if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) { 
            const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; 
            do { 
                XXH3_consumeStripes(state->acc, 
                                   &state->nbStripesSoFar, state->nbStripesPerBlock, 
                                    input, XXH3_INTERNALBUFFER_STRIPES, 
                                    secret, state->secretLimit, 
                                    f_acc512, f_scramble); 
                input += XXH3_INTERNALBUFFER_SIZE; 
            } while (input<limit); 
            /* for last partial stripe */ 
            memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); 
        } 
        XXH_ASSERT(input < bEnd); 
 
        /* Some remaining input (always) : buffer it */ 
        XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); 
        state->bufferedSize = (XXH32_hash_t)(bEnd-input); 
    } 
 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) 
{ 
    return XXH3_update(state, (const xxh_u8*)input, len, 
                       XXH3_accumulate_512, XXH3_scrambleAcc); 
} 
 
 
XXH_FORCE_INLINE void 
XXH3_digest_long (XXH64_hash_t* acc, 
                  const XXH3_state_t* state, 
                  const unsigned char* secret) 
{ 
    /* 
     * Digest on a local copy. This way, the state remains unaltered, and it can 
     * continue ingesting more input afterwards. 
     */ 
    memcpy(acc, state->acc, sizeof(state->acc)); 
    if (state->bufferedSize >= XXH_STRIPE_LEN) { 
        size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; 
        size_t nbStripesSoFar = state->nbStripesSoFar; 
        XXH3_consumeStripes(acc, 
                           &nbStripesSoFar, state->nbStripesPerBlock, 
                            state->buffer, nbStripes, 
                            secret, state->secretLimit, 
                            XXH3_accumulate_512, XXH3_scrambleAcc); 
        /* last stripe */ 
        XXH3_accumulate_512(acc, 
                            state->buffer + state->bufferedSize - XXH_STRIPE_LEN, 
                            secret + state->secretLimit - XXH_SECRET_LASTACC_START); 
    } else {  /* bufferedSize < XXH_STRIPE_LEN */ 
        xxh_u8 lastStripe[XXH_STRIPE_LEN]; 
        size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; 
        XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */ 
        memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); 
        memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); 
        XXH3_accumulate_512(acc, 
                            lastStripe, 
                            secret + state->secretLimit - XXH_SECRET_LASTACC_START); 
    } 
} 
 
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) 
{ 
    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; 
    if (state->totalLen > XXH3_MIDSIZE_MAX) { 
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; 
        XXH3_digest_long(acc, state, secret); 
        return XXH3_mergeAccs(acc, 
                              secret + XXH_SECRET_MERGEACCS_START, 
                              (xxh_u64)state->totalLen * XXH_PRIME64_1); 
    } 
    /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ 
    if (state->seed) 
        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); 
    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), 
                                  secret, state->secretLimit + XXH_STRIPE_LEN); 
} 
 
 
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) 
 
XXH_PUBLIC_API void 
XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize) 
{ 
    XXH_ASSERT(secretBuffer != NULL); 
    if (customSeedSize == 0) { 
        memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); 
        return; 
    } 
    XXH_ASSERT(customSeed != NULL); 
 
    {   size_t const segmentSize = sizeof(XXH128_hash_t); 
        size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize; 
        XXH128_canonical_t scrambler; 
        XXH64_hash_t seeds[12]; 
        size_t segnb; 
        XXH_ASSERT(nbSegments == 12); 
        XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */ 
        XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); 
 
        /* 
        * Copy customSeed to seeds[], truncating or repeating as necessary. 
        */ 
        {   size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds)); 
            size_t filled = toFill; 
            memcpy(seeds, customSeed, toFill); 
            while (filled < sizeof(seeds)) { 
                toFill = XXH_MIN(filled, sizeof(seeds) - filled); 
                memcpy((char*)seeds + filled, seeds, toFill); 
                filled += toFill; 
        }   } 
 
        /* generate secret */ 
        memcpy(secretBuffer, &scrambler, sizeof(scrambler)); 
        for (segnb=1; segnb < nbSegments; segnb++) { 
            size_t const segmentStart = segnb * segmentSize; 
            XXH128_canonical_t segment; 
            XXH128_canonicalFromHash(&segment, 
                XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) ); 
            memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment)); 
    }   } 
} 
 
