aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/tcmalloc/tcmalloc/internal/util.cc
blob: 122ce8c5bf44f1fac760ed98e8cfcd18fe665804 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright 2019 The TCMalloc Authors 
// 
// Licensed under the Apache License, Version 2.0 (the "License"); 
// you may not use this file except in compliance with the License. 
// You may obtain a copy of the License at 
// 
//     https://www.apache.org/licenses/LICENSE-2.0 
// 
// Unless required by applicable law or agreed to in writing, software 
// distributed under the License is distributed on an "AS IS" BASIS, 
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
// See the License for the specific language governing permissions and 
// limitations under the License. 
#include "tcmalloc/internal/util.h" 
 
#include <errno.h> 
#include <fcntl.h> 
#include <poll.h> 
#include <signal.h> 
#include <stdarg.h> 
#include <string.h> 
#include <unistd.h> 
 
#include <utility> 
 
#include "absl/time/clock.h" 
#include "absl/time/time.h" 
#include "tcmalloc/internal/logging.h" 
 
GOOGLE_MALLOC_SECTION_BEGIN
namespace tcmalloc { 
namespace tcmalloc_internal { 
 
int signal_safe_open(const char* path, int flags, ...) { 
  int fd; 
  va_list ap; 
 
  va_start(ap, flags); 
  mode_t mode = va_arg(ap, mode_t); 
  va_end(ap); 
 
  do { 
    fd = ((flags & O_CREAT) ? open(path, flags, mode) : open(path, flags)); 
  } while (fd == -1 && errno == EINTR); 
 
  return fd; 
} 
 
int signal_safe_close(int fd) { 
  int rc; 
 
  do { 
    rc = close(fd); 
  } while (rc == -1 && errno == EINTR); 
 
  return rc; 
} 
 
ssize_t signal_safe_write(int fd, const char* buf, size_t count, 
                          size_t* bytes_written) { 
  ssize_t rc; 
  size_t total_bytes = 0; 
 
  do { 
    rc = write(fd, buf + total_bytes, count - total_bytes); 
    if (rc > 0) total_bytes += rc; 
  } while ((rc > 0 && count > total_bytes) || (rc == -1 && errno == EINTR)); 
 
  if (bytes_written != nullptr) *bytes_written = total_bytes; 
 
  return rc; 
} 
 
int signal_safe_poll(struct pollfd* fds, int nfds, absl::Duration timeout) { 
  int rc = 0; 
  absl::Duration elapsed = absl::ZeroDuration(); 
 
  // We can't use gettimeofday since it's not async signal safe.  We could use 
  // clock_gettime but that would require linking //base against librt. 
  // Fortunately, timeout is of sufficiently coarse granularity that we can just 
  // approximate it. 
  while ((elapsed <= timeout || timeout < absl::ZeroDuration()) && (rc == 0)) { 
    if (elapsed > absl::ZeroDuration()) 
      ::absl::SleepFor(::absl::Milliseconds(1)); 
    elapsed += absl::Milliseconds(1); 
    while ((rc = poll(fds, nfds, 0)) == -1 && errno == EINTR) { 
    } 
  } 
 
  return rc; 
} 
 
ssize_t signal_safe_read(int fd, char* buf, size_t count, size_t* bytes_read) { 
  ssize_t rc; 
  size_t total_bytes = 0; 
  struct pollfd pfd; 
 
  // poll is required for testing whether there is any data left on fd in the 
  // case of a signal interrupting a partial read.  This is needed since this 
  // case is only defined to return the number of bytes read up to that point, 
  // with no indication whether more could have been read (up to count). 
  pfd.fd = fd; 
  pfd.events = POLL_IN; 
  pfd.revents = 0; 
 
  do { 
    rc = read(fd, buf + total_bytes, count - total_bytes); 
    if (rc > 0) total_bytes += rc; 
 
    if (rc == 0) break;  // EOF 
    // try again if there's space to fill, no (non-interrupt) error, 
    // and data is available. 
  } while (total_bytes < count && (rc > 0 || errno == EINTR) && 
           (signal_safe_poll(&pfd, 1, absl::ZeroDuration()) == 1 || 
            total_bytes == 0)); 
 
  if (bytes_read) *bytes_read = total_bytes; 
 
  if (rc != -1 || errno == EINTR) 
    rc = total_bytes;  // return the cumulative bytes read 
  return rc; 
} 
 
std::vector<int> AllowedCpus() { 
  // We have no need for dynamically sized sets (currently >1024 CPUs for glibc) 
  // at the present time.  We could change this in the future. 
  cpu_set_t allowed_cpus; 
  CHECK_CONDITION(sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus) == 
                  0); 
  int n = CPU_COUNT(&allowed_cpus), c = 0; 
 
  std::vector<int> result(n); 
  for (int i = 0; i < CPU_SETSIZE && n; i++) { 
    if (CPU_ISSET(i, &allowed_cpus)) { 
      result[c++] = i; 
      n--; 
    } 
  } 
  CHECK_CONDITION(0 == n); 
 
  return result; 
} 
 
static cpu_set_t SpanToCpuSetT(absl::Span<int> mask) { 
  cpu_set_t result; 
  CPU_ZERO(&result); 
  for (int cpu : mask) { 
    CPU_SET(cpu, &result); 
  } 
  return result; 
} 
 
ScopedAffinityMask::ScopedAffinityMask(absl::Span<int> allowed_cpus) { 
  specified_cpus_ = SpanToCpuSetT(allowed_cpus); 
  // getaffinity should never fail. 
  CHECK_CONDITION( 
      sched_getaffinity(0, sizeof(original_cpus_), &original_cpus_) == 0); 
  // See destructor comments on setaffinity interactions.  Tampered() will 
  // necessarily be true in this case. 
  sched_setaffinity(0, sizeof(specified_cpus_), &specified_cpus_); 
} 
 
ScopedAffinityMask::ScopedAffinityMask(int allowed_cpu) { 
  CPU_ZERO(&specified_cpus_); 
  CPU_SET(allowed_cpu, &specified_cpus_); 
 
  // getaffinity should never fail. 
  CHECK_CONDITION( 
      sched_getaffinity(0, sizeof(original_cpus_), &original_cpus_) == 0); 
  // See destructor comments on setaffinity interactions.  Tampered() will 
  // necessarily be true in this case. 
  sched_setaffinity(0, sizeof(specified_cpus_), &specified_cpus_); 
} 
 
ScopedAffinityMask::~ScopedAffinityMask() { 
  // If something else has already reset our affinity, do not attempt to 
  // restrict towards our original mask.  This is best-effort as the tampering 
  // may obviously occur during the destruction of *this. 
  if (!Tampered()) { 
    // Note:  We do not assert success here, conflicts may restrict us from all 
    // 'original_cpus_'. 
    sched_setaffinity(0, sizeof(original_cpus_), &original_cpus_); 
  } 
} 
 
bool ScopedAffinityMask::Tampered() { 
  cpu_set_t current_cpus; 
  CHECK_CONDITION(sched_getaffinity(0, sizeof(current_cpus), &current_cpus) == 
                  0); 
  return !CPU_EQUAL(&current_cpus, &specified_cpus_);  // Mismatch => modified. 
} 
 
}  // namespace tcmalloc_internal 
}  // namespace tcmalloc 
GOOGLE_MALLOC_SECTION_END