 
/* ========================================== 
 * XXH3 128 bits (a.k.a XXH128) 
 * ========================================== 
 * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, 
 * even without counting the significantly larger output size. 
 * 
 * For example, extra steps are taken to avoid the seed-dependent collisions 
 * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). 
 * 
 * This strength naturally comes at the cost of some speed, especially on short 
 * lengths. Note that longer hashes are about as fast as the 64-bit version 
 * due to it using only a slight modification of the 64-bit loop. 
 * 
 * XXH128 is also more oriented towards 64-bit machines. It is still extremely 
 * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). 
 */ 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    /* A doubled version of 1to3_64b with different constants. */ 
    XXH_ASSERT(input != NULL); 
    XXH_ASSERT(1 <= len && len <= 3); 
    XXH_ASSERT(secret != NULL); 
    /* 
     * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } 
     * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } 
     * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } 
     */ 
    {   xxh_u8 const c1 = input[0]; 
        xxh_u8 const c2 = input[len >> 1]; 
        xxh_u8 const c3 = input[len - 1]; 
        xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) 
                                | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); 
        xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); 
        xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; 
        xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; 
        xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; 
        xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; 
        XXH128_hash_t h128; 
        h128.low64  = XXH64_avalanche(keyed_lo); 
        h128.high64 = XXH64_avalanche(keyed_hi); 
        return h128; 
    } 
} 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(input != NULL); 
    XXH_ASSERT(secret != NULL); 
    XXH_ASSERT(4 <= len && len <= 8); 
    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; 
    {   xxh_u32 const input_lo = XXH_readLE32(input); 
        xxh_u32 const input_hi = XXH_readLE32(input + len - 4); 
        xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); 
        xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; 
        xxh_u64 const keyed = input_64 ^ bitflip; 
 
        /* Shift len to the left to ensure it is even, this avoids even multiplies. */ 
        XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); 
 
        m128.high64 += (m128.low64 << 1); 
        m128.low64  ^= (m128.high64 >> 3); 
 
        m128.low64   = XXH_xorshift64(m128.low64, 35); 
        m128.low64  *= 0x9FB21C651E98DF25ULL; 
        m128.low64   = XXH_xorshift64(m128.low64, 28); 
        m128.high64  = XXH3_avalanche(m128.high64); 
        return m128; 
    } 
} 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(input != NULL); 
    XXH_ASSERT(secret != NULL); 
    XXH_ASSERT(9 <= len && len <= 16); 
    {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; 
        xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; 
        xxh_u64 const input_lo = XXH_readLE64(input); 
        xxh_u64       input_hi = XXH_readLE64(input + len - 8); 
        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); 
        /* 
         * Put len in the middle of m128 to ensure that the length gets mixed to 
         * both the low and high bits in the 128x64 multiply below. 
         */ 
        m128.low64 += (xxh_u64)(len - 1) << 54; 
        input_hi   ^= bitfliph; 
        /* 
         * Add the high 32 bits of input_hi to the high 32 bits of m128, then 
         * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to 
         * the high 64 bits of m128. 
         * 
         * The best approach to this operation is different on 32-bit and 64-bit. 
         */ 
        if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ 
            /* 
             * 32-bit optimized version, which is more readable. 
             * 
             * On 32-bit, it removes an ADC and delays a dependency between the two 
             * halves of m128.high64, but it generates an extra mask on 64-bit. 
             */ 
            m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); 
        } else { 
            /* 
             * 64-bit optimized (albeit more confusing) version. 
             * 
             * Uses some properties of addition and multiplication to remove the mask: 
             * 
             * Let: 
             *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) 
             *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) 
             *    c = XXH_PRIME32_2 
             * 
             *    a + (b * c) 
             * Inverse Property: x + y - x == y 
             *    a + (b * (1 + c - 1)) 
             * Distributive Property: x * (y + z) == (x * y) + (x * z) 
             *    a + (b * 1) + (b * (c - 1)) 
             * Identity Property: x * 1 == x 
             *    a + b + (b * (c - 1)) 
             * 
             * Substitute a, b, and c: 
             *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) 
             * 
             * Since input_hi.hi + input_hi.lo == input_hi, we get this: 
             *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) 
             */ 
            m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); 
        } 
        /* m128 ^= XXH_swap64(m128 >> 64); */ 
        m128.low64  ^= XXH_swap64(m128.high64); 
 
        {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ 
            XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); 
            h128.high64 += m128.high64 * XXH_PRIME64_2; 
 
            h128.low64   = XXH3_avalanche(h128.low64); 
            h128.high64  = XXH3_avalanche(h128.high64); 
            return h128; 
    }   } 
} 
 
/* 
 * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN 
 */ 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    XXH_ASSERT(len <= 16); 
    {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); 
        if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); 
        if (len) return XXH3_len_1to3_128b(input, len, secret, seed); 
        {   XXH128_hash_t h128; 
            xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); 
            xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); 
            h128.low64 = XXH64_avalanche(seed ^ bitflipl); 
            h128.high64 = XXH64_avalanche( seed ^ bitfliph); 
            return h128; 
    }   } 
} 
 
/* 
 * A bit slower than XXH3_mix16B, but handles multiply by zero better. 
 */ 
XXH_FORCE_INLINE XXH128_hash_t 
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, 
              const xxh_u8* secret, XXH64_hash_t seed) 
{ 
    acc.low64  += XXH3_mix16B (input_1, secret+0, seed); 
    acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); 
    acc.high64 += XXH3_mix16B (input_2, secret+16, seed); 
    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); 
    return acc; 
} 
 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, 
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize, 
                      XXH64_hash_t seed) 
{ 
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; 
    XXH_ASSERT(16 < len && len <= 128); 
 
    {   XXH128_hash_t acc; 
        acc.low64 = len * XXH_PRIME64_1; 
        acc.high64 = 0; 
        if (len > 32) { 
            if (len > 64) { 
                if (len > 96) { 
                    acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); 
                } 
                acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); 
            } 
            acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); 
        } 
        acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); 
        {   XXH128_hash_t h128; 
            h128.low64  = acc.low64 + acc.high64; 
            h128.high64 = (acc.low64    * XXH_PRIME64_1) 
                        + (acc.high64   * XXH_PRIME64_4) 
                        + ((len - seed) * XXH_PRIME64_2); 
            h128.low64  = XXH3_avalanche(h128.low64); 
            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); 
            return h128; 
        } 
    } 
} 
 
XXH_NO_INLINE XXH128_hash_t 
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, 
                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize, 
                       XXH64_hash_t seed) 
{ 
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; 
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); 
 
    {   XXH128_hash_t acc; 
        int const nbRounds = (int)len / 32; 
        int i; 
        acc.low64 = len * XXH_PRIME64_1; 
        acc.high64 = 0; 
        for (i=0; i<4; i++) { 
            acc = XXH128_mix32B(acc, 
                                input  + (32 * i), 
                                input  + (32 * i) + 16, 
                                secret + (32 * i), 
                                seed); 
        } 
        acc.low64 = XXH3_avalanche(acc.low64); 
        acc.high64 = XXH3_avalanche(acc.high64); 
        XXH_ASSERT(nbRounds >= 4); 
        for (i=4 ; i < nbRounds; i++) { 
            acc = XXH128_mix32B(acc, 
                                input + (32 * i), 
                                input + (32 * i) + 16, 
                                secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), 
                                seed); 
        } 
        /* last bytes */ 
        acc = XXH128_mix32B(acc, 
                            input + len - 16, 
                            input + len - 32, 
                            secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 
                            0ULL - seed); 
 
        {   XXH128_hash_t h128; 
            h128.low64  = acc.low64 + acc.high64; 
            h128.high64 = (acc.low64    * XXH_PRIME64_1) 
                        + (acc.high64   * XXH_PRIME64_4) 
                        + ((len - seed) * XXH_PRIME64_2); 
            h128.low64  = XXH3_avalanche(h128.low64); 
            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); 
            return h128; 
        } 
    } 
} 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, 
                            const xxh_u8* XXH_RESTRICT secret, size_t secretSize, 
                            XXH3_f_accumulate_512 f_acc512, 
                            XXH3_f_scrambleAcc f_scramble) 
{ 
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; 
 
    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); 
 
    /* converge into final hash */ 
    XXH_STATIC_ASSERT(sizeof(acc) == 64); 
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); 
    {   XXH128_hash_t h128; 
        h128.low64  = XXH3_mergeAccs(acc, 
                                     secret + XXH_SECRET_MERGEACCS_START, 
                                     (xxh_u64)len * XXH_PRIME64_1); 
        h128.high64 = XXH3_mergeAccs(acc, 
                                     secret + secretSize 
                                            - sizeof(acc) - XXH_SECRET_MERGEACCS_START, 
                                     ~((xxh_u64)len * XXH_PRIME64_2)); 
        return h128; 
    } 
} 
 
/* 
 * It's important for performance that XXH3_hashLong is not inlined. 
 */ 
XXH_NO_INLINE XXH128_hash_t 
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, 
                           XXH64_hash_t seed64, 
                           const void* XXH_RESTRICT secret, size_t secretLen) 
{ 
    (void)seed64; (void)secret; (void)secretLen; 
    return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), 
                                       XXH3_accumulate_512, XXH3_scrambleAcc); 
} 
 
/* 
 * It's important for performance that XXH3_hashLong is not inlined. 
 */ 
XXH_NO_INLINE XXH128_hash_t 
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, 
                              XXH64_hash_t seed64, 
                              const void* XXH_RESTRICT secret, size_t secretLen) 
{ 
    (void)seed64; 
    return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, 
                                       XXH3_accumulate_512, XXH3_scrambleAcc); 
} 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, 
                                XXH64_hash_t seed64, 
                                XXH3_f_accumulate_512 f_acc512, 
                                XXH3_f_scrambleAcc f_scramble, 
                                XXH3_f_initCustomSecret f_initSec) 
{ 
    if (seed64 == 0) 
        return XXH3_hashLong_128b_internal(input, len, 
                                           XXH3_kSecret, sizeof(XXH3_kSecret), 
                                           f_acc512, f_scramble); 
    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; 
        f_initSec(secret, seed64); 
        return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), 
                                           f_acc512, f_scramble); 
    } 
} 
 
/* 
 * It's important for performance that XXH3_hashLong is not inlined. 
 */ 
XXH_NO_INLINE XXH128_hash_t 
XXH3_hashLong_128b_withSeed(const void* input, size_t len, 
                            XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) 
{ 
    (void)secret; (void)secretLen; 
    return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, 
                XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); 
} 
 
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, 
                                            XXH64_hash_t, const void* XXH_RESTRICT, size_t); 
 
XXH_FORCE_INLINE XXH128_hash_t 
XXH3_128bits_internal(const void* input, size_t len, 
                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, 
                      XXH3_hashLong128_f f_hl128) 
{ 
    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); 
    /* 
     * If an action is to be taken if `secret` conditions are not respected, 
     * it should be done here. 
     * For now, it's a contract pre-condition. 
     * Adding a check and a branch here would cost performance at every hash. 
     */ 
    if (len <= 16) 
        return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); 
    if (len <= 128) 
        return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); 
    if (len <= XXH3_MIDSIZE_MAX) 
        return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); 
    return f_hl128(input, len, seed64, secret, secretLen); 
} 
 
 
/* ===   Public XXH128 API   === */ 
 
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) 
{ 
    return XXH3_128bits_internal(input, len, 0, 
                                 XXH3_kSecret, sizeof(XXH3_kSecret), 
                                 XXH3_hashLong_128b_default); 
} 
 
XXH_PUBLIC_API XXH128_hash_t 
XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) 
{ 
    return XXH3_128bits_internal(input, len, 0, 
                                 (const xxh_u8*)secret, secretSize, 
                                 XXH3_hashLong_128b_withSecret); 
} 
 
XXH_PUBLIC_API XXH128_hash_t 
XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) 
{ 
    return XXH3_128bits_internal(input, len, seed, 
                                 XXH3_kSecret, sizeof(XXH3_kSecret), 
                                 XXH3_hashLong_128b_withSeed); 
} 
 
XXH_PUBLIC_API XXH128_hash_t 
XXH128(const void* input, size_t len, XXH64_hash_t seed) 
{ 
    return XXH3_128bits_withSeed(input, len, seed); 
} 
 
 
/* ===   XXH3 128-bit streaming   === */ 
 
/* 
 * All the functions are actually the same as for 64-bit streaming variant. 
 * The only difference is the finalizatiom routine. 
 */ 
 
static void 
XXH3_128bits_reset_internal(XXH3_state_t* statePtr, 
                            XXH64_hash_t seed, 
                            const void* secret, size_t secretSize) 
{ 
    XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_128bits_reset(XXH3_state_t* statePtr) 
{ 
    if (statePtr == NULL) return XXH_ERROR; 
    XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) 
{ 
    if (statePtr == NULL) return XXH_ERROR; 
    XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize); 
    if (secret == NULL) return XXH_ERROR; 
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) 
{ 
    if (statePtr == NULL) return XXH_ERROR; 
    if (seed==0) return XXH3_128bits_reset(statePtr); 
    if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed); 
    XXH3_128bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); 
    return XXH_OK; 
} 
 
XXH_PUBLIC_API XXH_errorcode 
XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) 
{ 
    return XXH3_update(state, (const xxh_u8*)input, len, 
                       XXH3_accumulate_512, XXH3_scrambleAcc); 
} 
 
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) 
{ 
    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; 
    if (state->totalLen > XXH3_MIDSIZE_MAX) { 
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; 
        XXH3_digest_long(acc, state, secret); 
        XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); 
        {   XXH128_hash_t h128; 
            h128.low64  = XXH3_mergeAccs(acc, 
                                         secret + XXH_SECRET_MERGEACCS_START, 
                                         (xxh_u64)state->totalLen * XXH_PRIME64_1); 
            h128.high64 = XXH3_mergeAccs(acc, 
                                         secret + state->secretLimit + XXH_STRIPE_LEN 
                                                - sizeof(acc) - XXH_SECRET_MERGEACCS_START, 
                                         ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); 
            return h128; 
        } 
    } 
    /* len <= XXH3_MIDSIZE_MAX : short code */ 
    if (state->seed) 
        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); 
    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), 
                                   secret, state->secretLimit + XXH_STRIPE_LEN); 
} 
 
/* 128-bit utility functions */ 
 
#include <string.h>   /* memcmp, memcpy */ 
 
/* return : 1 is equal, 0 if different */ 
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) 
{ 
    /* note : XXH128_hash_t is compact, it has no padding byte */ 
    return !(memcmp(&h1, &h2, sizeof(h1))); 
} 
 
/* This prototype is compatible with stdlib's qsort(). 
 * return : >0 if *h128_1  > *h128_2 
 *          <0 if *h128_1  < *h128_2 
 *          =0 if *h128_1 == *h128_2  */ 
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) 
{ 
    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; 
    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; 
    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); 
    /* note : bets that, in most cases, hash values are different */ 
    if (hcmp) return hcmp; 
    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); 
} 
 
 
/*======   Canonical representation   ======*/ 
XXH_PUBLIC_API void 
XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) 
{ 
    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); 
    if (XXH_CPU_LITTLE_ENDIAN) { 
        hash.high64 = XXH_swap64(hash.high64); 
        hash.low64  = XXH_swap64(hash.low64); 
    } 
    memcpy(dst, &hash.high64, sizeof(hash.high64)); 
    memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); 
} 
 
XXH_PUBLIC_API XXH128_hash_t 
XXH128_hashFromCanonical(const XXH128_canonical_t* src) 
{ 
    XXH128_hash_t h; 
    h.high64 = XXH_readBE64(src); 
    h.low64  = XXH_readBE64(src->digest + 8); 
    return h; 
} 
 
/* Pop our optimization override from above */ 
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ 
  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ 
  && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ 
#  pragma GCC pop_options 
#endif 
 
#endif  /* XXH_NO_LONG_LONG */ 
 
 
#endif  /* XXH_IMPLEMENTATION */ 
 
 
#if defined (__cplusplus) 
} 
#endif